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The European regional convergence process, 1980-1995: 
Do spatial regimes and spatial dependence Matter? 

 
 

 

 
 

Abstract 

We show in this paper that spatial dependence and spatial heterogeneity matter in the 

estimation of the β-convergence process among 138 European regions over the 1980-1995 period. 

Using spatial econometrics tools, we detect both spatial dependence and spatial heterogeneity in the 

form of structural instability across spatial convergence clubs. The estimation of the appropriate 

spatial regimes spatial error model shows that the convergence process is different across regimes. 

We also estimate a strongly significant spatial spillover effect: the average growth rate of per capita 

GDP of a given region is positively affected by the average growth rate of neighboring regions. 

 

Key words: β-convergence, spatial econometrics, spatial dependence, spatial regimes, 

geographic spillovers 

JEL classification: C21, C51, R11, R15 
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Introduction 

 

The convergence of European regions has been largely discussed in the macroeconomic and 

the regional science literature during the past decade. Two observations are often emphasized. First, 

the convergence rate among European regions appears to be very slow in the extensive samples 

considered (Barro and Sala-I-Martin, 1991, 1995 ; Sala-I-Martin, 1996a, 1996b ; Armstrong 1995a, 

Neven and Gouyette, 1995). Moreover, income or GDP disparities seem to be persistent despite the 

European economic integration process and higher growth rates of some poorer regions as 

highlighted in the European Commission reports (1996, 1999). These observations may indicate the 

existence of different groupings of regions as found in cross-country studies using international data 

sets (Baumol, 1986; Durlauf and Johnson, 1995; Quah, 1996a, 1997). 

Second, the geographical distribution of European economic disparities is studied by López-

Bazo et al. (1999) and Le Gallo and Ertur (2002) and a permanent polarization pattern between rich 

regions in the North and poor regions in the South is found. This evidence can be linked to several 

results of new economic geography theories (Krugman, 1991; Fujita et al., 1999), which show that 

locations of economic activities are spatially structured by some agglomerative and cumulative 

processes. As a result, we can say that the geographical distribution of areas characterized by high 

or low economic activities is spatially dependent and tends to exhibit persistence. Moreover, the 

economic surrounding of a region seems to influence the economic development perspectives for 

this region: a poor (respectively rich) region surrounded by poor (respectively rich) regions will stay 

in this state of economic development whereas a poor region surrounded by richer regions has more 

probability to reach a higher state of economic development. These results are highlighted for 

European regions by Le Gallo (2001) who analyses the transitional dynamics of per capita GDP 

over the 1980-1995 period by means of spatial Markov chains approach: the cluster of the poorest 

European regions in Southern Europe creates a great disadvantage for these regions and emphasizes 

a poverty trap. 
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All these observations lead us to analyze the convergence and growth processes among 

European regions over the 1980-1995 period in both a more disaggregated and comprehensive way. 

Indeed both economic and geographic disparities embodied in the European regional polarization 

pattern should be taken into account. Actually, the purpose of this paper is to show that the 

introduction of spatial effects in the estimation of the β-convergence model allows doing it. 

Following Anselin (1988a), spatial effects refer to both spatial autocorrelation and spatial 

heterogeneity. On the one hand, we emphasize the link between the detection of a positive spatial 

autocorrelation of regional GDPs and the regional polarization of the economies in Europe. 

Moreover, we show that modeling spatial autocorrelation in the β-convergence model allows 

estimating geographic spillover effects. On the other hand spatial heterogeneity means that 

economic behavior is not stable over space. Such a spatial heterogeneity probably characterizes 

patterns of economic development under the form of spatial regimes and/or groupwise 

heteroskedasticity: a cluster of rich regions (the core) being distinguished from a cluster of poor 

regions (the periphery). 

From an econometric point of view, it is well known that the presence of spatial dependence 

and/or spatial heterogeneity leads to unreliable statistical inference based on Ordinary Least Squares 

(OLS) estimations. Concerning the spatial dependence issue, we use the appropriate spatial 

econometric tools to test for its presence and to estimate the appropriate spatial specification. 

Concerning the spatial heterogeneity problem, we define spatial regimes, which are interpreted as 

spatial convergence clubs, using Exploratory Spatial Data Analysis (ESDA) in order to capture the 

North-South polarization pattern observed in European regions. Taking into account both of these 

effects, we show two results. First, the convergence process is different across regimes. Actually 

there is not such a convergence process for northern regions, whereas it is weak for southern 

regions. Second, a significant geographic spillover effect appears in the growth process in that the 

average growth rate for a given region is positively influenced by the average growth rates of 

neighboring regions. 
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In a first section the convergence concepts used in this paper are presented: β-convergence, 

club convergence and spatial effects are defined more precisely. In the second section, the empirical 

methodology and the econometric results are presented. In the first step, we define convergence 

clubs using ESDA. In the second step, we show that the global and a-spatial unconditional β-

convergence model is misspecified and that a spatial regime model with spatially autocorrelated 

errors is more appropriate. In this model, a random shock affecting a given region propagates to all 

the region of the sample. Two simulation experiments based on a southern region and on a northern 

region, illustrate this effect on the average growth rate of all the regions of our sample. 

 

I. Convergence concepts and spatial effects 

Since the rather informal contribution of Baumol (1986), and the more formal contributions 

of Barro and Sala-i-Martin (1991, 1992, 1995) and Mankiw, Romer and Weil (1992) among others, 

the controversial convergence issue has been extensively debated in the macroeconomic growth and 

regional science literature and heavily criticized on both theoretical and methodological grounds. 

The convergence hypothesis has been improved and made more precise and formal since Baumol’s 

(1986) pioneering paper leading to β-convergence or σ-convergence concepts. Alternative concepts 

such as club convergence (Durlauf and Johnson, 1995; Quah, 1993a, 1993b, 1996a, 1996b) or 

stochastic convergence (Bernard and Durlauf, 1995, 1996; Evans and Karras, 1996) have also been 

developed. In relation with the convergence concepts used, econometric problems, such as 

heterogeneity, omitted variables, model uncertainty, outliers, endogeneity and measurement errors, 

are often raised and alternative techniques like panel data (Islam, 1995; Caselli, Esquivel and 

Lefort, 1996), time series (Bernard and Durlauf, 1995, 1996; Carlino and Mills, 1993, 1996a, 

1996b; Evans and Karras, 1996) and probability transition matrices (Quah, 1993a, 1996a, 1996b) 

are proposed. We will not attempt here to discuss this huge literature: Durlauf and Quah (1999), 

Islam (1998), Mankiw (1995) and Temple (1999) present outstanding surveys of this debate. 
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Spatial effects have received less attention in the literature although major econometric 

problems are likely to be encountered if they are present in the standard β-convergence framework, 

since statistical inference based on OLS will then be flawed. The first study we are aware of that 

takes up the issue of location and growth explicitly is De Long and Summers (1991, p. 456 and 

appendix 1, p. 487-490): 

“Many comparative cross-country regression have assumed there is no dependence across residuals, and 

that each country provides as informative and independent an observation as any other. Yet it is difficult 

to believe that Belgian and Dutch economic growth would ever significantly diverge, or that substantial 

productivity gaps would appear in Scandinavia. The omitted variables that are captured in the regression 

residuals seem ex ante likely to take on similar values in neighboring countries. This suggests that 

residuals in nearby nations will be correlated…” 

However, they are disappointed not to find evidence of spatial correlation in their sample1. 

