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Abstract 

The standard Vector Error Correction Model (VECM) approach to investigating the 

underlying dynamics of economic variables assumes a constant co-integration space. 

This paper relaxes this assumption by implementing a regime switching VECM that 

allows for shifts in both the drift and the long-run equilibrium. Applying this more 

flexible formulation to a study of UK meat consumption, we can clearly identify 

several shifts in meat consumption. These can be explained by significant shocks in 

consumer confidence in meat safety, such as BSE. Although it is possible to model 

these explicitly, since the approach adopted models the regime shift in terms of an 

unobserved state variable, it can be useful in identifying such shifts, thus allowing 

them to be modeled in subsequent steps. 
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1. Introduction 

 

This study investigates the dynamics of fresh meat consumption in the UK. In 

particular we pay attention to two analytical aspects of meat demand. Meat 

consumption time series data in the UK is non-stationary, which justifies the use of 

standard co-integration methodology. On the other hand, conventional co-integration 

literature is built around linear models which assume stable relationships. Bearing in 

mind the dramatic and possibly enduring effects of the BSE crisis and the ample 

evidence of structural shifts in meat demand, stable relationships are unlikely to 

persist. Modeling meat demand thus requires one to take account of, and test for, 

possible structural changes. This paper uses regime-switching methods to model such 

structural changes.  

Data on UK per capita consumption of beef, lamb, pork and poultry meat from the 

National Food Survey for the period 1974-2000 is used. In the next section we present 

the econometric issues relating to the adopted methodology and to testing for 

structural change in co-integrated models in general. Meat consumption dynamics in 

the UK is then reconsidered in the light of this presentation. The relevant model is 

estimated and its results interpreted. 

 

2. Econometric issues 

Vector autoregressive (VAR) models, introduced by Sims (1980) are widely used in 

econometric studies. Their popularity is due to the flexibility of the VAR framework 

and the ease of producing economic models with useful descriptive characteristics, 

and the availability of statistical tests of economically meaningful hypotheses. It is 

now increasingly recognised that implications of the linear models, namely linearity 

(invariance of dynamic multipliers with regard to the history of the system, size and 

sign of the shocks), time-invariance of parameters and Gaussianity are problematic 

and better understanding thus requires new econometric tools. In this paper we adopt 

the regime–switching approach to yield a non-linear model with time-varying 

coefficients.  

While the importance of regime shifts seems to be generally accepted, there is no 

established theory suggesting a unique approach for specifying econometric models 
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that embody changes in regime. Increasingly however, regime shifts are considered 

not as singular deterministic events (i.e. structural breaks), but the unobservable 

regime is assumed to be governed by a stochastic process. Thus regime shifts of the 

past can be expected to continue to occur in the future in a similar fashion.  

When a time series is subject to regime shifts, the parameters of the statistical model 

will be time-varying. The basic idea of regime-switching models is that the process is 

time invariant, conditional on a regime variable indicating the regime prevailing at 

time t. Regime-switching models characterize a non-linear data generating process as 

being piecewise linear by restricting the process to be linear in each regime, where the 

regime may be unobservable, and only a discrete number of regimes are feasible. 

Models within this class differ in their assumptions concerning the stochastic process 

generating the regime. More specifically we use a Markov-switching vector 

autoregressive (MS-VAR) model. It assumes the regime St  is generated by a hidden 

discrete-state homogeneous and ergodic Markov chain: 

 

Pr(St|St-1; Yt-1;Xt) = Pr(St|St-1; p) (1) 

defined by the transition probabilities 

 

pij = Pr(St+1 = j|St = i) (2) 

 

The conditional process is a VAR(p) with either a shift in the mean corresponding to a 

once-and-for-all jump in the time series or a shift in the intercept which leads to a 

smooth adjustment of the time series.  This relatively simple formulation can lead to a 

great variety of flexible models (Krolzig, 1997). 

The estimation is based on the state-space form representation of the model, where the 

so called Hamilton (1989) filter can be applied. This recursive algorithm can be 

viewed as a discrete version of the Kalman filter usually used in estimating Gaussian 

state-space models.  A major improvement of the smoother has been provided by the 

backward recursions of Kim (1994). Following Hamilton (1990), the Expectation-

Maximization (EM) algorithm (Dempster, Laird and Rubin, 1977) can be used in 
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conjunction with the filter to obtain the maximum likelihood estimates of the model’s 

parameters1. 

The major advantage of this procedure is that it makes use of the discrete support of 

the state in the MS-VAR model. This allows derivation of the complete conditional 

distribution of the unobservable state variable instead of deriving the first two 

moments, as in the conventional Kalman filter (Kalman, 1960, Kalman and Bucy, 

1961, Kalman, 1963) for Gaussian linear state-space models, or using the grid-

approximation of Kitagawa (1987) for non-linear, non-normal state-space models. 

Unlike the general non-linear state-space model, this also allows for direct application 

of Monte Carlo Markov Chain methods for fully Bayesian estimation of such models 

(see Kim and Nelson, 1998). More detailed discussion of this type of models is 

beyond the scope of the present study.  

Testing for the number of regimes in an MS-VAR model is difficult. The main 

problem arises from the presence of unidentified nuisance parameters under the null 

of linearity, which invalidates the conventional testing procedures. (Krolzig, 1997). 

The nuisance parameters give the likelihood surface sufficient freedom so that one 

cannot reject the possibility that the apparently significant parameters could simply be 

due to sampling variation. The scores associated with parameters of interest under the 

alternative may be identically zero under the null. 

Davies (1977, 1987) derived an upper bound for the significance level of the 

likelihood ratio test statistic under nuisance parameters. Formal tests of the Markov-

switching model against the linear alternative employing a standardized likelihood 

ratio test designed to deliver (asymptotically) valid inference have been proposed by 

Hansen (1992, 1996a), Garcia (1998), but are computationally demanding. 

Alternatively one may use the results of Ang and Bekaert (1998) which indicate that 

critical values of the 2χ (r+n) distribution can be used to approximate the LR test, 

where r is the number of restricted parameters and n is the number of nuisance 

parameters. 

                                                 
1 The model innovations are non-Gaussian and thus direct application of the Kalman filter is not 
feasible. 
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The simplest alternative used in this paper is to use information criteria for model 

choice (Akaike, Schwarz and Hannan-Quinn criteria were used) and then check the 

resulting model congruency by misspecification tests. 

