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Abstract

The standard Vector Error Correction Model (VECNppeoach to investigating the
underlying dynamics of economic variables assumesnatant co-integration space.
This paper relaxes this assumption by implemerginggime switching VECM that
allows for shifts in both the drift and the longarequilibrium. Applying this more
flexible formulation to a study of UK meat consuimpt we can clearly identify
several shifts in meat consumption. These can pé&ieed by significant shocks in
consumer confidence in meat safety, such as BStEoédh it is possible to model
these explicitly, since the approach adopted mothelsregime shift in terms of an
unobserved state variable, it can be useful intifyj@mg such shifts, thus allowing

them to be modeled in subsequent steps.
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1. Introduction

This study investigates the dynamics of fresh nmmmtsumption in the UK. In

particular we pay attention to two analytical aspeof meat demand. Meat
consumption time series data in the UK is non-statiy, which justifies the use of
standard co-integration methodology. On the otlardh conventional co-integration
literature is built around linear models which amsustable relationships. Bearing in
mind the dramatic and possibly enduring effectshaf BSE crisis and the ample
evidence of structural shifts in meat demand, stabklationships are unlikely to
persist. Modeling meat demand thus requires ontke account of, and test for,
possible structural changes. This paper uses regwitehing methods to model such

structural changes.

Data on UK per capita consumption of beef, lamlskmmnd poultry meat from the
National Food Survey for the period 1974-2000 isdusn the next section we present
the econometric issues relating to the adopted adetbgy and to testing for
structural change in co-integrated models in génbtaat consumption dynamics in
the UK is then reconsidered in the light of thiegantation. The relevant model is

estimated and its results interpreted.

2. Econometric issues

Vector autoregressive (VAR) models, introduced loysS(1980) are widely used in
econometric studies. Their popularity is due toftaribility of the VAR framework
and the ease of producing economic models withuliskfscriptive characteristics,
and the availability of statistical tests of ecomcaily meaningful hypotheses. It is
now increasingly recognised that implications of timear models, namelnearity
(invariance of dynamic multipliers with regard teethistory of the system, size and
sign of the shocks)Yime-invariance of parameters and Gaussianity apbl@matic
and better understanding thus requires new ecomigniesdls. In this paper we adopt
the regime—switching approach to yield a non-lin@aodel with time-varying

coefficients.

While the importance of regime shifts seems to beegally accepted, there is no

established theory suggesting a unique approackpecifying econometric models



that embody changes in regime. Increasingly howeegsime shifts are considered
not as singular deterministic events (i.e. stradtwreaks), but the unobservable
regime is assumed to be governed by a stochasteegs. Thus regime shifts of the

past can be expected to continue to occur in theedun a similar fashion.

When a time series is subject to regime shifts,pdrameters of the statistical model
will be time-varying. The basic idea of regime-siihg modelss that the process is
time invariant, conditional on a regime variableigating the regime prevailing at
time t. Regime-switching models characterize a non-lingda denerating process as
being piecewise linear by restricting the procedse linear in each regime, where the
regime may be unobservable, and only a discretebeuraf regimes are feasible.
Models within this class differ in their assumpsotoncerning the stochastic process
generating the regime. More specifically we use arkdv-switching vector
autoregressive (MS-VARNodel. It assumes the regire is generated by a hidden

discrete-state homogeneous and ergodic Markov chain

Pr(SIS1; Yeux) = Pr&|S.1; p) 1)

defined by the transition probabilities

pj = Pr&+« =j|S =) 2)

The conditional process is a VAB(with either a shift in the mean corresponding to
once-and-for-all jump in the time series or a shifthe intercept which leads to a
smooth adjustment of the time series. This redtigimple formulation can lead to a
great variety of flexible models (Krolzig, 1997).

The estimation is based on the state-space forregeptation of the model, where the
so called Hamilton (1989) filter can be applied.isThecursive algorithm can be
viewed as a discrete version of the Kalman filtemally used in estimating Gaussian
state-space models. A major improvement of theathes has been provided by the
backward recursions of Kim (1994). Following Hammit(1990), the Expectation-
Maximization (EM) algorithm (Dempster, Laird and o, 1977) can be used in



conjunction with the filter to obtain the maximurkedlihood estimates of the model's

parameters

The major advantage of this procedure is that kenause of the discrete support of
the state in the MS-VAR model. This allows derigatiof the complete conditional
distribution of the unobservable state variableteéad of deriving the first two
moments, as in the conventional Kalman filter (Katmn 1960, Kalman and Bucy,
1961, Kalman, 1963) for Gaussian linear state-spaoeels, or using the grid-
approximation of Kitagawa (1987) for non-linear,nAmormal state-space models.
Unlike the general non-linear state-space moda, aiso allows for direct application
of Monte Carlo Markov Chain methods for fully Bajssestimation of such models
(see Kim and Nelson, 1998). More detailed discus%ib this type of models is

beyond the scope of the present study.

Testing for the number of regimes in an MS-VAR moue difficult. The main
problem arises from the presence of unidentifiedance parameters under the null

of linearity, which invalidates the conventionadtiag procedures. (Krolzig, 1997).

The nuisance parameters give the likelihood surfadécient freedom so that one
cannot reject the possibility that the apparentipificant parameters could simply be
due to sampling variation. The scores associatéd parameters of interest under the

alternative may be identically zero under the null.