Since then, the appropriate econometric treatment of these spatial effects is often neglected in the 

macroeconomic literature, at best it is handled by the straightforward use of regional dummies or 

border dummy variables (Chua, 1993; Ades and Chua, 1997; Barro and Sala-I-Martin, 1995; 

Easterly and Levine, 1995). 

Mankiw (1995, p. 304-305) also points out that multiple regression in the standard 

framework treats each country as if it were an independent observation: 

“For the reported standard errors to be correct, the residual for Canada must be uncorrelated with the 

residual for United States. If country residuals are in fact correlated, as is plausible, then the data most 

likely contain less information then the reported standard errors indicate”. 

Temple (1999, p. 130-131) in his survey on the new growth evidence also draws attention to 

the error correlation and regional spillovers though he interprets these effects as mainly reflecting 

an omitted variable problem: 

“Without more evidence that the disturbances are independent, the standard errors in most growth 

regression should be treated with a certain degree of mistrust”. 

                                                 
1 More specifically, their result is based on regressions of normalized products of fitted residuals for all country pairs 
obtained from a growth equation on different functional forms of the distance between country capitals: “We are quite 
surprised at the apparent absence of a significant degree of spatial correlation in our sample…” (De Long and Summers, 
1991, p. 489) 
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It is therefore at least surprising that these effects although acknowledged are not studied 

more fully in the macroeconomic literature yet appropriate statistical techniques and econometric 

models used for analyzing such spatial processes have been developed in the regional science 

literature (Anselin, 1988a; Anselin and Bera 1998; Anselin, 2001). They provide relevant tools to 

identify both “well defined” spatial dependence and heterogeneity forms involved in the regional 

growth process. Nevertheless just a few recent empirical studies apply the appropriate spatial 

econometric tools as Moreno and Trehan (1997), Fingleton (1999), Rey and Montouri (1999) or 

Maurseth (2001). 

 

1. ββ-convergence models 

The prediction of the neoclassical growth model (Solow, 1956) is that the growth rate of an 

economy will be positively related to the distance that separates it from its own steady state. This is 

the concept known as conditional β-convergence. If economies have different steady states, this 

concept is compatible with a persistent high degree of inequality among economies. 

The hypothesis of conditional β-convergence is usually tested on the following cross-

sectional model, in matrix form: 

εφβα +++= XySgT 0  ε  ~ ),0( 2 IN εσ  (1) 

where Tg  is the )1( ×n  vector of average growth rates of per capita GDP between date 0 and T; 0y  

is the vector of log per capita GDP levels at date 0; X  is a matrix of variables, maintaining constant 

the steady state of each economy, S is the unit vector and ε is the vector of errors with the usual 

properties. There is conditional β-convergence if the estimate of β  is significantly negative once 

X  is held constant. The speed of convergence and the half-life can then be recovered using this 

estimate2. This is the approach widely used in cross-country analysis, with more or less ad hoc 

                                                 

2 The speed of convergence is then ( )ln 1b T Tβ= − + . The time necessary for the economies to fill half of the 

variation, which separates them from their steady state, is called the half-life: ( )ln(2) ln 1τ β= − + . 
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specifications to control for the determinants of the steady state as discussed by Levine and Renelt 

(1992) or with specifications formally derived from structural growth models following Mankiw, 

Romer and Weil (1992). 

If we assume that all the economies are structurally similar, characterized by the same 

steady state, and differ only by their initial conditions, we define the concept known as 

unconditional β-convergence: all the economies converge to the same steady state. It is only in that 

case that the prediction of the neoclassical growth model that poor economies grow faster than rich 

ones and eventually catch them up in the long run holds true. 

The hypothesis of unconditional β-convergence is usually tested on the following cross-

sectional model, in matrix form: 

εβα ++= 0ySgT  ε  ~ ),0( 2 IN εσ  (2) 

There is unconditionalβ –convergence when β  is significantly negative. This approach is 

advocated, for example, by Sala-I-Martin (1996a, 1996b) for within country cross-regional analysis 

together with an increasing emphasis on the test of the σ-convergence concept, which relates to 

cross-sectional dispersion. There is σ-convergence if the dispersion - measured, for example, by the 

standard deviation of log per capita real GDP across a group of economies - tends to decrease over 

time. These two concepts are designed to capture conceptually different phenomena: β-convergence 

relates to the mobility of per capita GDP within the same distribution and σ-convergence relates to 

the evolution over time of the distribution of per capita GDP. Although closely related these two 

concepts are far from being identical. As is well known even unconditional β-convergence is a 

necessary but not a sufficient condition for σ-convergence3. 

 

                                                 
3 However we will not use this σ-convergence concept in this paper because it is an a-spatial concept. Note that 
Maurseth (2001) has recently proposed a conditional σ-convergence concept, which can be interpreted as a spatialized 
mesure of dispersion. 
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2. Club convergence 

However, these convergence concepts and tests have been forcefully criticized in the recent 

literature both on theoretical and methodological grounds and several econometric problems are 

often raised. More precisely, in regard with the heterogeneity problem, the concept of club 

convergence used for example by Durlauf and Johnson (1995) seems appealing. This concept is 

consistent with economic polarization, persistent poverty and clustering. In case of unconditional 

convergence, there is only one equilibrium level to which all economies approach. In case of 

conditional convergence, equilibrium differs by economy, and each economy approaches its own 

but unique, globally stable, steady state equilibrium. In contrast, the concept of club convergence, is 

based on endogenous growth models that are characterized by the possibility of multiple, locally 

stable, steady state equilibria as in Azariadis and Drazen (1990). Which of these different equilibria 

an economy will be reaching, depends on the range to which its initial conditions belong. In other 

words, economies converge to one another if their initial conditions are in the “basin of attraction” 

of the same steady state equilibrium. In such a framework, as noted by Durlauf and Johnson (1995), 

standard convergence tests can have some difficulties to discriminate between these multiple steady 

state models and the Solow model. Moreover, Bernard and Durlauf (1996) show that a linear 

regression applied to data generated by economies converging to multiple steady states can produce 

a negative initial per capita GDP coefficient. The standard global β-convergence result appears then 

to be an artifact. 

Durlauf and Johnson (1995), using the Summers and Heston data set over the 1960-1985 

period and the Mankiw, Romer and Weil (1992) framework, show that convergence is indeed 

stronger within groups of countries once they arbitrarily split the whole sample based on the initial 

per capita GDP level and the adult literacy rate at the beginning of the period. Moreover estimated 

parameter values associated to conditioning variables differ significantly across the groups. They 

endogenize then the splitting using the regression tree method and note the geographic homogeneity 

within each group but fail to find evidence of convergence among the high-output economies, that 
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is to say North-American and European countries. This result if furthermore qualitatively similar to 

that obtained by De Long (1988). They interpret the overall parameter instability as indicative of 

countries belonging to different regimes. 