 

The type of MS-VECM  we will consider can be represented in the following way 

using standard co-integration notation (see Krolzig et al., 2002):  
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where only the constant term is subject to regime change.  It is in principle possible to 

model switching in any component of the model above, but this would entail more 

complicated estimation algorithms and is still an under-researched area. 

Before proceeding we note that the intercept term ν  in co-integrated models can be 

decomposed into two distinct quantities.  

To illustrate this let us take expectations of (3) above. This yields: 
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We can thus represent the intercept ν  as follows: 

( ) ( ) µαδβαν )1()1(' Γ+−=∆Γ+−= tt yEyE  (5) 

 

In (5) above µ  denotes the expectation of the first differences of the time series 

(which exists and is finite if these are I(1) at most) and δ  is a constant determining 

log-run equilibrium and thus is included into the co-integration relation (this is 

actually the constant term in the co-integration relation). 

By rewriting the error correction form of the VAR model we thus identify the 

underlying growth of the variables (the second term in (5) above), alongside the long-

run means of the co-integration relationships (the first term in (5)). 



 6

Within the VECM the intercepts can either be restricted to lie in the cointegration 

space (in which case αδν −= ), or not. If the intercepts are not restricted to lie in the 

cointegration space, they allow the system to have both growth and cointegration 

means. If, however, the intercepts are restricted, there is no growth in the system, (see 

Johansen and Juselius, 1990). 

Bearing in mind the decomposition of the intercept term in (5) one may identify the 

following possible regime shifts in the latter: shifts in the long-run equilibrium (i.e. 

shifts in δ ), shifts in the drifts (growth) of the system (i.e. shifts in µ ), shifts in both 

the long-run equilibrium and the drift, or an unrestricted shift (i.e. a shift in ν ). In this 

way the MS-VECM is related to the co-integration literature on structural breaks.  

Structural breaks of this type have been widely discussed in the context of univariate 

autoregressive time series. Perron (1989) suggests three models: Model A, a ’crash 

model’, with change in intercept but where the slope of the linear trend is unchanged; 

Model B, a ’changing growth model’, allows a change in the slope of the trend 

function without any sudden change in the level at the time of the break; and model C, 

where both intercept and slope are changed at the time of the break. Johansen et al. 

(2000) present a generalization of model C in a multivariate framework, and allow for 

testing a hypothesis corresponding to model A. 

Saikkonen and Lütkepohl (2000) suggest a two step approach to estimate cointegrated 

VAR models with structural breaks. In the first step all the coefficients for the 

deterministic variables are estimated. In the second step a normal cointegration 

analysis is conducted, but the deterministic components are removed from each time 

series. The estimation in the second step is therefore done without any deterministic 

variables included. One problem with this estimation method is that not all restrictions 

among the coefficients for the deterministic variables can be taken into account in the 

first step. In the same way as for the estimation procedure in Johansen et al. (2000) 

this involves a reduction in the degrees of freedom when the coefficients for the 

deterministic variables are estimated. Hungnes (2002) proposes testing procedures 

based on the switching algorithm of Boswijk (1995). 

The main advantage of the MS-VECM approach is that it nests the structural breaks 

models in that they are particular cases of the MS-VECM model when one of the 

states is absorbing. Additionally the alternatives for switching allow for a great deal of 
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flexibility. Note that while switches in the drift (i.e. µ ) are expressed in abrupt 

changes in the data, shifts in the long-run equilibrium (i.e. δ ) are transmitted 

smoothly through the system in a similar way as in smooth transition models.  

When considering a model incorporating a structural change it might be useful to 

review the concept of co-breaking introduced by Hendry (1996) and Hendry and 

Mizon (1998). If deterministic breaks in a system of equations can be removed by 

taking linear combinations of the system variables, the variables are said to co-break. 

Co-breaking analyses are not ubiquitous. The reason is that one needs at least as many 

breaks as variables in the system. If not, there will always exist at least one linear 

combination of the variables where the deterministic breaks can be removed. Hendry 

and Mizon (1998) label such situations as ’spurious co-breaking’.  It can be shown 

that in an MS-VECM with regime dependent intercepts only, the co-integrating 

vectors yield co-breaking relationships, which ensures the stationarity of the model, 

even if the regime shifts are not themselves co-breaking. 

With regard to meat consumption, the most interesting type of structural change 

would be an abrupt change in the drift of the system. This is also the simplest type of 

MS-VECM model, since it preserves the co-integration space. Moreover the 

experience of structural changes such as those following the BSE consumer food 

safety confidence crisis suggests such type of shifts. Other changes such as the entry 

to the EU, preference and health related diet changes however assume a gradual 

process of adjustment that is better represented by shifts in the long run equilibrium 

state. An advantage of such an approach is that it allows us to use the established 

results from the theory of linear co-integrated processes and estimate a conventional 

VECM at the first step, which then can be used with no alteration in estimating the 

final MS-VECM2.  

 

3. How to model the UK meat consumption 

One of the largest UK food markets is that of meat. Meat is an important source of 

human nutrition. However, over the past two decades, there have been many opinions 

on the value of meat in the diet leading to a continuous debate over the advantages 
                                                 
2 The same type of two step procedure can be used for all types of shift discussed here. It would rely on 
an approximation of the infinite order VAR (the MS-VECM has an observationally equivalent 
VARMA representation) by a finite order liner VAR which is estimated at the first step. 
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and disadvantages of eating meat. The traditional British meal however still tends to 

include meat as its main part.  Since the 1980s however, there has been a shift away 

from consumption of red meat towards white meat. This has created trends in meat 

consumption that present analytical interest. In the econometric framework developed 

in the previous section, this requires that our model should not be restricted in the 

sense of restricting the drifts in the intercept term to be zero.  

In a Monte Carlo simulation Doornik (1998) shows that if the system is misspecified 

by not including a trend, we may not identify all the cointegrating vectors. This is 

because the deterministic trends will be represented by a stochastic trend. To 

erroneously include a deterministic trend however has a very low cost.  

A series of food scares, most prominently BSE, have also had a marked affect on the 

British meat industry. Influenced by these disease scares and releases such as the 

‘1984 COMA Report’, which outlined recommendations on reducing the level of fat 

in human diets, the British public has become more aware of what they are eating, and 

have adjusted their consumption trends. Changes in the structure of society and 

family, have also influenced the meat industry. There has been a shift away from the 

traditional British roasts, towards other types of food such as ready prepared meals, 

and foreign cuisine. In general all these factors have created a tendency to move away 

from red meats towards white meats. 