Davies (1977, 1987) derived an upper bound for shgnificance level of the
likelihood ratio test statistic under nuisance paters. Formal tests of the Markov-
switching model against the linear alternative emiplg a standardized likelihood
ratio test designed to deliver (asymptotically)idahference have been proposed by
Hansen (1992, 1996a), Garcia (1998), but are caatipotlly demanding.
Alternatively one may use the results of Ang andtd®et (1998) which indicate that

critical values of they?(r+n) distribution can be used to approximate the L&, te

wherer is the number of restricted parameters angs the number of nuisance

parameters.

! The model innovations are non-Gaussian and thustdiggplication of the Kalman filter is not
feasible.



The simplest alternative used in this paper isd4e unformation criteria for model
choice (Akaike, Schwarz and Hannan-Quinn criterexevused) and then check the

resulting model congruency by misspecificationgest

The type of MS-VECM we will consider can be remme®d in the following way

using standard co-integration notation (see Krodtigl., 2002):

p-1
By, =v(S)+ D MY, +Ny,_, +Uy, (3)

i=1

where only the constant term is subject to regihmnge. It is in principle possible to
model switching in any component of the model abdoé this would entail more

complicated estimation algorithms and is still ader-researched area.

Before proceeding we note that the intercept terrm co-integrated models can be

decomposed into two distinct quantities.

To illustrate this let us take expectations ofgBdve. This yields:
rOE@y,)=v+aE(s'y,) @)

where we have used the usual decompositionfof af' into a loading and co-
p-1

integration matrices anfl(l)=1- YT, .

i=1
We can thus represent the intercepas follows:

v =-aE(B'y,)+T OE(dy,)=-ad+T )u (5)

In (5) above 1 denotes the expectation of the first differencéshe time series
(which exists and is finite if these are I(1) atst)aand o is a constant determining
log-run equilibrium and thus is included into the-integration relation (this is

actually the constant term in the co-integratidatien).

By rewriting the error correction form of the VARoadkel we thus identify the
underlying growth of the variables (the second teritb) above), alongside the long-

run means of the co-integration relationships fitts¢ term in (5)).



Within the VECM the intercepts can either be restd to lie in the cointegration
space (in which case = -ad), or not. If the intercepts are not restrictedi¢an the
cointegration space, they allow the system to Haoth growth and cointegration
means. If, however, the intercepts are restridtezte is no growth in the system, (see

Johansen and Juselius, 1990).

Bearing in mind the decomposition of the intercigpin in (5) one may identify the
following possible regime shifts in the latter: f&hiin the long-run equilibrium (i.e.
shifts in &), shifts in the drifts (growth) of the system (ighifts in &), shifts in both

the long-run equilibrium and the drift, or an urrigsed shift (i.e. a shift inv). In this

way the MS-VECM is related to the co-integratidenature on structural breaks.

Structural breaks of this type have been widelguised in the context of univariate
autoregressive time series. Perron (1989) suggeste models: Model A, a 'crash
model’, with change in intercept but where the slop the linear trend is unchanged;
Model B, a ’'changing growth model’, allows a changethe slope of the trend
function without any sudden change in the levehattime of the break; and model C,
where both intercept and slope are changed atirttee df the break. Johansen et al.
(2000) present a generalization of model C in atirariate framework, and allow for

testing a hypothesis corresponding to model A.

Saikkonen and Lutkepohl (2000) suggest a two gdppoach to estimate cointegrated
VAR models with structural breaks. In the firststall the coefficients for the
deterministic variables are estimated. In the seécstep a normal cointegration
analysis is conducted, but the deterministic coreptsrare removed from each time
series. The estimation in the second step is tberafone without any deterministic
variables included. One problem with this estimatioethod is that not all restrictions
among the coefficients for the deterministic vaealcran be taken into account in the
first step. In the same way as for the estimatimtgdure in Johansen et al. (2000)
this involves a reduction in the degrees of freedehen the coefficients for the
deterministic variables are estimated. Hungnes Zp@doposes testing procedures
based on the switching algorithm of Boswijk (1995).

The main advantage of the MS-VECM approach is ithaeésts the structural breaks
models in that they are particular cases of the \NE&M model when one of the

states is absorbing. Additionally the alternatif@sswitching allow for a great deal of



flexibility. Note that while switches in the driff.e. x) are expressed in abrupt

changes in the data, shifts in the long-run equilib (i.e. ) are transmitted

smoothly through the system in a similar way asmmooth transition models.

When considering a model incorporating a structetenge it might be useful to
review the concept of co-breaking introduced by dign(1996) and Hendry and
Mizon (1998). If deterministic breaks in a systefmequations can be removed by
taking linear combinations of the system variabllee,variables are said to co-break.
Co-breaking analyses are not ubiquitous. The ressthrat one needs at least as many
breaks as variables in the system. If not, thele akivays exist at least one linear
combination of the variables where the deterministeaks can be removed. Hendry
and Mizon (1998) label such situations as ’spurioagreaking’. It can be shown
that in an MS-VECM with regime dependent interceptdy, the co-integrating
vectors yield co-breaking relationships, which easuhe stationarity of the model,

even if the regime shifts are not themselves cadong.