However, Galor (1996) shows that multiplicity of steady state equilibria and thus club 

convergence is even consistent with standard neoclassical growth models that exhibit diminishing 

marginal productivity of capital and constant return to scale if heterogeneity across individuals is 

permitted. The problem is then to distinguish evidence of club convergence from that of conditional 

convergence. 

The standard β –convergence concept and test are also, more deeply, criticized by Friedman 

(1992) and Quah (1993b) who raise the Galton’s fallacy problem. Moreover, Quah (1993a, 1996a, 

1996b, 1997) argues that convergence should be studied by taking into account the shape of the 

entire distribution of per capita GDP and its intra-distribution dynamics over time and not by 

estimating the cross section correlation between growth rates and per capita GDP levels or by 

computing first or higher moments. Using an alternative empirical methodology based on Markov 

chains and probability transition matrices, Quah (1993a, 1996a, 1996b, 1997) finds evidence on the 

formation of convergence clubs, the international income distribution polarizing into “twin-peaks” 

of rich and poor countries. Quite surprisingly, Quah (1996c) does not find evidence supporting 

“twin-peakedness” in the European regional income distribution for a sample of 82 regions, indeed 

excluding southern poor Portuguese and Greek regions, over the 1980-1989 period. Yet Le Gallo 

(2001), using the same empirical approach, finds such evidence for an extended sample of 138 

European regions over the 1980-1995 period. 

In addition, Quah (1996c) raises another criticism concerning the neglected spatial 

dimension of the convergence process: countries or regions are actually treated as “isolated islands” 

in standard approaches while spatial interactions due to geographical spillovers should be taken into 

account. Quah (1996c, p. 954) finds that: “[…] physical location and geographical spillover matter 
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more than do national, macro factors” and notes that: “[…] the results highlight the importance of 

spatial and national spillovers in understanding regional income distribution dynamics”. 

 

3. Spatial effects and polarization patterns 

Following Anselin (1988a), spatial effects refer to both spatial dependence and spatial 

heterogeneity. 

Spatial autocorrelation can be defined as the coincidence of value similarity with locational 

similarity (Anselin, 2001). Therefore, there is positive spatial autocorrelation when similar values of 

a random variable measured on various locations tend to cluster in space. Applied to the study of 

income disparities, this means that rich regions tend to be geographically clustered as well as poor 

regions. 

Spatial heterogeneity means in turn that economic behaviors are not stable over space. In a 

regression model, spatial heterogeneity can be reflected by varying coefficients, i.e. structural 

instability, or by varying error variances across observations, i.e. heteroskedasticity. These 

variations follow for example specific geographical patterns such as East and West, or North and 

South... Such a spatial heterogeneity probably characterizes patterns of economic development 

under the form of spatial regimes and/or groupwise heteroskedasticity: a cluster of rich regions (the 

core) being distinguished from a cluster of poor regions (the periphery). 

The links between spatial autocorrelation and spatial heterogeneity are quite complex. First, 

as pointed out by Anselin (2001), spatial heterogeneity often occurs jointly with spatial 

autocorrelation in applied econometric studies. Moreover, in cross-section, spatial autocorrelation 

and spatial heterogeneity may be observationally equivalent. For example, in polarization 

phenomena, a spatial cluster of extreme residuals in the center may be interpreted as heterogeneity 

between the center and the periphery or as spatial autocorrelation implied by a spatial stochastic 

process yielding clustered values in the center. Finally, spatial autocorrelation of the residuals may 

be implied by some spatial heterogeneity that is not correctly modeled in the regression (Brundson 



 12

et al., 1999 provide such an example). In other words, in a regression, a spatial autocorrelation of 

errors may simply indicate that the regression is misspecified. 

Three kinds of issues arise from these complex links between spatial dependence and spatial 

heterogeneity. 

First, we must identify spatial clusters of regional wealth upon which a spatial regimes 

convergence model could be based. Each spatial cluster contains all regions connected by a spatial 

association criterion whereas the type of spatial association differs between clusters. Then both 

spatial dependence and heterogeneity effects are associated in the construction of our spatial clubs.  

Second, statistical inference based on OLS when heterogeneity or spatial dependence is 

present is not reliable. For example, if we try to estimate a model characterized by a specific form 

of structural instability, we cannot rely on standard tests of structural instability in presence of 

spatial autocorrelation and/or heteroskedasticity. It is therefore necessary to test if both effects are 

present. Furthermore when spatial autocorrelation and spatial heterogeneity occur jointly in a 

regression, the properties of White (1980) and Breusch-Pagan (1979) tests for heteroskedasticity 

may be flawed (Anselin and Griffith, 1988). Therefore, it is necessary to adjust structural instability 

and heteroskedasticity tests for spatial autocorrelation and to use appropriate econometric methods 

as proposed by Anselin (1988b, 1990a, 1990b). 

Third, the role played by geographic spillovers in the convergence of European regions has 

to be considered. In a previous work, we showed that if spatial autocorrelation is detected in the 

unconditional β-convergence model, then it leads to specifications integrating potential geographic 

spillovers in the convergence process (Baumont, Ertur and Le Gallo, 2001). However, since spatial 

heterogeneity is now integrated in the estimation of the β-convergence model, we must use 

appropriate specifications and tests if we want to obtain reliable estimates of geographic spillovers 

on regional growth in Europe. 
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In the following section, we will define more precisely and apply our empirical 

methodology4, which extends the approach developed by Durlauf and Johnson (1995) by explicitly 

taking into account the potential spatial effects previously defined, in the framework of the standard 

β- convergence process. 

 

II. Econometric results 

In the first step of our analysis, we will look for the potential of spatial autocorrelation and 

spatial structural instability in European regional per capita GDP in logarithms using Exploratory 

Spatial Data Analysis (ESDA). ESDA is a set of techniques aimed at describing and visualizing 

spatial distributions, at detecting patterns of global and local spatial association and at suggesting 

spatial regimes or other forms of spatial heterogeneity (Haining 1990; Bailey and Gatrell 1995; 

Anselin 1988a, b). Moran’s I statistic is usually used to test for global spatial autocorrelation (Cliff 

and Ord, 1981) while the Moran scatterplot is used to visualize patterns of local spatial association 

and spatial instability (Anselin, 1996). In the second step, we will estimate an unconditional β-

convergence model by OLS and carry out various tests aiming at detecting the presence of spatial 

dependence and spatial heterogeneity. We will then propose the most appropriate specification in 

respect to these two problems. 

 

1. Data 

Data limitations remain a serious problem in the European regional context although much 

progress has been made recently by Eurostat. Harmonized and reliable data allowing consistent 

regional comparisons are scarce, in particular for the beginning of the time period under study. 

There is clearly a lack of appropriate or easily accessible data, to include control and environmental 

variables and estimate a conditional β-convergence model, compared to the range of such variables 

                                                 
4 A similar empirical methodology is also used in the quite different context of criminology studies by Baller et al. 
(2001). 
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available for international studies as in Barro and Sala-I-Martin (1995) or Mankiw, Romer and Weil 

(1992) (Summers and Heston data set, 1988, also called the Penn World Table)5. 