With regard to the MS-VECM, this means that such socio-economic forces would 

induce changes in the drift of the system.  It is possible in addition to also have effect 

on the co-integrating space (i.e. to shift the stochastic trends as well). 

In selecting data for this study we have also taken into consideration that the trends 

and tendencies described above only appeared in the 1980s. The National Food 

Survey holds data since 1949.  Due to expected difference even in the stochastic 

trends present in meat consumption in the post-war period and the most recent years 

there exists a danger of misspecification, in the sense that a more appropriate model 

may involve regime switching for the cointegrating vectors themselves. For these 

reasons we reduce the sample and start from 1974, the year following the entry of the 

UK into the EU. 
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4. Estimation Results 

Prior to analysis we take natural logarithms of all data.  

4.1 Stationarity testing 

Testing economic data for stationarity is nowadays a widespread exercise. In the 

realms of co-integration literature this is often equivalent to testing for a unit root.  

There are numerous unit root tests available in the literature 

Unit root tests consist of univariate and covariate tests. Testing for unit roots in a 

univariate time series ignores relevant information contained in other time series. 

Hansen (1995) and Elliott and Jansson (2003) derive covariate unit root tests with 

substantial power gains over their conventional unit root counterparts by exploiting 

the information in related time series. These tests increase power by modeling 

correlated stationary economic variables with the dependent variable. The use of 

stationary covariates results in a new error variance that is smaller than the error 

variance of a univariate regression. This results in smaller confidence intervals and 

more powerful test statistics than those of the conventional unit root tests. In the case 

of meat consumption however it is difficult to find appropriate stationary covariates. 

Due to the unclear power of the unit root tests, it is advisable to use several of these to 

obtain robust results. Here we employ the following univariate unit root tests: the 

Augmented Dickey Fuller (ADF) test of Dickey and Fuller (1979), the generalized 

least squares ADF and the Point Optimal test of Elliott, Rothenburg, and Stock 

(1996), and the Phillips and Perron (1988) test. 

The second family of univariate tests, namely stationarity tests, reverses the null and 

alternative hypotheses of the unit root tests. The stationarity test examines the null 

hypothesis of level or trend stationarity, I(0), against the alternative of difference 

stationarity, I(1). Examples of such tests include those of Kwiatkowski, Phillips, 

Schmidt, and Shin (1992) (KPSS), Saikkonen and Luukkonen (1993), and Leybourne 

and McCabe (1994). In this study we employ the most widely used of these tests the 

KPSS one. It is advantageous to combine the test with the null of stationarity and of 

unit root to make the results robust. 

When however one tries to model a system of economic variables, the potential 

correlation amongst these may decrease the power of a univariate unit root test.  This 
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is the basic idea behind the panel unit root tests which include the other time series 

from a panel in order to increase the power of the unit root test. The same logic can be 

applied to any group of time series, particularly if these are to be modeled 

simultaneously. Therefore we use some of the panel unit root tests, namely those of 

Levin, Lin and Chu (2002), Breitung (2002), Im, Pesaran and Shin (2003), and Fisher-

type tests using ADF and PP tests (Maddala and Wu (1999) and Choi (2001)). 

Additionaly we employ the stationarity panel test due to Hadri (1999). Although these 

tests are commonly termed “panel unit root” tests, they are simply multiple-series unit 

root tests that have been applied to panel data structures (where the presence of cross-

sections generates “multiple series” out of a single series). All the above panel unit 

roots are very different in their assumptions, but discussing their differences and 

similarities is not the subject to this study. 

The results from the univariate unit root tests are presented in table 1. In general due 

to the very small sample size the ERS test results do not seem reliable (the critical 

values are for a sample of size 50). Otherwise broadly speaking most tests provide 

evidence for unit root in the levels, but no unit roots in the first differences. In the 

cases of poultry and to some extent lamb, including a linear trend in the test equation 

tends to lead to the conclusion of no unit root. The stationarity test (KPSS) seems to 

confirm the trend stationarity of lamb consumption, but rejects it for poultry. Given 

that the confidence level of rejection of the null of a unit root are much higher in the 

poultry case, this suggests the possibility for fractional order of integration.  

Table 2 presents the results from the panel unit roots for all 4 series, using different 

criteria for lag choice. Whilst the null of no common unit root is strongly rejected in 

all cases, these tests reject the null of unit roots in the case of the presence of a linear 

trend. 

If however we carry out the same panel unit root tests on a reduced panel that 

excludes poultry consumption (see table 3), the evidence for unit roots increases. If 

we further exclude lamb, the confidence limit of these tests increases even further 

(results available from the authors). Another interesting result from the panel unit root 

tests is that even in the larger panel, the tests that tend to reject the null of unit root in 

the case of a deterministic trend assume individual unit root processes. The tests that 

assume common unit roots fail to reject the null and accordingly the Hadri (2000) test 

which has stationarity as it null against an alternative of common unit roots is highly 
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significant. We thus find strong evidence for the presence of unit roots in beef and 

pork consumption, whilst for lamb and poultry consumption we are unable to 

definitely reject trend stationarity. This finding means that it is highly likely that these 

series share common unit root processes and thus require co-integration analysis. 

 

4.2 VECM 

Bearing in mind the mixed results from the unit root tests, we now proceed to testing 

for co-integration and estimating a VECM.  An important question on the structure of 

the VECM is whether poultry and lamb consumption need to be included, given the 

relatively weak evidence for unit roots in these series. The Granger causality tests on 

the four series however indicate that lamb consumption is Granger caused by beef 

consumption, which warrants the inclusion of lamb consumption in the VAR model. 

The question with poultry consumption is more complicated. The Granger causality 

tests show that it is exogenous with regard to the other variables. Nevertheless since 

we are also unable to accept the stationarity of poultry consumption, we include it in 

the system.  

More detailed results are presented in appendix 1.  Note the inclusion of a time trend 

in the co-integrating relationship.  This is warranted in order to avoid the spurious 

detection of more co-integrating vectors (see Doornik, 1998). 

The main point of interest in this step is the identification of the long-run co-

integrating relationship. We are able to identify a single co-integrating vector. We use 

the latter to construct the error-correction term for the MS-VECM in the next step. 