With regard to meat consumption, the most intemgstype of structural change
would be an abrupt change in the drift of the aystéhis is also the simplest type of
MS-VECM model, since it preserves the co-integratispace. Moreover the
experience of structural changes such as thosewioly the BSE consumer food
safety confidence crisis suggests such type ofsshifther changes such as the entry
to the EU, preference and health related diet absrigpwever assume a gradual
process of adjustment that is better representeshlfis in the long run equilibrium
state. An advantage of such an approach is thatoivs us to use the established
results from the theory of linear co-integratedgesses and estimate a conventional
VECM at the first step, which then can be used withalteration in estimating the
final MS-VECM.

3. How to model the UK meat consumption

One of the largest UK food markets is that of mé&éat is an important source of
human nutrition. However, over the past two decattese have been many opinions

on the value of meat in the diet leading to a cadus debate over the advantages

2 The same type of two step procedure can be usetl fgpes of shift discussed here. It would rely on
an approximation of the infinite order VAR (the MEEM has an observationally equivalent
VARMA representation) by a finite order liner VAR igh is estimated at the first step.



and disadvantages of eating meat. The traditionasB meal however still tends to

include meat as its main part. Since the 1980seliewy there has been a shift away
from consumption of red meat towards white meais Has created trends in meat
consumption that present analytical interest. lngbonometric framework developed
in the previous section, this requires that our ehchould not be restricted in the

sense of restricting the drifts in the intercepint¢o be zero.

In a Monte Carlo simulation Doornik (1998) showattlf the system is misspecified
by not including a trend, we may not identify dletcointegrating vectors. This is
because the deterministic trends will be represerig a stochastic trend. To

erroneously include a deterministic trend howe\as & very low cost.

A series of food scares, most prominently BSE, relge had a marked affect on the
British meat industry. Influenced by these disessares and releases such as the
‘1984 COMA Report’, which outlined recommendatians reducing the level of fat

in human diets, the British public has become naovare of what they are eating, and
have adjusted their consumption trends. Changethenstructure of society and
family, have also influenced the meat industry.réheas been a shift away from the
traditional British roasts, towards other typesfadd such as ready prepared meals,
and foreign cuisine. In general all these fact@gehcreated a tendency to move away

from red meats towards white meats.

With regard to the MS-VECM, this means that suchiceconomic forces would
induce changes in the drift of the system. Itasgible in addition to also have effect

on the co-integrating space (i.e. to shift thelsastic trends as well).

In selecting data for this study we have also takém consideration that the trends
and tendencies described above only appeared irnl986s. The National Food
Survey holds data since 1949. Due to expecteerdifice even in the stochastic
trends present in meat consumption in the postpeaod and the most recent years
there exists a danger of misspecification, in thess that a more appropriate model
may involve regime switching for the cointegratimgctors themselves. For these
reasons we reduce the sample and start from 18&4/etar following the entry of the
UK into the EU.



4. Estimation Results

Prior to analysis we take natural logarithms otalla.

4.1 Stationarity testing

Testing economic data for stationarity is nowadaywidespread exercise. In the
realms of co-integration literature this is oftequizvalent to testing for a unit root.

There are numerous unit root tests available iditth@ture

Unit root tests consist of univariate and covarigsts. Testing for unit roots in a
univariate time series ignores relevant informatammtained in other time series.
Hansen (1995) and Elliott and Jansson (2003) deroxariate unit root tests with
substantial power gains over their conventionat omdt counterparts by exploiting
the information in related time series. These testsease power by modeling
correlated stationary economic variables with tlepehdent variable. The use of
stationary covariates results in a new error vaeathat is smaller than the error
variance of a univariate regression. This resultsmaller confidence intervals and
more powerful test statistics than those of theveational unit root tests. In the case

of meat consumption however it is difficult to fiaghpropriate stationary covariates.

Due to the unclear power of the unit root tests @dvisable to use several of these to
obtain robust results. Here we employ the followingvariate unit root tests: the
Augmented Dickey Fuller (ADF) test of Dickey andllEu (1979), the generalized
least squares ADF and the Point Optimal test oiotEll Rothenburg, and Stock
(1996), and the Phillips and Perron (1988) test.

The second family of univariate tests, namely stetiity tests, reverses the null and
alternative hypotheses of the unit root tests. Jtationarity test examines the null
hypothesis of level or trend stationarity, |1(0),aaxst the alternative of difference
stationarity, 1(1). Examples of such tests inclutdese of Kwiatkowski, Phillips,

Schmidt, and Shin (1992) (KPSS), Saikkonen and kaokn (1993), and Leybourne
and McCabe (1994). In this study we employ the naodely used of these tests the
KPSS one. It is advantageous to combine the tahttive null of stationarity and of

unit root to make the results robust.

When however one tries to model a system of economariables, the potential

correlation amongst these may decrease the powseunivariate unit root test. This



is the basic idea behind the panel unit root testsh include the other time series
from a panel in order to increase the power ofuthieroot test. The same logic can be
applied to any group of time series, particularfythese are to be modeled
simultaneously. Therefore we use some of the pami¢lroot tests, namely those of
Levin, Lin and Chu (2002), Breitung (2002), Im, Bes and Shin (2003), and Fisher-
type tests using ADF and PP tests (Maddala and ¥899) and Choi (2001)).
Additionaly we employ the stationarity panel tesedo Hadri (1999). Although these
tests are commonly termed “panel unit root” tetstsy are simply multiple-series unit
root tests that have been applied to panel daiatates (where the presence of cross-
sections generates “multiple series” out of a @rggries). All the above panel unit
roots are very different in their assumptions, Higcussing their differences and

similarities is not the subject to this study.