We use data on per capita GDP in logarithms expressed in Ecu6. The data are extracted from 

the EUROSTAT-REGIO database. This database is widely used in empirical studies on European 

regions, see for example López-Bazo et al. (1999), Neven and Gouyette (1995), Quah (1996), Beine 

and Jean-Pierre (2000) among others. Our sample includes 138 regions in 11 European countries 

over the 1980-1995 period: Belgium (11), Denmark (1), France (21), Germany (30), Greece (13), 

Luxembourg (1), Italy (20), the Netherlands (9), Portugal (5) and Spain (16) in NUTS2 and the 

United Kingdom (11) in NUTS1 level7 (see the data appendix for more details). 

It is worth mentioning that our sample is far more consistent and encompasses much more 

regions than the one initially used by Barro and Sala-I-Martin (1991, 73 regions; 1995, 91 regions) 

and Sala-I-Martin (1996a, 73 regions; 1996b, 90 regions) mixing different sources and different 

regional breakdowns 8. Moreover the smaller 73 regions data set is largely confined to prosperous 

European regions belonging to Western Germany, France, United-Kingdom, Belgium, Denmark, 

Netherlands and Italy, excluding Spanish, Portuguese and Greek regions, which are indeed less 

prosperous. This may result in a selection bias problem raised by DeLong (1988). Armstrong 

(1995a, 1995b) tries to overcome these problems by expanding the original Barro and Sala-I-Martin 

(1991) 73 regions data set to southern less prosperous regions using a more consistent sample of 85 

regions. 

However, we are aware of all the shortcomings of the database we use, especially 

concerning the adequacy of the regional breakdown adopted, which can raise a form of the 

ecological fallacy problem (King, 1997; Anselin and Cho, 2000) or “modifiable areal unit problem” 

well known to geographers (Openshaw and Taylor, 1979, Arbia, 1989). The choice of the NUTS2 

                                                 
5 Levine and Renelt (1992) discuss the wide range of variables (over 50) used in various studies. 
6 Former European Currency Unit replaced by the Euro since 1999. 
7 NUTS means Nomenclature of Territorial Units for Statistics used by  Eurostat. 
8 For example, for the sample of 91 regions used by Barro and Sala-I-Martin (1995): GDP data collected by Molle 
(1980) for the pre-1970 period, Eurostat data for the recent period and personal income data from Banco de Bilbao for 
Spanish regions for example. Button and Pentecost (1995) also report these problems. 
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level as our spatial scale of analysis may appear to be quite arbitrary and may have some impact on 

our inference results. Regions in NUTS2 level may be too large in respect to the variable of interest 

and the unobserved heterogeneity may create an ecological fallacy, so that it might have been more 

relevant to use NUTS3 level. Conversely, they may be too small so that the spatial autocorrelation 

detected could be an artifact that comes out from slicing homogenous zones in respect to the 

variable considered, so that it might have been more relevant to use NUTS1 level. Even if, ideally, 

the choice of the spatial scale should be based on theoretical considerations, we are constrained in 

empirical studies by data availability. Moreover, our preference for the NUTS2 level rather than the 

NUTS1 level, when data is available, is based on European regional development policy 

considerations: indeed it is the level at which eligibility under Objective 1 of Structural Funds 9 is 

determined since their reform in 1989 (The European regions: sixth periodic report on the socio-

economic situation in the regions of the European Union, European Commission, 1999). Our 

empirical results are indeed conditioned by this choice and could be affected by different levels of 

aggregation and even by missing regions. Therefore, they must be interpreted with caution. 

 

2. The spatial weight matrix 

The spatial weight matrix is the fundamental tool used to model the spatial interdependence 

between regions. More precisely, each region is connected to a set of neighboring regions by means 

of a purely spatial pattern introduced exogenously in this spatial weight matrix W10. The elements 

iiw  on the diagonal are set to zero whereas the elements ijw  indicate the way the region i  is 

spatially connected to the region j . These elements are non-stochastic, non-negative and finite. In 

order to normalize the outside influence upon each region, the weight matrix is standardized such 

that the elements of a row sum up to one. For the variable 0y , this transformation means that the 

                                                 
9 For regions where development is lagging behind (in which per capita GDP is generally below 75% of the EU 
average). More than 60% of total EU resources used to implement structural policies are assigned to Objective 1. 
10 As pointed out by Anselin (1999b, p. 6): “Also, to avoid identification problems, the weights should truly be 
exogenous to the model (Manski, 1993). In spite of their lesser theoretical appeal, this explains the popularity of 
geographically derived weights, since exogeneity is unambiguous”. 
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expression 0Wy , called the spatial lag variable, is simply the weighted average of the neighboring 

observations. Various matrices can be considered: a simple binary contiguity matrix, a binary 

spatial weight matrix with a distance-based critical cut-off, above which spatial interactions are 

assumed negligible, more sophisticated generalized distance-based spatial weight matrices with or 

without a critical cut-off. The notion of distance is quite general11 and different functional form 

based on distance decay can be used (for example inverse distance, inverse squared distance, 

negative exponential etc.). The critical cut-off can be the same for all regions or can be defined to 

be specific to each region leading in the latter case, for example, to k-nearest neighbors weight 

matrices when the critical cut-off for each region is determined so that each region has the same 

number of neighbors. 

It is important to stress that the weights should be exogenous to the model to avoid the 

identification problems raised by Manski (1993) in social sciences. This is the reason why we 

consider pure geographical distance, more precisely great circle distance between regional 

centroids, which is indeed strictly exogenous; the functional form we use is simply the inverse of 

squared distance which can be interpreted as reflecting a gravity function. 

The general form of the distance weight matrix ( )W k  we use is defined as following: 

 

*

* 2

*

( ) 0 if 

( ) 1  if ( )

( ) 0 if ( )

ij

ij ij ij

ij ij

w k i j

w k d d D k

w k d D k

 = =


= ≤


= >

  and  * *( ) ( ) ( )ij ij ij
j

w k w k w k= ∑                    k = 1,...,4 (3) 

where ijd  is the great circle distance between centroids of regions i and j; 1)1( QD = , MeD =)2( , 

3)3( QD =  and MaxD =)4( , where Q1, Me, Q3 and Max are respectively the lower quartile (321 

miles), the median (592 miles), the upper quartile (933 miles) and the maximum (2093 miles) of the 

great circle distance distribution. This matrix is row standardized so that it is relative and not 

absolute distance that matters. ( )D k  is the cutoff parameter for 3,2,1=k  above which interactions 

                                                 
11 Weights based on “social distance” as in Doreian (1980) or “economic distance” as in Case et al. (1993), Conley and 
Tsiang (1994), Conley (1999) have also been suggested in the literature. However in that case, as noted by Anselin and 
Bera (1998, p.244): “… indicators for the socioeconomic weights should be chosen with great care to ensure their 
exogeneity, unless their endogeneity is considered explicitly in the model specification”. 
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are assumed negligible. For 4=k , the distance matrix is full without cutoff. We therefore consider 

4 different spatial weight matrices. It is important to keep in mind that all subsequent analyses are 

conditional upon the choice of the spatial weight matrix. Indeed the results of statistical inference 

depend on spatial weights. Consequently we use 1,2,3,4k =  to check for robustness of our results. 