 

4.3 MS-VECM of meat consumption 

This is the main focus of the present study. It involves generalizing the estimated 

VECM of UK meat consumption to a MS-VECM.  There are two issues to consider in 

this process. The first is whether the Markov switching mechanism is necessary. We 

note that this involves testing a non-linear (MS-VECM) against a linear (VECM) 

alternative.  A more general approach would be to test the residuals from the VECM 

estimation for non-linearity. The problem with such an approach is that it can only 

detect non-linearity, but would not be able to determine what is the appropriate 
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alternative model. Moreover one may sometimes interpret the results from such tests 

as an indication of general model misspecification. Therefore we choose to implement 

an LR test for an ordinary VECM against the MS-VECM. The problem with such a 

test is that there are nuisance parameters which are present in the second case. 

Therefore the LR needs to be adjusted or obtain an upper significance bound 

according to the suggestions of Davies (1977,1987). In addition we also present the 

Chi square approximation due to Ang and Bekaert (1998).  

The other issue is the choice of number of regimes. We use the information criteria to 

do so. The main information criterion used is the Bayesian Schwarz information 

criterion, although the other two information criteria (Akaike and Hannan-Quinn) 

yield the same model. 

The estimation results are presented in Appendix 2. The LR linearity test strongly 

rejects the linear VECM in favour of the MS-VECM. In this case we apply an 

unrestricted shift to the intercept. If only the drift is shifted we are not able to reject 

the null of linearity (Results available from the authors upon request) although the 

general structure of the resulting MS-VECM is similar to the one presented here in 

terms of estimated coefficients and the regime classification coincides with ours. This 

is an indication that there are also shifts occurring to the long-term equilibrium of the 

system.  Although it is advisable to represent these separately, due to the small sample 

we ran into numerical problems in estimating a more general model. 

The residuals from the estimated MS-VECM can be tested for additional non-

linearity. This involves bootstrapping the available non-linearity test to account for 

the small sample bias. To simplify the presentation we omit these test results, but they 

are available upon request. 

Additionally in appendix 3 we present generalized regime dependent impulse 

response functions (IRFs) from the MS-VECM, estimated alongside the suggestions 

of Ehrmann et al. (2003)3 using 500 bootstrap replications.  Since we only switch the 

intercept, these are similar for both regimes. Therefore we only present the impulse 

response functions for regime 1 (which can be broadly defined as the ‘normal’ 

regime). An important consideration in constructing these is to select the length of the 

response which should not extend beyond the average length of the regime. Based on 
                                                 
3 We are grateful to Michael Ehrmann  for allowing us to  use their code. We only made some slight 
modifications to it in order to adjust it for our purpose. 
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the estimation results we choose an 8 periods (years) response projection.  One may 

see from the IRFs the uncharacteristic reaction in the last period. This is not be 

surprising since the two longest periods in regime 1 in the data are of length 8 and 6. 

A careful examination of these impulse response functions suggests that a more 

detailed study of the possibility of co-breaking relationships (other than the one 

implied by co-integration) may be useful to further identify the dynamics of meat 

consumption. One should note the clear similarities in the IRFs for pork and poultry.  

In addition to suggesting the possible co-breaking relationship between these two 

variables, this warrants the inclusion of poultry consumption in the estimated system. 

 

Conclusions 

This paper analyses UK meat consumption using a MS-VECM. We find strong 

evidence against the conventional linear co-integration model. Furthermore, although 

the model allows for an absorbing state, in which case we would have the typical 

structural break model, this does not appear to be the case. Meat consumption instead, 

is governed by a latent process of continuous change. We find evidence for shifts in 

both the drift and the long-term equilibrium of the consumption system.  We present 

results from numerous unit root tests with a twofold purpose. First these test are 

known to often have low power and combining them can in general be advantageous.  

The results for the unit root testing procedures are mixed. It should however be noted 

that the notion of non-stationarity is much wider than the simplistic unit root 

paradigm. Non-stationarity and non-linearity can be easily confused, and in this case 

we clearly have a non-linear process.  Additionally the unit root tests have low power 

to alternatives such as the stochastic unit root processes (Leybourne et al, 1996) and 

Granger and Swanson, 1997), fractionally integrated processes or indeed regime–

switching (see e.g. Nelson et al., 2001)4. It is thus desirable to perform more model-

based type unit root testing. 

A question that might be asked is what are the driving forces of the underlying 

regimes. In Gordon and St-Armour (2000) the power coefficient in the constant 

relative risk aversion (CRRA) utility function is assumed to obey a two-state Markov 

chain, allowing agents’ sentiments to switch from one state to another in a manner 
                                                 
4 These issues are intrinsically related. Stochastic unit root processes are fractionally integrated and it is 
difficult even asymptotically to distinguish long memory and regime switching. 
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reminiscent of Keynes’ ‘animal spirits’. One can readily generalize such a micro 

model in allowing social factors, as for example the press, to influence an 

unobservable variable- the ‘public opinion’ which in its turn can determine the 

prevailing consumption regime. If one knows these social factors an explained 

switching model may be more appropriate, but the approach employed here is much 

more general. 

An important result from this study is that the constancy of the linear co-integration 

space for meat consumption in the UK cannot be maintained in the sense that the 

identified long-run equilibrium is moving in time and within the regime switching 

process. An alternative avenue of research would be to test for a non-linear co-

integration. Note that a more often used label for the abbreviation VECM is ’Vector 

Equilibrium Correction Model’. We resisted using the latter because the MS-VECM 

representation not only leads to multiple equilibria (according to the different 

regimes), but also assumes a constantly changing long-run equilibrium. From an 

estimation point of view the long-term equilibrium would be defined by the relative 

regime probabilities. It should be clear that since the exact timing of future regime 

changes cannot be predicted, then the log-run equilibrium can be subject to a kind of 

path dependency. This seems to contradict the conventional view of equilibrium, but 

presents a more realistic view of economic processes. 

Some preliminary results from employing the more robust, though extremely 

computationally demanding approach to testing for regime switching based on the 

tests suggested by Hansen (1992, 1996a) and Garcia (1998), which are available from 

the authors upon request, tend to suggest an alternative model with asynchronous 

regime switching, as opposed to the simultaneous one employed here.  

 

 

References: 

Ang, A., and G. Bekaert (1998). Regime switches in interest rates. Research paper 
1486, Stanford University. 

Boswijk, P. (1995). Identifiability of Cointegrated Systems. Discussion Paper  7-95-
078, Tinbergen Institute, University of Amsterdam. 



 15

Breitung, J. (2000). “The Local Power of Some Unit Root Tests for Panel Data”, in B. 
Baltagi (ed.), Advances in Econometrics, Vol. 15: Nonstationary Panels, Panel 
Cointegration, and Dynamic Panels, Amsterdam: JAI Press, p. 161–178. 