The results from the univariate unit root tests @resented in table 1. In general due
to the very small sample size the ERS test resldtsaot seem reliable (the critical
values are for a sample of size 50). Otherwise diyospeaking most tests provide
evidence for unit root in the levels, but no umbts in the first differences. In the
cases of poultry and to some extent lamb, includitigear trend in the test equation
tends to lead to the conclusion of no unit roote Bationarity test (KPSS) seems to
confirm the trend stationarity of lamb consumptibaf rejects it for poultry. Given
that the confidence level of rejection of the raflla unit root are much higher in the

poultry case, this suggests the possibility focticmal order of integration.

Table 2 presents the results from the panel uwitsréor all 4 series, using different
criteria for lag choice. Whilst the null of no coramunit root is strongly rejected in
all cases, these tests reject the null of unitsaothe case of the presence of a linear

trend.

If however we carry out the same panel unit roststeon a reduced panel that
excludes poultry consumption (see table 3), thelenge for unit roots increases. If
we further exclude lamb, the confidence limit oégk tests increases even further
(results available from the authors). Another iesting result from the panel unit root
tests is that even in the larger panel, the téstistend to reject the null of unit root in
the case of a deterministic trend assume individa#l root processes. The tests that
assume common unit roots fail to reject the null aocordingly the Hadri (2000) test

which has stationarity as it null against an akléisre of common unit roots is highly
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significant. We thus find strong evidence for thhegence of unit roots in beef and
pork consumption, whilst for lamb and poultry comgiion we are unable to
definitely reject trend stationarity. This findimgeans that it is highly likely that these

series share common unit root processes and tQuseeo-integration analysis.

4.2 VECM

Bearing in mind the mixed results from the unittrtests, we now proceed to testing
for co-integration and estimating a VECM. An imiaort question on the structure of
the VECM is whether poultry and lamb consumptioedch& be included, given the
relatively weak evidence for unit roots in thesaese The Granger causality tests on
the four series however indicate that lamb consionps Granger caused by beef
consumption, which warrants the inclusion of lansimsumption in the VAR model.
The question with poultry consumption is more cdogted. The Granger causality
tests show that it is exogenous with regard toatiher variables. Nevertheless since
we are also unable to accept the stationarity aftpoconsumption, we include it in

the system.

More detailed results are presented in appendikdte the inclusion of a time trend
in the co-integrating relationship. This is watexhin order to avoid the spurious

detection of more co-integrating vectors (see DisoriD98).

The main point of interest in this step is the tifemation of the long-run co-
integrating relationship. We are able to identifyirrgle co-integrating vector. We use

the latter to construct the error-correction teamthe MS-VECM in the next step.

4.3 MS-VECM of meat consumption

This is the main focus of the present study. ltolags generalizing the estimated
VECM of UK meat consumption to a MS-VECM. There &wvo issues to consider in
this process. The first is whether the Markov sinitg mechanism is necessary. We
note that this involves testing a non-linear (MSGMNE) against a linear (VECM)
alternative. A more general approach would beesd the residuals from the VECM
estimation for non-linearity. The problem with suagh approach is that it can only

detect non-linearity, but would not be able to deiee what is the appropriate
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alternative model. Moreover one may sometimes pnétrthe results from such tests
as an indication of general model misspecificatidmerefore we choose to implement
an LR test for an ordinary VECM against the MS-VECNhe problem with such a
test is that there are nuisance parameters whiehpegsent in the second case.
Therefore the LR needs to be adjusted or obtainupper significance bound
according to the suggestions of Davies (1977,19i7addition we also present the

Chi square approximation due to Ang and Bekae@g).9

The other issue is the choice of number of regiMés.use the information criteria to
do so. The main information criterion used is thay®&ian Schwarz information
criterion, although the other two information crite (Akaike and Hannan-Quinn)

yield the same model.

The estimation results are presented in AppendiXh2 LR linearity test strongly
rejects the linear VECM in favour of the MS-VECM this case we apply an
unrestricted shift to the intercept. If only theftdis shifted we are not able to reject
the null of linearity (Results available from thetl@ors upon request) although the
general structure of the resulting MS-VECM is sanito the one presented here in
terms of estimated coefficients and the regimesdiaation coincides with ours. This
is an indication that there are also shifts ocagrtb the long-term equilibrium of the
system. Although it is advisable to representalseparately, due to the small sample

we ran into numerical problems in estimating a ngeeeral model.

The residuals from the estimated MS-VECM can beetkdor additional non-
linearity. This involves bootstrapping the avaikalsion-linearity test to account for
the small sample bias. To simplify the presentatienomit these test results, but they

are available upon request.