Let us finally note first that, even when using 1)1( QD = , some islands such as Sicilia, Sardegna, 

and Baleares are connected to continental Europe so that we avoid rows and columns in W  with 

only zero values. Second, United-Kingdom is also connected to continental Europe. Third, we note 

that connections between southern European regions are assured so that eastern Spanish regions are 

connected to Baleares, which are connected to Sardegna, which is in turn connected to Italian 

regions, which are finally connected to western Greek regions. The block-diagonal structure of the 

simple contiguity matrix when ordered by country is thus avoided and the spatial connections 

between regions belonging to different countries are guarantied. In our opinion, these matrices have 

therefore more appealing features when working on a sample of European regions, which are less 

closely connected and less compact than US states, than the simple but less appropriate contiguity 

matrix. 

 

3. Exploratory Spatial Data Analysis: detection of spatial clubs 

We first test for global spatial autocorrelation in per capita GDP in logarithms using 

Moran’s I statistic (Cliff and Ord, 1981), which is written in the following matrix form, for each 

year t  of the period 1980-1995: 

0

' ( )
( ) .

'
t t

t
t t

z W k zn
I k

S z z
=  16,...0=t  1,...,4k =  (4) 

where tz  is the vector of the n  observations for year t  in deviation from the mean and ( )W k  is the 

spatial weight matrix. Values of I larger (resp. smaller) than the expected value 

)1/(1)]([ −−= nkIE t  indicate positive (resp. negative) spatial autocorrelation. Inference is based on 
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the permutation approach with 10000 permutations (Anselin, 1995)12. It appears that, with (1)W , 

per capita regional GDP is positively spatially autocorrelated since the statistics are significant with 

0.0001p =  for every year. This result suggests that the null hypothesis of no spatial autocorrelation 

is rejected and that the distribution of per capita regional GDP is by nature clustered over the whole 

period under study. In other words, the regions with relatively high per capita GDP (resp. low) are 

localized close to other regions with relatively high per capita GDP (resp. low) more often than if 

their localizations were purely random. A similar result holds for the average growth rate of 

regional per capita GDP over the whole period. Moreover these results are extremely robust in 

respect to the choice of the spatial weight matrix ( )W k , 1,...,4k = 13. 

Spatial instability in the form of spatial regimes is then investigated by means of a Moran 

scatterplot (Anselin, 1996). Given our context of β-convergence analysis, we choose to define such 

local spatial association on the logarithm of the initial level of per capita GDP. As noted by Durlauf 

and Johnson (1995) the use of split variables, which are known at the beginning of the period are 

necessary to avoid the sample selection bias problem raised by De Long (1988). 

The Moran scatterplot displays the spatial lag 0Wy  against 0y , both standardized. The four 

different quadrants of the scatterplot correspond to the four types of local spatial association 

between a region and its neighbors: (HH) a region with a high value surrounded by regions with 

high values, (LH) a region with a low value surrounded by regions with high values, (LL) a region 

with a low value surrounded by regions with low values, (HL) a region with a high value 

surrounded by regions with low values. Quadrants HH and LL refer to positive spatial 

autocorrelation indicating spatial clustering of similar values whereas quadrants LH and HL 

represent negative spatial autocorrelation indicating spatial clustering of dissimilar values. The 

Moran scatterplot may thus be used to visualize atypical localizations in respect to the global 

pattern, i.e. regions in quadrant LH or in the quadrant HL. A four-way split of the sample based on 

                                                 
12 All computations were carried out using SpaceStat 1.90 software (Anselin, 1999a). 
13 In addition, the results are also robust to the use of a k-nearest neighbors spatial weight matrices, for 10,15,20,25k = . 
Complete results are available from the authors upon request. 
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the two control variables, initial per capita GDP and initial spatially lagged per capita GDP, 

allowing for interactions between them, can therefore be based on this Moran scatterplot. 

[Figure 1 about here] 

Figure 1 displays this Moran scatterplot computed with (1)W  for log per capita GDP in 

1980. It reveals the predominance of high-high and low-low clustering types of regional per capita 

GDP: almost all the European regions are characterized by positive spatial association since 90 

regions are of type HH and 45 regions of type LL. The Moran scatterplot confirms the clear North-

South polarization of the European regions: northern regions are located in the HH quadrant while 

southern regions are located in the LL quadrant. Only three regions show a spatial association of 

dissimilar values: Wales, and Northern Ireland (United Kingdom) are located in the LH quadrant, 

which indicates poor regions, surrounded on average by rich regions, conversely Scotland is located 

in the HL quadrant. 

This suggests some kind of spatial heterogeneity in the European regional economies, the 

convergence process, if it exists, could be different across regimes. We consider therefore two 

spatial clubs constituted by HH and LL regions, which we call North and South. Since Wales, 

Scotland and Northern Ireland are deleted14, our new sample contains 135 regions, which belong to 

North and South as following: 

1/ North = {France, Germany, Netherlands, Belgium, Denmark, Luxembourg, United 

Kingdom (excepted Wales, Scotland and Northern Ireland) and northern Italy (Piemonte, Valle 

d’Aosta, Liguria, Lombardia, Trentino-Alto Adige, Veneto, Friuli-Venezia Guilia, Emilia-Romagna 

and Toscana)}. 

2/ South = {Portugal, Spain, Greece and southern Italy (Umbria, Marche, Lazio, Abruzzo, 

Molise, Campania, Puglia, Basilacata, Calabria, Sicilia and Sardegna)}. 

Not surprisingly, regions belonging to the South regime correspond to the Objective 1 

regions and mainly belong to the “cohesion countries” defined by the European Commission. 

                                                 
14 The spatial clubs (LH) and (HL) containing only 2 regions and one region respectively are omitted due to the small 
number of observations in each and lack of degrees of freedom for the second step of our analysis. 
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The Moran scatterplots computed with the other spatial weight matrices (2)W , (3)W  and 

(4)W  lead to sensibly the same clubs: the only difference is the presence of Scotland in the North 

regime. This highlights again the robustness of our results in regard to the choice of the spatial 

weight matrix15. Moreover the observed polarization seems to be persistent over the whole period 

since the composition of the clubs defined by the Moran scatterplots computed for each year 

remains globally unchanged. 

The Moran scatterplot is illustrative of the complex interrelations between global spatial 

autocorrelation and spatial heterogeneity in the form of spatial regimes. Global spatial 

autocorrelation is reflected by the slope of the regression line of 0Wy  against 0y , which is formally 

equivalent to Moran’s I statistic for a row-standardized weight matrix. It seems to be inherent to the 

layout of the spatial regimes corresponding to a clear North-South polarization pattern. 