Choi, I. (2001). “Unit Root Tests for Panel Data”, Journal of International Money and 
Finance, 20, 249–272. 

Davies, R. B. (1977). Hypothesis testing when a nuisance parameter is present only 
under the alternative. Biometrika, 64, 247–254. 

Davies, R. B. (1987). Hypothesis testing when a nuisance parameter is present only 
under the alternative. Biometrika, 74, 33–43. 

Dickey, D.A. and  W.A. Fuller (1979). Distribution of estimators for autoregressive 
time series with a unit root, Journal of the American Statistical Association, 74, 427–
431. 

Doornik, J. A. (1998). Approximations to the asymptotic distribution of cointegration 
tests, Journal of Economic Surveys, 12, 573-593. 

Ehrmann, M., M. Ellison and N. Valla (2003) Regime-dependent impulse response 
functions in a Markov-Switching Vector Autoregression Model, Economics Letters, 
78, 295-299. 

Elliott, G., and M. Jansson (2003) Testing for Unit Roots with Stationary Covariates, 
Journal of Econometrics, 115, 75-89. 

Elliott, G., T. J. Rothenburg and J. H. Stock (1996) Efficient Tests for an 
Autoregressive Unit Root, Econometrica, 64, 813-836. 

Franses, H.P. and D. van Dijk (2000). Nonlinear Time Series Models in Empirical 
Finance, Cambridge: Cambridge University Press. 

Garcia, R. (1998). Asymptotic null distribution of the likelihood ratio test in Markov 
switching models. International Economic Review, 39. 

Gordon, S. and St-Armour, P. (2000). ‘A preference model of bull and bear markets’, 
American Economic Review, Vol. 90, pp. 1019–1033. 

Granger, C.W.J. and N. R. Swanson (1997) An introduction to stochastic unit-root 
processes, Journal of Econometrics, 80, 35-62. 

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary 
time series and the business cycle, Econometrica, 57, 357–384. 

Hamilton, J.D. (1994). Time Series Analysis. Princeton: Princeton University Press. 

Hansen, B. (1999), Testing for Linearity, Journal of Economic Surveys, 13, 551–576. 

Hansen, B. E. (1992). The likelihood ratio test under non-standard conditions: Testing 
the Markov switching model of GNP. Journal of Applied Econometrics, 7, S61–S82. 

Hansen, B. E. (1996a). Erratum: the likelihood ratio test under non-standard 
conditions: Testing the Markov switching model of GNP. Journal of Applied 
Econometrics, 11, 195–199. 

Hansen, B. E. (1996b). Inference when a nuisance parameter is not identified under 
the null. Econometrica, 64, 414–430. 

Hansen, B.E. (1995) Rethinking the univariate approach to unit root testing: using 
covariates to increase power. Econometric Theory, 11, 1148–1172. 



 16

Hardi, K. (2000). Testing for stationarity in heterogeneous panel data, Econometric 
Journal, 3, 148–161. 

Hendry, D. F. (1996), A theory of co-breaking. Mimeo, Nuffield College, University 
of Oxford. 

Hendry, D.F. and G.E. Mizon (1998). Exogeneity, Causality, and Co-breaking in 
Economic Policy Analysis of a Small Econometric Model of Money in the UK. 
Empirical Economics, 23, 267--294.  

Hungnes, H. (2002). Restricting Growth Rates in Cointegrated VAR Models. Revised 
version of Discussion Papers 309, Statistics Norway. 

Im, K. S., M. H. Pesaran, and Y. Shin (2003). “Testing for Unit Roots in 
Heterogeneous Panels”, Journal of Econometrics, 115, 53–74. 

Johansen, S. and K. Juselius (1990). Maximum Likelihood Estimation and Inference 
on Cointegration - With Application to the Demand for Money, Oxford Bulletin of 
Economics and Statistics, 52, 169-210. 

Johansen, S., R. Mosconi and B. Nielsen (2000). Cointegration Analysis in the 
Presence of Structural Breaks in the Deterministic Trend. Econometrics Journal, 3, 
216-249. 

Kim, C.-J. (1994). Dynamic linear models with Markov-switching. Journal of 
Econometrics, 60, 1–22. 

Kim, C.J. and C.R. Nelson (1999). State-Space Models with Regime Switching, 
Cambridge, MA: MIT Press. 

Kitagawa, G. (1987). Non–gaussian state–space modeling of nonstationary time 
series. Journal of the American Statistical Association, 82, 1032–1041. 

Koop, G., M. H. Pesaran, and S. M. Potter (1996). Impulse response analysis in 
nonlinear multivariate models. Journal of Econometrics, 74, 119–147. 

Krolzig, H.-M. (1997). Markov Switching Vector Autoregressions. Modelling, 
Statistical Inference and Application to Business Cycle Analysis. Berlin: Springer. 

Krolzig, H.-M. and J. Toro (2002). Testing for Cobreaking and Superexogeneity in 
Economic Processes subject to Deterministic Breaks, Annales d'Economie et de 
Statistique, 67/68, 41 – 71. 

Krolzig, H.-M., M. Marcellino, and G. E. Mizon (2002) A Markov–Switching Vector 
Equilibrium Correction Model of the UK Labour Market, Empirical Economics, 
27(2), 233-254. 

Kwiatkowski, D., P.C.B. Phillips, P. Schmidt, and Y. Shin (1992), “Testing the Null 
of Stationarity Against the Alternative of a Unit Root: How Sure Are We That 
Economic Time Series Have a Unit Root?” Journal of Econometrics, 54, 159-178. 

Levin, A., C. F Lin. and C. Chu (2002). “Unit Root Tests in Panel Data: Asymptotic 
and Finite-Sample Prosperities”, Journal of Econometrics, 108, 1–24. 

Leybourne, S. J. and B. P. M. McCabe (1994), “A consistent test for a unit root,” 
Journal of Business and Economic Statistics, 12, 157-166. 

Leybourne, S. J., B. P.M. McCabe, and T.C. Mills, (1996) Randomized unit root 
processes for modelling and forecasting financial time series: Theory and application, 
Journal of Forecasting, 15, 273-270. 



 17

Maddala, G. S. and S. Wu (1999). “A Comparative Study of Unit Root Tests with 
Panel Data and A New Simple Test”, Oxford Bulletin of Economics and Statistics, 61: 
631–52. 

Nelson, C. R, J. Piger, and E. Zivot (2001) Markov Regime Switching and Unit-Root 
Tests, Journal of Business and Economic Statistics, 19 (4), 404-15.  

Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis, 
Econometrica, 57:1361-1401. Erratum (1993), Econometrica, 61, 248-249. 

Phillips, P.C.B. and P. Perron (1988). Testing for a Unit Root in Time Series 
Regression, Biometrika, 75, 335–346. 

Potter, S. (1999), Nonlinear time series modelling: an introduction, Journal of 
Economic Surveys, 13, 505–528. 

Saikkonen, P. and H. Lütkepohl (2000). Testing for the Cointegrating Rank of a VAR 
Process with Structural Shifts. Journal of Business & Economic Statistics, 18, 451-
464. 

Saikkonen, P., and R. Luukkonen (1993), “Testing for a Moving Average Unit Root 
in Autoregressive Integrated Moving Average Models,” Journal of the American 
Statistical Association, 88, 596-601. 

Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48, 1–48. 



 18

Table1 Univariate root tests results 

Variable Test  level  1st difference Details 
BF ADF -0.522422 *** -5.860520  SIC;Cst 
BF ADF -3.113209 *** -5.561496  SIC;Cst,Tr 
BF DF-GLS  -0.380620 -1.101391  SIC;Cst 
BF DF-GLS  -2.630299 *** -5.334123  SIC;Cst,Tr 
BF PP -0.460248 *** -5.828962 NW, B;Cst 
BF PP -3.123622 *** -5.543996 NW, B;Cst,Tr 
BF ERS  31.23937 5.152819  SIC, SOLS;Cst 
BF ERS  17.06255 11.17397  SIC, SOLS;Cst,Tr 
BF KPSS ** 0.714030 0.150600 NW, B;Cst 
BF KPSS * 0.121031 * 0.132829 NW, B;Cst,Tr 

LM ADF -0.529912 *** -5.953537  SIC;Cst 
LM ADF * -3.285312 *** 5.835131  SIC;Cst,Tr 
LM DF-GLS  -0.351129 *** -5.724574  SIC;Cst 
LM DF-GLS  * -3.124824 *** -6.012916  SIC;Cst,Tr 
LM PP -0.363025 *** -6.018475 NW, B;Cst 
LM PP * -3.285312 *** -5.893026 NW, B;Cst,Tr 
LM ERS 25.43133 **  2.304275  SIC, SOLS;Cst 
LM ERS  10.74107  7.353644  SIC, SOLS;Cst,Tr 
LM KPSS ** 0.734722 0.104627 NW, B;Cst 
LM KPSS  0.086298  0.075991 NW, B;Cst,Tr 

PK ADF -0.640332 *** -5.871772  SIC;Cst 
PK ADF -2.034204 *** -6.364641  SIC;Cst,Tr 
PK DF-GLS  -0.994483 *** -4.792133  SIC;Cst 
PK DF-GLS  -2.010803 *** -5.795921  SIC;Cst,Tr 
PK PP 0.844906 *** -5.870476 NW, B;Cst 
PK PP -1.825416 *** -6.459092 NW, B;Cst,Tr 
PK ERS 10.7627 * 3.589194  SIC, SOLS;Cst 
PK ERS 16.87547 10.31715  SIC, SOLS;Cst,Tr 
PK KPSS ** 0.503207  0.177237 NW, B;Cst 
PK KPSS ** 0.148918  0.112140 NW, B;Cst,Tr 

PL ADF -2.356564 *** -4.955080  SIC;Cst 
PL ADF *** -3.996804 *** -5.204597  SIC;Cst,Tr 
PL DF-GLS  -0.906349 *** -5.179466  SIC;Cst 
PL DF-GLS  ** -3.378108 *** -6.692671  SIC;Cst,Tr 
PL PP * -2.861776 *** -7.81352 NW, B;Cst 
PL PP ** -4.202943 *** -13.46409 NW, B;Cst,Tr 
PL ERS 55.27378 ** 2.119375  SIC, SOLS;Cst 
PL ERS 16.09524 ** 4.662476  SIC, SOLS;Cst,Tr 
PL KPSS *** 0.756815 * 0.377711 NW, B;Cst 
PL KPSS *** 0.172347 **** 0.500000 NW, B;Cst,Tr 
Notes:    
SIC Schwartz Information criterion 
Cst constant  
Tr   linear trend  
NW Newley-West bandwith choice 
B Balrlet kernel  
SOLS Spectral OLS   
*** Significant at 1% level 
** Significant at 5% level 
* Significant at 10% level 
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Table 2 Panel Unit root tests results 

 AIC   AIC TR SIC   SIC, TR HQ   HQ TR 

Method Statistic Prob. Statistic Prob. Statistic Prob. Statistic Prob. Statistic Prob. Statistic Prob. 

Null: Unit root (assumes common unit root process)                          

Levin, Lin & Chu t* -0.3102  0.3782 -1.9478  0.0257 -0.61747  0.2685 -2.28072  0.0113 -0.44785  0.3271 -1.9478  0.0257 

Breitung t-stat  0.75317  0.7743  1.05137  0.8535  0.31523  0.6237  0.99200  0.8394  0.58954  0.7223  1.05137  0.8535 
                         

Null: Unit root (assumes individual unit root process)                          

Im, Pesaran and Shin W-stat   1.10906  0.8663 -2.3814  0.0086  0.98298  0.8372 -2.2322  0.0128  1.09087  0.8623 -2.3814  0.0086 

ADF - Fisher Chi-square  3.63543  0.8884  18.7496  0.0163  4.70861  0.7882  17.7912  0.0228  4.00270  0.8569  18.7496  0.0163 

PP - Fisher Chi-square  6.43365  0.5988  18.3655  0.0186  6.43365  0.5988  18.3655  0.0186  6.43365  0.5988  18.3655  0.0186 
                         

Null: No unit root (assumes common unit root process)                          

Hadri Z-stat  7.20996  0.0000  3.03267  0.0012  7.20996  0.0000  3.03267  0.0012  7.20996  0.0000  3.03267  0.0012 

 MAIC   MAIC TR MSIC   MSIC TR MHQ   MHQ TR 

Method Statistic Prob. Statistic Prob. Statistic Prob. Statistic Prob. Statistic Prob. Statistic Prob. 