Additionally in appendix 3 we present generalizezfjime dependent impulse
response functions (IRFs) from the MS-VECM, estedaalongside the suggestions
of Ehrmanret al (2003} using 500 bootstrap replications. Since we onliich the
intercept, these are similar for both regimes. &fe we only present the impulse
response functions for regime 1 (which can be Uyoa@fined as the ‘normal’
regime). An important consideration in constructingse is to select the length of the

response which should not extend beyond the avéeagéh of the regime. Based on

% We are grateful to Michael Ehrmann for allowirgyta use their code. We only made some slight
modifications to it in order to adjust it for our pose.
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the estimation results we choose an 8 periods gyeasponse projection. One may
see from the IRFs the uncharacteristic reactionhe last period. This is not be
surprising since the two longest periods in regime the data are of length 8 and 6.
A careful examination of these impulse responsectians suggests that a more
detailed study of the possibility of co-breakindat®nships (other than the one
implied by co-integration) may be useful to furthdentify the dynamics of meat

consumption. One should note the clear similaritiethe IRFs for pork and poultry.

In addition to suggesting the possible co-breaki@igtionship between these two

variables, this warrants the inclusion of poultopnsumption in the estimated system.

Conclusions

This paper analyses UK meat consumption using aVBGM. We find strong
evidence against the conventional linear co-intagranodel. Furthermore, although
the model allows for an absorbing state, in whiesecwe would have the typical
structural break model, this does not appear tihbease. Meat consumption instead,
is governed by a latent process of continuous ahawée find evidence for shifts in
both the drift and the long-term equilibrium of tbensumption system. We present
results from numerous unit root tests with a twofpurpose. First these test are
known to often have low power and combining them icageneral be advantageous.
The results for the unit root testing proceduresraixed. It should however be noted
that the notion of non-stationarity is much widéran the simplistic unit root
paradigm. Non-stationarity and non-linearity canelasily confused, and in this case
we clearly have a non-linear process. Additiontiky unit root tests have low power
to alternatives such as the stochastic unit rootgsses (Leybourne et al, 1996) and
Granger and Swanson, 1997), fractionally integraiescesses or indeed regime—
switching (see e.g. Nelsat al, 2001¥. It is thus desirable to perform more model-

based type unit root testing.

A question that might be asked is what are theimyivforces of the underlying
regimes. In Gordon and St-Armour (2000) the poweefficient in the constant
relative risk aversion (CRRA) utility function issumed to obey a two-state Markov

chain, allowing agents’ sentiments to switch frone sstate to another in a manner

* These issues are intrinsically related. Stochasticroaitprocesses are fractionally integrated and it is
difficult even asymptotically to distinguish long memand regime switching.
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reminiscent of Keynes’ ‘animal spirits’. One caraddy generalize such a micro
model in allowing social factors, as for examplee tpress, to influence an
unobservable variable- the ‘public opinion’ which its turn can determine the
prevailing consumption regime. If one knows theseiad factors an explained
switching model may be more appropriate, but ther@gch employed here is much

more general.

An important result from this study is that the stamcy of the linear co-integration
space for meat consumption in the UK cannot be tai@ed in the sense that the
identified long-run equilibrium is moving in timend within the regime switching
process. An alternative avenue of research wouldobtest for a non-linear co-
integration. Note that a more often used labeltfier abbreviation VECM is 'Vector
Equilibrium Correction Model'. We resisted usingethatter because the MS-VECM
representation not only leads to multiple equiibifaccording to the different
regimes), but also assumes a constantly changing-rion equilibrium. From an
estimation point of view the long-term equilibriuwould be defined by the relative
regime probabilities. It should be clear that sittve exact timing of future regime
changes cannot be predicted, then the log-runibguih can be subject to a kind of
path dependency. This seems to contradict the otioval view of equilibrium, but

presents a more realistic view of economic processe

Some preliminary results from employing the moréusi, though extremely
computationally demanding approach to testing &mime switching based on the
tests suggested by Hansen (1992, 1996a) and G&8898), which are available from
the authors upon request, tend to suggest an aiteznmodel with asynchronous

regime switching, as opposed to the simultaneoeseonployed here.
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Tablel Univariate root tests results

Variable Test level 1st difference Details

BF ADF -0.522422 *** _5.860520 SIC;Cst

BF ADF -3.113209 **x 5 561496 SIC;Cst,Tr

BF DF-GLS -0.380620 -1.101391 SIC;Cst

BF DF-GLS -2.630299 *x _5.334123 SIC;Cst, Tr

BF PP -0.460248 *** .5.828962 NW, B;Cst

BF PP -3.123622 *** _5.543996 NW, B;Cst,Tr
BF ERS 31.23937 5.152819 SIC, SOLS;Cst
BF ERS 17.06255 11.17397 SIC, SOLS;Cst,Tr
BF KPSS ** (0.714030 0.150600 NW, B;Cst

BF KPSS *(0.121031 *(0.132829 NW, B;Cst,Tr
LM ADF -0.529912 *** 5953537 SIC;Cst

LM ADF *-3.285312 *** 5835131 SIC;Cst,Tr

LM DF-GLS -0.351129 *xk .5.724574 SIC;Cst

LM DF-GLS *-3.124824 *** _6.012916 SIC;Cst,Tr

LM PP -0.363025 *** .6.018475 NW, B;Cst

LM PP *.3.285312 *** _5.893026 NW, B;Cst,Tr
LM ERS 25.43133 ** 2.304275 SIC, SOLS;Cst
LM ERS 10.74107 7.353644 SIC, SOLS;Cst,Tr
LM KPSS **(0.734722 0.104627 NW, B;Cst