These exploratory results suggest that great care must be taken in the second step of our 

analysis concerning the estimation of the standard β-convergence model due to the presence of 

spatial autocorrelation and spatial heterogeneity. Standard estimation by OLS and statistical 

inference based on it are therefore likely to be misleading. Moreover, in respect to the simulation 

results presented by Anselin (1990a) on size and power of traditional tests of structural instability in 

presence of spatially autocorrelated errors, we are potentially in the worst case: positive global 

spatial autocorrelation and two regimes corresponding to closely connected or compact 

observations. These standard tests are also likely to be highly misleading. Concerning the 

methodological approach to be taken in empirical studies we will follow Anselin’s suggestion: “…it 

is prudent to always carry out a test for the presence of spatial error autocorrelation… If there is a 

strong indication of spatial autocorrelation, and particularly when it is positive and/or the regimes 

correspond to compact contiguous observations, the standard techniques are likely to be unreliable 

and a maximum-likelihood approach should be taken” (Anselin, 1990a, p. 205). We are aware that 

                                                 
15 Using k-nearest neighbors spatial weight matrices, we obtained the same North-South polarization result. The 
complete results are available from the authors upon request. 
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this empirical approach raises the well known pretest problem invalidating the use of the usual 

asymptotic distribution of the tests, but the simulation results presented by Anselin (1990a) indicate 

that this problem may not be so harmful in this case. 

Finally, the determination of the different regimes or clubs should, ideally, be endogenous 

as, for example Durlauf and Johnson (1995) in a non-spatial framework. However, to our 

knowledge, such an attempt has still not been made in a setting that also takes into account spatial 

dependence16 and remains beyond the scope of this paper. 

 

4. Estimation results 

We first estimate the model of unconditional β-convergence by OLS and carry out various 

tests aiming at detecting the presence of spatial dependence using the spatial weight matrices 

previously specified and spatial heterogeneity in the form of groupwise heteroskedasticity and/or 

structural instability across the spatial regimes previously defined. However, testing for one effect 

in presence of the other one requires some caution (Anselin and Griffith, 1988, Anselin 1990a, 

1990b). We then estimate the appropriate specifications integrating these spatial effects separately. 

Two kinds of econometric specifications can be used to deal with the problem of spatial dependence 

(Anselin, 1988a; Anselin and Bera, 1998, Anselin, 2001): the spatial error model (spatial 

autoregressive error or SAR model) and the spatial lag model (mixed regressive, spatial 

autoregressive model). The way these models are estimated and interpreted in the context of β-

convergence models is presented in detail for example in Rey and Montouri (1999) and Baumont, 

Ertur and Le Gallo (2001). The way we integrate spatial heterogeneity is rather standard: we simply 

estimate a groupwise heteroskedastic model by FGLS and a two-regimes model by OLS. However 

taking into account all effects jointly and estimating an appropriate econometric specification 

appears to be less straightforward: we overcome the problem by estimating a spatial regimes model 

with spatially autocorrelated errors. 

                                                 
16 This matter of fact is also noted by Anselin and Cho (2000, p. 11). This issue is much more complex than in the 
standard non-spatial framework due to the spatial weight matrix and the spatial ordering of the observations. 
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OLS estimation of the unconditional ββ -convergence model and tests 

Let us take as a starting point the following model of unconditional β-convergence: 

1980Tg S yα β ε= + +  2 ~ N(0, )Iεε σ  (5) 

where Tg  is the vector of dimension n = 135 of the average per capita GDP growth rates for each 

region i between 1995 and 1980, 15T = , y1980 is the vector containing the observations of per 

capita GDP in logarithms for all the regions in 1980, α and β  are the unknown parameters to be 

estimated, S is the unit vector and ε is the vector of errors with the usual properties. 

In this context, the choice of the cutoff for the distance-based spatial weight matrix W  can 

be based on the OLS residual correlogram with ranges defined by minimum, lower quartile, 

median, upper quartile and maximum great circle distances as suggested for example by Fingleton 

(1999). With the sample of 135 regions we consider now, Q1, Me, Q3 and Max are modified as 

following: Q1 = 312 miles, Me = 582 miles, Q3 = 928 miles and Max = 1997 miles. The 

determination of the cutoff that maximizes the absolute value of significant Moran’s I test statistic 

adapted to regression residuals (Cliff and Ord, 1981) or Lagrange Multiplier test statistic for spatial 

error autocorrelation (Anselin, 1988a, 1988b) leads to Q1: we retain a cutoff of 312 miles for the 

distance based weight matrix (see Table 1). 

[Table 1 about here] 

The results of the estimation by OLS of this model are then given in Table 2. The coefficient 

associated with the initial per capita GDP is significant and negative, 00797.0ˆ −=β , which 

confirms the hypothesis of convergence for the European regions. The speed of convergence 

associated with this estimation is 0.85% (the half-life is 87 years), far below 2% usually found in 

the convergence literature, but closer to about 1% found by Armstrong (1995a). These results 

indicate that the process of convergence is indeed very weak. 

[Table 2 about here] 
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Evidence in favor of normality is rather week according to the Jarque-Bera test (1987) with 

a p-value of 0.014. We also note that the White (1980) test clearly rejects homoskedasticity as does 

the Breusch-Pagan (1979) test versus the explanatory variable 1980y . Versus 1D , which is the 

dummy variable for the northern regime, the rejection is slightly weaker with a p-value of 0.015. 

Further consideration of spatial heterogeneity is therefore needed: we could think of some general 

form of heteroskedasticity, a more specific heteroskedasticity linked to the explanatory variable 

1980y  in the regression or groupwise heteroskedasticity possibly associated to structural instability 

across regimes. 

Five spatial autocorrelation tests are then carried out: Moran’s I test adapted to regression 

residuals (Cliff and Ord, 1981) indicates the presence of spatial dependence. To discriminate 

between the two forms of spatial dependence – spatial autocorrelation of errors or endogenous 

spatial lag - we perform the Lagrange Multiplier tests: respectively LMERR and LMLAG and their 

robust versions (Anselin, 1988b; Anselin et al., 1996). The two robust tests R-LMLAG and 

R-LMERR have a good power against their specific alternative. The decision rule suggested by 

Anselin and Florax (1995) can then be used to decide which specification is the more appropriate. If 

LMLAG is more significant than LMERR and R-LMLAG is significant but R-LMERR is not, then 

the appropriate model is the spatial autoregressive model. Conversely, if LMERR is more 

significant than LMLAG and R-LMERR is significant but R-LMLAG is not, then the appropriate 

specification is the spatial error model. Applying this decision rule, these tests indicate the presence 

of spatial error autocorrelation rather than a spatial lag variable: the spatial error model appears to 

be the appropriate specification. The LM test of the joint null hypothesis of absence of 

heteroskedasticity and residual spatial autocorrelation is highly significant whatever the form of the 

heteroskedasticity assumed (Anselin, 1988a, 1988b). 

In addition to the apparent non-normality of the residuals, we are faced with two 

interconnected problems, which we have to deal with: spatial heterogeneity and spatial 

autocorrelation. A direct implication of these results is that the OLS estimator is inefficient and that 
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all the statistical inference based on it is unreliable. In addition, as pointed out earlier, we must keep 

in mind that in presence of heteroskedasticity, results of the spatial autocorrelation tests may be 

misleading and conversely results of the heteroskedasticity tests may also be misleading in presence 

of spatial autocorrelation (Anselin 1988a; Anselin and Griffith, 1988; Anselin 1990a,b). Therefore 

they must be interpreted with caution. More precisely, although the tests indicate heteroskedasticity 

this may not be a problem because it can be due to the presence of spatial dependence (McMillen, 

1992). 