Null: Unit root (assumes common unit root process)                          

Levin, Lin & Chu t* -0.10376  0.4587 -2.28072  0.0113 -0.44785  0.3271 -2.28072  0.0113 -0.4478  0.3271 -2.2807  0.0113 

Breitung t-stat -0.02317  0.4908  0.99200  0.8394  0.58954  0.7223  0.99200  0.8394  0.58954  0.7223  0.99200  0.8394 
                         

Null: Unit root (assumes individual unit root process)                          

Im, Pesaran and Shin W-stat   1.15344  0.8756 -2.2322  0.0128  1.09087  0.8623 -2.2322  0.0128  1.09087  0.8623 -2.2322  0.0128 

ADF - Fisher Chi-square  3.85718  0.8698  17.7912  0.0228  4.00270  0.8569  17.7912  0.0228  4.00270  0.8569  17.7912  0.0228 

PP - Fisher Chi-square  6.43365  0.5988  18.3655  0.0186  6.43365  0.5988  18.3655  0.0186  6.43365  0.5988  18.3655  0.0186 

                         

Null: No unit root (assumes common unit root process)                          

Hadri Z-stat  7.20996  0.0000  3.03267  0.0012  7.20996  0.0000  3.03267  0.0012  7.20996  0.0000  3.03267  0.0012 

AIC -Akaike, SIC -Schwatz, HQ – Hannan-Quinn; M - modified 



 20

Table 3 Reduced panel (BF, PK and LM) Unit root tests 

 AIC TR SIC TR HQ TR MAIC TR MSIC TR MHQ TR 
Method Statistic Prob. Statistic Prob. Statistic Prob. Statistic Prob. Statistic Prob. Statistic Prob. 
Null: Unit root (assumes common unit root 
process)                          

Levin, Lin & Chu t* -0.35729  0.3604 -0.81128  0.2086 -0.35729  0.3604 -0.81128  0.2086 -0.81128  0.2086 -0.81128  0.2086 
Breitung t-stat  1.34213  0.9102  1.24846  0.8941  1.34213  0.9102  1.24846  0.8941  1.24846  0.8941  1.24846  0.8941 

                         
Null: Unit root (assumes individual unit root 
process)                          

Im, Pesaran and Shin W-stat  -1.52092  0.0641 -1.32303  0.0929 -1.52092  0.0641 -1.32303  0.0929 -1.32303  0.0929 -1.32303  0.0929 

ADF - Fisher Chi-square  11.1004  0.0853  10.1421  0.1188  11.1004  0.0853  10.1421  0.1188  10.1421  0.1188  10.1421  0.1188 

PP - Fisher Chi-square  9.82785  0.1321  9.82785  0.1321  9.82785  0.1321  9.82785  0.1321  9.82785  0.1321  9.82785  0.1321 

                         
Null: No unit root (assumes common unit root 
process)                          
Hadri Z-stat  2.52110  0.0058  2.52110  0.0058  2.52110  0.0058  2.52110  0.0058  2.52110  0.0058  2.52110  0.0058 
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Pairwise Granger Causality Tests 

    

  Null Hypothesis: Obs F-Statistic Probability 

        

  LNLM does not Granger Cause LNBF 24  2.08912  0.13958 

  LNBF does not Granger Cause LNLM  2.77301  0.07319 

        

  LNPK does not Granger Cause LNBF 24  0.36523  0.77897 

  LNBF does not Granger Cause LNPK  4.14776  0.02236 

        

  LNPL does not Granger Cause LNBF 24  1.84174  0.17788 

  LNBF does not Granger Cause LNPL  0.76298  0.53030 

        

  LNPK does not Granger Cause LNLM 24  0.05989  0.98015 

  LNLM does not Granger Cause LNPK  3.70861  0.03215 

        

  LNPL does not Granger Cause LNLM 24  0.74866  0.53799 

  LNLM does not Granger Cause LNPL  1.45268  0.26267 

        

  LNPL does not Granger Cause LNPK 24  8.49499  0.00114 

  LNPK does not Granger Cause LNPL  0.75494  0.53460 
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Appendix1 

VECM estimation 

 
Cointegration Rank Test 
Hypothesized  Trace 5 Percent 1 Percent 
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value 

None **  0.747867  70.05084  62.99  70.05 
At most 1  0.552190  36.98366  42.44  48.45 
At most 2  0.357296  17.70237  25.32  30.45 
At most 3  0.255862  7.092683  12.25  16.26 

Hypothesized  Max-Eigen 5 Percent 1 Percent 
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value 

None *  0.747867  33.06717  31.46  36.65 
At most 1  0.552190  19.28129  25.54  30.34 
At most 2  0.357296  10.60969  18.96  23.65 
At most 3  0.255862  7.092683  12.25  16.26 

 *(**) denotes rejection of the hypothesis at the 5%(1%) level 
 Max-eigenvalue test indicates 1 cointegrating equation(s) at the 5% level 
     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  

LNBF LNPK LNPL LNLM TREND 
 4.632024  14.46651 -67.80305 -7.932211  1.236427 
 0.220762 -5.211727 -16.72543  18.36359  0.907345 
-5.361773 -14.31232  26.31200 -1.413653 -1.004059 
 19.28423 -7.967016 -3.804871  1.660707  0.629353 

     
 Unrestricted Adjustment Coefficients (alpha):  

D(LNBF)  0.007704  0.013163  0.005283 -0.029430 
D(LNPK)  0.005296  0.004931  0.035186  0.001117 
D(LNPL)  0.033087  0.001327 -0.001854  0.009118 
D(LNLM) -0.003538 -0.064037  0.020969  0.007116 

     
Normalized cointegrating coefficients (std.err. in parentheses) 
LNBF LNPK LNPL LNLM TREND 
 1.000000  3.123151 -14.63789 -1.712472  0.266930 
  (0.78351)  (2.35541)  (0.67660)  (0.05248) 
     
Adjustment coefficients (std.err. in parentheses) 
D(LNBF)  0.035686    
  (0.07628)    
D(LNPK)  0.024531    
  (0.07348)    
D(LNPL)  0.153258    
  (0.03291)    
D(LNLM) -0.016390    
  (0.11652)    
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VECM estimation results 

Error Correction: D(LNBF) D(LNPK) D(LNPL) D(LNLM) 

CointEq1  0.062073 -0.094351 -0.186571  0.056595 
  (0.08770)  (0.10209)  (0.03532)  (0.10266) 
 [ 0.70780] [-0.92421] [-5.28298] [ 0.55131] 
     
D(LNBF(-1)) -0.103960 -0.076126  0.274388 -0.017883 
  (0.31247)  (0.36374)  (0.12583)  (0.36576) 
 [-0.33270] [-0.20928] [ 2.18063] [-0.04889] 
     