LM KPSS 0.086298 0.075991 NW, B;Cst,Tr
PK ADF -0.640332 *xx 5 871772 SIC;Cst

PK ADF -2.034204 *** _6.364641 SIC;Cst,Tr

PK DF-GLS -0.994483 ***_4,792133 SIC;Cst

PK DF-GLS -2.010803 **x 5795921 SIC;Cst,Tr

PK PP 0.844906 *xx .5.870476 NW, B;Cst

PK PP -1.825416 *** -6.459092 NW, B;Cst,Tr
PK ERS 10.7627 *3.589194 SIC, SOLS;Cst
PK ERS 16.87547 10.31715 SIC, SOLS;Cst,Tr
PK KPSS **(0.503207 0.177237 NW, B;Cst

PK KPSS **(,148918 0.112140 NW, B;Cst,Tr
PL ADF -2.356564 **x _4,955080 SIC;Cst

PL ADF **% .3.996804 **% _5.204597 SIC;Cst,Tr

PL DF-GLS -0.906349 **x 5179466 SIC;Cst

PL DF-GLS ** _3.378108 *** _6.692671 SIC;Cst,Tr

PL PP *-2.861776 *xx _7.81352 NW, B;Cst

PL PP **.4.202943 **k .13.46409 NW, B;Cst,Tr
PL ERS 55.27378 **2.119375 SIC, SOLS;Cst
PL ERS 16.09524 ** 4.662476 SIC, SOLS;Cst,Tr
PL KPSS ** (),756815 *0.377711 NW, B;Cst

PL KPSS ***(,172347 **xx (),500000 NW, B;Cst,Tr
Notes:

SIC Schwartz Information criterion

Cst constant

Tr linear trend

NW Newley-West bandwith choice

B Balrlet kernel

SOLS Spectral OLS

ok Significant at 1% level

*x Significant at 5% level

* Significant at 10% level
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Table 2 Panel Unit root tests results

Method

Null: Unit root (assumes common unit root process)

AIC

Statistic Prob.

AlC TR
Statistic Prob.

SIC

Statistic  Prob.

SIC, TR

Statistic ~ Prob.

HQ

Statistic ~ Prob.

HQ TR
Statistic Prob.

Levin, Lin & Chu t* -0.3102 0.3782 -1.9478 0.0257 -0.61747 0.2685 -2.28072 0.0113 -0.44785 0.3271 -1.9478 0.0257

Breitung t-stat 0.75317 0.7743 1.05137 0.8535 0.31523 0.6237 0.99200 0.8394 0.58954 0.7223 1.05137 0.8535

Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat 1.10906 0.8663 -2.3814 0.0086 0.98298 0.8372 -2.2322 0.0128 1.09087 0.8623 -2.3814 0.0086

ADF - Fisher Chi-square 3.63543 0.8884 18.7496 0.0163 4.70861 0.7882 17.7912 0.0228 4.00270 0.8569 18.7496 0.0163

PP - Fisher Chi-square 6.43365 0.5988 18.3655 0.0186 6.43365 0.5988 18.3655 0.0186 6.43365 0.5988 18.3655 0.0186

Null: No unit root (assumes common unit root process)

Hadri Z-stat 7.20996 0.0000 3.03267 0.0012 7.20996 0.0000 3.03267 0.0012 7.20996 0.0000 3.03267 0.0012
MAIC MAIC TR MSIC MSIC TR MHQ MHQ TR

Method Statistic Prob. Statistic  Prob. Statistic  Prob. Statistic  Prob.  Statistic Prob.  Statistic Prob.

Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -0.10376 0.4587 -2.28072 0.0113 -0.44785 0.3271 -2.28072 0.0113 -0.4478 0.3271 -2.2807 0.0113

Breitung t-stat -0.02317 0.4908 0.99200 0.8394 0.58954 0.7223 0.99200 0.8394 0.58954 0.7223 0.99200 0.8394

Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-stat 1.15344 0.8756 -2.2322 0.0128 1.09087 0.8623 -2.2322 0.0128 1.09087 0.8623 -2.2322 0.0128

ADF - Fisher Chi-square 3.85718 0.8698 17.7912 0.0228 4.00270 0.8569 17.7912 0.0228 4.00270 0.8569 17.7912 0.0228

PP - Fisher Chi-square 6.43365 0.5988 18.3655 0.0186 6.43365 0.5988 18.3655 0.0186 6.43365 0.5988 18.3655 0.0186

Null: No unit root (assumes common unit root process)

Hadri Z-stat 7.20996 0.0000 3.03267 0.0012 7.20996 0.0000 3.03267 0.0012 7.20996 0.0000 3.03267 0.0012

AIC -Akaike, SIC -Schwatz, HQ — Hannan-Quinn; M edified




Table 3 Reduced panel (BF, PK and LM) Unit root tests

AlC

Method Statistic
Null: Unit root (assumes common unit root
process)

Levin, Lin & Chu t* -0.35729
Breitung t-stat 1.34213

Null:  Unit root (assumes individual unit root
process)

Im, Pesaran and Shin W-stat -1.52092
IADF - Fisher Chi-square 11.1004
PP - Fisher Chi-square 9.82785

Null: No unit root (assumes common unit root
process)

Hadri Z-stat 2.52110

TR SIC
Prob. Statistic

0.3604-0.81128
0.9102 1.24846

0.0641-1.32303

0.0853 10.1421

0.1321 9.82785

0.0058 2.52110

TR HQ

0.2086-0.35729
0.8941 1.34213

0.0929-1.52092
0.1188 11.1004

0.1321 9.82785

0.0058 2.52110

TR MAIC TR
Prob. Statistic Prob. Statistic Prob.