The unconditional β -convergence model is strongly misspecified due to the spatial 

autocorrelation and heteroskedasticity of the errors. Actually, each region cannot be considered as 

independent of the others. The model must be modified to integrate this spatial dependence 

explicitly and to take into account spatial heterogeneity. Moreover, these two aspects may be 

linked. 

Spatial dependence 

We first deal with the spatial dependence issue. We saw that the decision rule suggested by 

Anselin and Florax (1995) indicates a clear preference for the spatial error model over the spatial 

lag model. We then estimate the following SAR model: 

1980Tg S yα β ε= + +  ε λ ε= +W u  2 ~ N(0, )uu Iσ  (6) 

Estimation results by ML are presented in Table 3. The coefficients are all strongly 

significant. From the convergence perspective, β̂  is higher than in the unconditional 

β−convergence model estimated by OLS: the convergence speed is 1.2 % and the half-life reduces 

to 63 years once the spatial effects are controlled for. The convergence process appears then to be a 

little stronger but it remains actually weak. 

[Table 3 about here] 

It is as well important to note that a significant positive spatial autocorrelation of the errors 

is found ( ˆ 0,788λ = ). The LR and Wald common factor tests (Burridge, 1981) indicate that the 
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restriction 0=+ λβγ  cannot be rejected so the spatial error model can be rewritten as the 

constrained spatial Durbin model: 

1980 1980( )T Tg I W S y Wg Wy uα λ β λ γ= − + + + +   (7) 

with γ λβ= − , but this coefficient is not significant. From the convergence perspective, this 

expression can be interpreted as a minimal conditional β -convergence model integrating two 

spatial environment variables (Baumont, Ertur and Le Gallo, 2001). This reformulation has also an 

interesting interpretation from an economic perspective: the average growth rate of a region i is 

positively influenced by the average growth rate of neighboring regions, through the endogenous 

spatial lag variable TWg . However, it doesn’t seem to be influenced by the initial per capita GDP of 

neighboring regions, through the exogenous spatial lag variable 1980Wy . This spillover effect 

indicates that the spatial association patterns are not neutral for the economic performances of 

European regions. The more a region is surrounded by dynamic regions with high growth rates, the 

higher will be its growth rate. In other words, the geographical environment has an influence on 

growth processes. 

The LMLAG* test does not reject the null hypothesis of the absence of an additional 

autoregressive lag variable in the spatial error model. According to information criteria this model 

seems to perform better than the preceding one (Akaike, 1974; Schwarz, 1978). Moreover 

estimation of this model by GMM as suggested by Kelejian and Prucha (1999)17 leads to almost the 

same results on the parameters of interest. However this estimation method does not provide 

additional inference for the spatial autoregressive parameter, which is considered as a nuisance 

parameter. 

The spatially adjusted Breusch-Pagan test (Anselin, 1988a, 1988b) is no more significant        

( p-value of 0.08), indicating absence of heteroskedasticity versus 1980y . If this test was the only one 

carried out to detect heteroskedasticity in the spatial error model, we could say that 
                                                 
17 Avoiding the normality hypothesis of the error term and the problems linked to the accurate computation of the 
eigenvalues of W required by the ML estimator. 
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heteroskedasticity found in the previous model is not a problem and was due to the presence of 

spatial dependence. However, the spatially adjusted Breusch-Pagan test remains significant versus 

1D  (p-value of 0.04). We can deduce from these results that only a part of the heteroskedasticity 

found in the previous model is due to the spatial autocorrelation of the error term and that 

groupwise heteroskedasticity remains a problem that must be taken into account. 

 

Spatial heterogeneity: groupwise heteroskedasticity and/or structural instability 

Let us turn now to the spatial heterogeneity issue, which can be considered from two points 

of view. The first one relates to the heteroskedasticity problem in the form of groupwise 

heteroskedasticity across the regimes previously defined. The second one relates to the structural 

instability problem across the two regimes and furthermore may be associated to groupwise 

heteroskedasticity. 

We estimate the following model to take account of groupwise heteroskedasticity: 

1980Tg S yα β ε= + +  
2
,1 90

2
,2 45

0
~ 0,

0

I
N

I
ε

ε

σ
ε

σ

  
     

 (8) 

Estimation results by FGLS are displayed in Table 4. The coefficients are all strongly significant. 

β̂  is smaller than in all the preceding models leading to a convergence speed of 0.71 % . The half-

life raises to 102 years indicating a very weak convergence process. The difference between 

regimes’ variances doesn’t seem to be significant (p-value of 0.052) as assessed by the Wald test. 

However, this result should be interpreted with caution due to the presence of spatial dependence 

detected by the LMERR and LMLAG tests with a slight preference for spatially autocorrelated 

errors. Taking into account groupwise heteroskedasticity doesn’t seem to eliminate the spatial 

dependence and globally leads to unreliable results. 

[Table 4 about here] 

Let us consider more closely the possibility of structural instability. We estimate a spatial 

regimes model of unconditional β -convergence, which can be specified as following: 
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1 1 2 2 1 1 1980 2 2 1980Tg D D D y D yα α β β ε= + + + +  2 ~ N(0, )Iεε σ  (9) 

where 1D  and 2D  are dummy variables qualifying the two spatial regimes previously defined. More 

precisely, 1,iD  equals 1 if region i  belongs to the North and 0 if region i  belongs to the South; 2,iD  

equals 0 if region i  belongs to the North and 1 if region i  belongs to the South. This model can also 

be formulated in matrix form as following: 

1

,1 1 1980,1 1 1

,2 2 1980,2 2 2

2

0 0

0 0
T

T

g S y
Z X

g S y

α
β ε

δ ε
α ε
β

 
       = + ⇒ = +             
  

 (10) 

with ' '
1 2'ε ε ε =    and 2 ~ N(0, )Iεε σ , the subscribe 1 standing for the north regime and the 

subscribe 2 for the south regime. 

This type of specification takes into account the fact that the convergence process, if it 

exists, could be different across regimes. Actually this approach can be interpreted as a spatial 

convergence clubs approach, where the clubs are identified using a spatial criterion with the Moran 

scatterplot as described above. Our approach extends the empirical methodology elaborated by 

Durlauf and Johnson (1995) to take into account explicitly the spatial dimension of data. 

The estimation results by OLS are displayed in Table 5. We see that 1β̂  does not have the 

expected sign and is not significant for the North. However, 2β̂  has the expected sign and is 

significant for southern regions leading to a convergence speed of 2.8% and a half-life of 30 years. 

The convergence process for southern regions seems to be stronger than the one in the initial 

model18. This result is consistent with those obtained by Durlauf and Johnson (1995) The Chow test 

of overall stability strongly rejects the joint null hypothesis. The individual coefficient stability tests 

reject the corresponding null hypotheses. The convergence process seems therefore to be quite 

different across regimes. 

                                                 
18 This result is similar to that obtained by Beine and Jean-Pierre (2000) using a sample of 62 NUTS1 regions over the 
1980-1995 period with an endogenous determination of convergence clubs in an a-spatial framework.  
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[Table 5 about here] 

It is worth mentioning that the Jarque-Bera test (1987) doesn’t reject normality (p-value of 

0.82) in clear contrast to the result on the initial model: the reliability of all subsequent testing 

procedures and the use of Maximum Likelihood estimation method are then strengthened. 