D(LNBF(-2)) -0.297045  0.113367  0.537288  0.577702 
  (0.30022)  (0.34948)  (0.12090)  (0.35142) 
 [-0.98943] [ 0.32439] [ 4.44422] [ 1.64390] 
     
D(LNPK(-1)) -0.141234 -0.351500  0.105228  0.164971 
  (0.25833)  (0.30072)  (0.10403)  (0.30239) 
 [-0.54672] [-1.16886] [ 1.01153] [ 0.54556] 
     
D(LNPK(-2)) -0.477624  0.019357  0.418797  0.300841 
  (0.25111)  (0.29231)  (0.10112)  (0.29394) 
 [-1.90206] [ 0.06622] [ 4.14158] [ 1.02349] 
     
D(LNPL(-1)) -0.720055  1.364414  1.044118  0.260862 
  (0.73819)  (0.85932)  (0.29727)  (0.86409) 
 [-0.97543] [ 1.58778] [ 3.51241] [ 0.30189] 
     
D(LNPL(-2)) -1.009482  0.883064  1.192473  0.722047 
  (0.69620)  (0.81044)  (0.28036)  (0.81494) 
 [-1.44998] [ 1.08961] [ 4.25342] [ 0.88601] 
     
D(LNLM(-1))  0.175873 -0.198117 -0.236009 -0.667956 
  (0.22911)  (0.26671)  (0.09226)  (0.26819) 
 [ 0.76763] [-0.74283] [-2.55803] [-2.49063] 
     
D(LNLM(-2))  0.155130 -0.036460 -0.013346 -0.213624 
  (0.17099)  (0.19905)  (0.06886)  (0.20015) 
 [ 0.90724] [-0.18317] [-0.19382] [-1.06730] 
     
C -0.770378  0.581413  1.426179  0.493853 
  (0.63561)  (0.73990)  (0.25596)  (0.74401) 
 [-1.21203] [ 0.78580] [ 5.57199] [ 0.66377] 
     
PLNBF -0.128070 -0.373975 -0.255013 -0.784648 
  (0.32817)  (0.38202)  (0.13215)  (0.38415) 
 [-0.39025] [-0.97893] [-1.92967] [-2.04258] 
     
PLNPK -1.160335 -0.027098  0.882727  1.657115 
  (0.42581)  (0.49568)  (0.17147)  (0.49843) 
 [-2.72502] [-0.05467] [ 5.14799] [ 3.32466] 
     
PLNPL  0.089328  0.830702  0.372232  0.905056 
  (0.50789)  (0.59122)  (0.20452)  (0.59451) 
 [ 0.17588] [ 1.40505] [ 1.82000] [ 1.52236] 
     
PLNLM  0.576641 -0.206594 -0.008589 -1.834443 
  (0.40529)  (0.47179)  (0.16321)  (0.47441) 
 [ 1.42280] [-0.43790] [-0.05262] [-3.86680] 

 R-squared  0.656009  0.635802  0.893908  0.766748 
 Adj. R-squared  0.208821  0.162345  0.755987  0.463520 
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 S.E. equation  0.064908  0.075558  0.026138  0.075978 
 Log likelihood  42.08610  38.43961  63.91602  38.30666 
 Akaike AIC -2.340509 -2.036634 -4.159668 -2.025555 
 Schwarz SC -1.653311 -1.349436 -3.472470 -1.338357 
 Mean dependent -0.023317 -0.007289  0.016566 -0.032507 
 S.D. dependent  0.072972  0.082556  0.052913  0.103731 

 Determinant Residual Covariance  5.55E-11   
 Log Likelihood  189.1768   
 Log Likelihood (d.f. adjusted)  147.1543   
 Akaike Information Criteria -7.179527   
 Schwarz Criteria -4.185307   
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Appendix 2 
MS-VAR estimation results 
 
EQ( 1) MSI(2)-VARX(2) model of (BF,LM,PK,PL),  
no. obs. per eq. :      22     
in the system :         88     
no. parameters   :      56     
linear system :         50     
no. restrictions :       4 
no. nuisance p.  :       2 
 
log-likelihood   :147.2699     
linear system :   137.4848   
 
AIC criterion       -8.2973     
linear system :     -7.9532  
HQ  criterion       -7.6430     
linear system       -7.3690  
SC  criterion       -5.5201     
linear system       -5.4735 
 
LR linearity test:    19.5702     
Chi(4) = [0.0006] **   
Chi(6) = [0.0033] **   
DAVIES = [0.0114] *    
 
Chi(4) and Chi(6) are the Ang and Bekaert (1998) 
approximation. Davies is the Davies(1987) upper 
significance bound 
 
---------- transition matrix ----------------------- 
 
          Regime 1  Regime 2 
Regime 1    0.7889    0.2111 
Regime 2    0.4586    0.5414 
 
              nObs     Prob.  Duration 
Regime 1      15.0    0.6848      4.74 
Regime 2       7.0    0.3152      2.18 
 
---------- coefficients ---------------------------- 
 
                     BF         LM         PK         PL 
Const(Reg.1)  -0.028216  -0.071107  -0.070770   0.034978 
Const(Reg.2)   0.025462   0.044924   0.058726   0.027219 
BF_1          -0.102750   0.072132  -0.109295   0.052031 
BF_2           0.343720   0.694391   0.447013  -0.163419 
LM_1          -0.100473  -0.310709  -0.174450  -0.004741 
LM_2           0.253495  -0.027892   0.049843   0.096577 
PK_1           0.091380  -0.400893  -0.338273   0.230263 
PK_2          -0.311461  -0.126610  -0.081292   0.108650 
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PL_1          -0.007793   0.094072   1.066368  -1.197793 
PL_2          -0.282892   0.338389  -0.081754   0.547490 
COIN_1        -0.002227  -0.073227  -0.083856   0.159827 
  SE           0.060427   0.085568   0.035470   0.026903 
 
---------- contemporaneous correlation ------------- 
 
          BF        LM        PK        PL 
BF    1.0000   -0.6214   -0.2332   -0.5755 
LM   -0.6214    1.0000   -0.1513    0.0448 
PK   -0.2332   -0.1513    1.0000    0.1184 
PL   -0.5755    0.0448    0.1184    1.0000 
 
 
---------- regime classification ------------------- 
 
Regime 1 
1981 - 1985 
1987 - 1995 
1999 - 1999 
 
Regime 2 
1979 - 1980 
1986 - 1986 
1996 - 1998 
2000 - 2000 
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Appendix 3 
Regime dependent impulse response functions 
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