0.3604-0.81128
0.9102 1.24846

0.0641-1.32303

0.0853 10.1421

0.1321 9.82785

0.0058 2.52110

0.2086-0.81128
0.8941 1.24846

0.0929-1.32303

0.1188 10.1421

0.1321 9.82785

0.0058 2.52110

MSIC TR MHQ
Statistic Prob. Statistic

0.2086-0.81128
0.8941 1.24846

0.0929-1.32303

0.1188 10.1421

0.1321 9.82785

0.0058 2.52110

TR
Prob.

0.2086
0.8941

0.0929

0.1188

0.1321

0.0058
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Pairwise Granger Causality Tests

Null Hypothesis: Obs F-Statistic  Probability
LNLM does not Granger Cause LNBF 24 2.08912 0.13958
LNBF does not Granger Cause LNLM 2.77301 0.07319
LNPK does not Granger Cause LNBF 24 0.36523 0.77897
LNBF does not Granger Cause LNPK 414776 0.02236
LNPL does not Granger Cause LNBF 24 1.84174 0.17788
LNBF does not Granger Cause LNPL 0.76298 0.53030
LNPK does not Granger Cause LNLM 24 0.05989 0.98015
LNLM does not Granger Cause LNPK 3.70861 0.03215
LNPL does not Granger Cause LNLM 24 0.74866 0.53799
LNLM does not Granger Cause LNPL 1.45268 0.26267
LNPL does not Granger Cause LNPK 24 8.49499 0.00114
LNPK does not Granger Cause LNPL 0.75494 0.53460
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Appendix1
VECM estimation

Cointegration Rank Test

Hypothesized Trace 5 Percent 1 Percent
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value
None ** 0.747867 70.05084 62.99 70.05

At most 1 0.552190 36.98366 42.44 48.45

At most 2 0.357296 17.70237 25.32 30.45

At most 3 0.255862 7.092683 12.25 16.26
Hypothesized Max-Eigen 5 Percent 1 Percent
No. of CE(s) Eigenvalue Statistic Critical Value  Critical Value
None * 0.747867 33.06717 31.46 36.65

At most 1 0.552190 19.28129 25.54 30.34

At most 2 0.357296 10.60969 18.96 23.65

At most 3 0.255862 7.092683 12.25 16.26

*(**) denotes rejection of the hypothesis at the 5%(1%) level
Max-eigenvalue test indicates 1 cointegrating equation(s) at the 5% level

Unrestricted Cointegrating Coefficients (normalized by b*S11*b=I):

LNBF LNPK LNPL LNLM TREND
4.632024 14.46651 -67.80305 -7.932211 1.236427
0.220762 -5.211727 -16.72543 18.36359 0.907345
-5.361773 -14.31232 26.31200 -1.413653 -1.004059
19.28423 -7.967016 -3.804871 1.660707 0.629353
Unrestricted Adjustment Coefficients (alpha):
D(LNBF) 0.007704 0.013163 0.005283 -0.029430
D(LNPK) 0.005296 0.004931 0.035186 0.001117
D(LNPL) 0.033087 0.001327 -0.001854 0.009118
D(LNLM) -0.003538 -0.064037 0.020969 0.007116
Normalized cointegrating coefficients (std.err. in parentheses)
LNBF LNPK LNPL LNLM TREND
1.000000 3.123151 -14.63789 -1.712472 0.266930

(0.78351) (2.35541) (0.67660) (0.05248)
Adjustment coefficients (std.err. in parentheses)
D(LNBF) 0.035686

(0.07628)
D(LNPK) 0.024531

(0.07348)
D(LNPL) 0.153258

(0.03291)
D(LNLM) -0.016390

(0.11652)
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VECM estimation results

Error Correction: D(LNBF) D(LNPK) D(LNPL) D(LNLM)
CointEql 0.062073 -0.094351 -0.186571 0.056595
(0.08770) (0.10209) (0.03532) (0.10266)
[ 0.70780] [-0.92421] [-5.28298] [ 0.55131]
D(LNBF(-1)) -0.103960 -0.076126 0.274388 -0.017883
(0.31247) (0.36374) (0.12583) (0.36576)
[-0.33270] [-0.20928] [ 2.18063] [-0.04889]
D(LNBF(-2)) -0.297045 0.113367 0.537288 0.577702
(0.30022) (0.34948) (0.12090) (0.35142)
[-0.98943] [ 0.32439] [4.44422] [ 1.64390]
D(LNPK(-1)) -0.141234 -0.351500 0.105228 0.164971
(0.25833) (0.30072) (0.10403) (0.30239)
[-0.54672] [-1.16886] [ 1.01153] [ 0.54556]
D(LNPK(-2)) -0.477624 0.019357 0.418797 0.300841
(0.25111) (0.29231) (0.10112) (0.29394)
[-1.90206] [ 0.06622] [ 4.14158] [ 1.02349]
D(LNPL(-1)) -0.720055 1.364414 1.044118 0.260862
(0.73819) (0.85932) (0.29727) (0.86409)
[-0.97543] [1.58778] [ 3.51241] [ 0.30189]
D(LNPL(-2)) -1.009482 0.883064 1.192473 0.722047
(0.69620) (0.81044) (0.28036) (0.81494)
[-1.44998] [ 1.08961] [ 4.25342] [ 0.88601]
D(LNLM(-1)) 0.175873 -0.198117 -0.236009 -0.667956
(0.22911) (0.26671) (0.09226) (0.26819)
[0.76763] [-0.74283] [-2.55803] [-2.49063]
D(LNLM(-2)) 0.155130 -0.036460 -0.013346 -0.213624
(0.17099) (0.19905) (0.06886) (0.20015)
[ 0.90724] [-0.18317] [-0.19382] [-1.06730]
C -0.770378 0.581413 1.426179 0.493853
(0.63561) (0.73990) (0.25596) (0.74401)
[-1.21203] [ 0.78580] [5.57199] [ 0.66377]
PLNBF -0.128070 -0.373975 -0.255013 -0.784648
(0.32817) (0.38202) (0.13215) (0.38415)
[-0.39025] [-0.97893] [-1.92967] [-2.04258]
PLNPK -1.160335 -0.027098 0.882727 1.657115
(0.42581) (0.49568) (0.17147) (0.49843)
[-2.72502] [-0.05467] [5.14799] [ 3.32466]
PLNPL 0.089328 0.830702 0.372232 0.905056
(0.50789) (0.59122) (0.20452) (0.59451)
[ 0.17588] [ 1.40505] [ 1.82000] [ 1.52236]
PLNLM 0.576641 -0.206594 -0.008589 -1.834443
(0.40529) (0.47179) (0.16321) (0.47441)
[ 1.42280] [-0.43790] [-0.05262] [-3.86680]
R-squared 0.656009 0.635802 0.893908 0.766748
Adj. R-squared 0.208821 0.162345 0.755987 0.463520
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S.E. equation 0.064908 0.075558 0.026138 0.075978
Log likelihood 42.08610 38.43961 63.91602 38.30666
Akaike AIC -2.340509 -2.036634 -4.159668 -2.025555
Schwarz SC -1.653311 -1.349436 -3.472470 -1.338357
Mean dependent -0.023317 -0.007289 0.016566 -0.032507
S.D. dependent 0.072972 0.082556 0.052913 0.103731
Determinant Residual Covariance 5.55E-11
Log Likelihood 189.1768
Log Likelihood (d.f. adjusted) 147.1543
Akaike Information Criteria -7.179527
Schwarz Criteria -4,185307
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Appendix 2
MS-VAR estimation results

EQ 1) MSI(2)-VARX(2) nodel of (BF, LM PK, PL),

no. obs. per eq. : 22
in the system: 88
no. paramneters : 56
i near system: 50
no. restrictions : 4
no. nui sance p. : 2

| og-1i kel i hood 1 147. 2699

i near system: 137. 4848
AlC criterion - 8. 2973
i near system: -7.9532
HQ criterion -7.6430
[ i near system -7.3690
SC criterion -5.5201
i near system -5.4735
LR linearity test: 19. 5702
Chi (4) = [0.0006] **

Chi (6) = [0.0033] **

DAVI ES = [0.0114] *

Chi(4) and Chi(6) are the Ang and Bekaert (1998)
approxi mati on. Davi es S t he Davi es(1987) upper
si gni fi cance bound

---------- transition matrix -----------------------
Regine 1 Regime 2

Regime 1 0. 7889 0.2111
Regi ne 2 0. 4586 0. 5414

nCbs Prob. Duration
Reginme 1 15.0 0. 6848 4.74
Regi me 2 7.0 0. 3152 2.18

---------- coefficients ----------------------------

BF LM PK PL
Const (Reg. 1) -0.028216 -0.071107 -0.070770 0. 034978
Const ( Reg. 2) 0. 025462 0. 044924 0. 058726 0. 027219
BF_1 -0.102750 0.072132 -0.109295 0. 052031
BF_2 0. 343720 0. 694391 0.447013 -0.163419
LM 1 -0.100473 -0.310709 -0.174450 -0.004741
LM 2 0. 253495 -0.027892 0. 049843 0. 096577
PK_1 0.091380 -0.400893 -0.338273 0. 230263
PK_2 -0.311461 -0.126610 -0.081292 0. 108650
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PL 1 -0.007793 0. 094072

PL 2 -0.282892 0. 338389

CAON 1 -0.002227 -0.073227
SE 0. 060427 0. 085568

---------- cont enpor aneous correl ation

BF LM PK

BF 1. 0000 -0.6214 -0. 2332

LM -0.6214 1. 0000 -0. 1513

PK -0. 2332 -0. 1513 1. 0000

PL -0.5755 0. 0448 0.1184

---------- regi me classification

Reginme 1

1981 - 1985

1987 - 1995

1999 - 1999

Regi ne 2

1979 - 1980

1986 - 1986

1996 - 1998

2000 - 2000

26

1. 066368
-0. 081754
- 0. 083856

0. 035470

PL

-0. 5755
0. 0448

0.1184

1. 0000

-1.197793
0. 547490
0. 159827
0. 026903



Appendix 3
Regime dependent impulse response functions
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Response of meat consumption to a shock to beef consumption
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Response of meat consumption to a shock to poultry consumption
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