Concerning the Breusch-Pagan test versus 1D , we note that the rejection of groupwise 

heteroskedasticity is weaker than in the initial model with a p-value of 0.045. The diagnostic tests 

for spatial dependence still indicate a preference for spatially autocorrelated errors as in the 

preceding model. However all these tests should be interpreted cautiously due to the potential 

presence of spatially autocorrelated errors and of groupwise heteroskedasticity. 

 

Spatial dependence and spatial heterogeneity 

To take into account spatial error autocorrelation in conjunction with structural instability, 

we estimate the following spatial regimes model, in which we assume that the same spatial 

autoregressive process affects all the errors: 

1 1 2 2 1 1 1980 2 2 1980Tg D D D y D yα α β β ε= + + + +   (11) 

with W uε λ ε= +  and 2 ~ N(0, )uu Iσ . Or equivalently in matrix form: 

1

,1 1 1980,1 1 1

,2 2 1980,2 2 2

2

0 0

0 0
T

T

g S y
Z X

g S y

α
β ε

δ ε
α ε
β

 
       = + ⇒ = +           
 
  

 (12) 

with ' '
1 2'ε ε ε =   ; W uε λ ε= +  and 2 ~ N(0, )uu Iσ . 

The subscribe 1 stands for the north regime and the subscribe 2 for the south regime. This 

specification allows the convergence process to be different across regimes and in the same time 

deals with spatially autocorrelated errors previously detected. However, spatial effects are assumed 

to be identical in northern regions and southern regions but all the regions are still interacting 

spatially through the spatial weight matrix W . In addition, it seems meaningless to estimate 
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separately the two regressions allowing for different spatial effects possibly based on different 

spatial weight matrices across regimes. This would imply that northern and southern regions do not 

interact spatially and are independent. In addition, there is no obvious reason to consider different 

spatial weight matrices across regimes. Since the weight matrix contains the pure distance based 

spatial pattern, which is completely exogenous, this assumption would appear to be even more 

unlikely. 

The estimation results by ML are presented in Table 6. First we note that 1β̂  and 2β̂  now 

have both the expected sign but 1β̂  is still not significant for the North. For southern regions, 2β̂  is 

strongly significant and negative. The convergence speed and the half-life are slightly improved, 

compared to the preceding OLS model, once the spatial effects are controlled for (respectively 

2.94% and 29 years). The spatially adjusted Chow test (Anselin, 1988a, 1990a) strongly rejects the 

joint null hypothesis of structural stability and the individual coefficient stability tests reject the 

corresponding null hypotheses. These results clearly indicate that the convergence process differs 

across regimes. Furthermore, if there is a convergence process among European regions, it mainly 

concerns the southern regions and does not concern the northern regions. 

[Table 6 about here] 

The second aspect of these results we want to stress in this paper refers to spatial spillover 

effects. We first note that a significant positive spatial autocorrelation is found under this 

assumption ( ˆ 0,788λ = ). Recall that the spatial error model can also be expressed as the constrained 

spatial Durbin model, which can be formulated here as: 

 1 1 2 2 1 1 1980 2 2 1980

1 1 1980 2 2 1980

( ) ( )T Tg I W D I W D D y D y Wg

WD y WD y u

α λ α λ β β λ
γ γ
= − + − + + + +

+ +
 (13) 

with 2 ~ N(0, )uu Iσ  and the two nonlinear restrictions: 1 1γ λβ= −  and 2 2γ λβ= − . The LR and Wald 

common factor tests (Burridge, 1981) indicate that these restrictions cannot be rejected. 

Nevertheless these two coefficients do not seem to be significant. We saw previously that this 

reformulation of the spatial error model has an interesting interpretation from the spatial spillover 
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perspective. It appears therefore that, whatever the regime, the average growth rate of a region i is 

positively influenced by the average growth rates of neighboring regions, through the endogenous 

spatial lag variable TWg . However, it doesn’t seem to be influenced by the initial per capita GDP of 

neighboring regions, through the exogenous spatial lag variable 1980Wy . 

The LMLAG* test does not reject the null hypothesis of the absence of an additional 

autoregressive lag variable in the spatial error model. The spatially adjusted Breusch-Pagan 

heteroskedasticity test versus 1D  is not significant (p-value of 0.065) indicating that there is no need 

to further allow for groupwise heteroskedasticity in the model. According to information criteria 

(Akaike, 1974; Schwarz, 1978) this model seems to perform better than all the preceding ones. 

Moreover estimation of this model by GMM (Kelejian and Prucha, 1999) leads to almost the same 

results on the parameters of interest. 

Finally, the spatial regimes spatial error specification has an interesting property concerning 

the diffusion of a random shock. Indeed, model (11) can be rewritten as following: 

1
1 1 2 2 1 1 1980 2 2 1980 ( )Tg D D D y D y I W uα α β β λ −= + + + + −  (14) 

Concerning the error process, this expression means that a random shock in a specific region 

does not only affect the average growth rate of this region, but also has an impact on the average 

growth rates of all other regions through the inverse spatial transformation 1( )I Wλ −− .  

We present some simulation results to illustrate this property with a random shock, set equal 

to two times the residual standard-error of the estimated spatial regimes spatial error model, 

affecting Ile de France belonging to the North regime (Figure 2) and Madrid belonging to the South 

regime (Figure 3). This shock has the largest relative impact on Ile de France (resp. Madrid), where 

the estimated mean growth rate is 21.22% (resp. 20.90%) higher than the estimated average growth 

rate without the shock. Nevertheless, in both cases, we observe a clear spatial diffusion pattern of 

this shock to all other regions of the sample. The magnitude of the impact of this shock is between 

1.57% and 3.74% for the regions neighboring Ile de France and gradually decreases when we move 

to peripheral regions (Figure 2). For Madrid, the magnitude of the impact of this shock is between 
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3.76% and 8.53% for the regions neighboring Madrid. As Madrid is not centrally located in Europe, 

the magnitude of the shock strongly decreases when we move to northern peripheral regions (Figure 

3). The impact of the shock appears stronger in the South regime than in the North regime due to 

non-significance of the convergence parameter in the North. Therefore the spatially autocorrelated 

errors specification underlines that the geographical diffusion of shocks are at least as important as 

the dynamic diffusion of these shocks in the analysis of convergence processes. 

[Figure 2 and 3 about here] 

Differentiated spatial effects 

Finally, we investigate the potential for differentiated spatial effects in modeling club 

convergence, i.e. a different λ coefficient for each regime and a North-South interaction coefficient, 

applying the methodology proposed by Rietveld and Wintershoven (1998) in a quite different 

context. In the previous model we assumed that spatial effects are identical across spatial clubs. 

This assumption should be tested. We also noted that running two separate regressions allowing for 

different spatial effects seems unsatisfactory because it implies that northern regions do not interact 

with southern regions. 

An interesting way to overcome these problems is to consider the following specification: 

1 1 2 2 1 1 1980 2 2 1980Tg D D D y D yα α β β ε= + + + +    

( )1 1 2 2 3 3W W W uε λ λ λ ε= + + +  2 ~ N(0, )uu Iσ  (15) 

where we take into account jointly structural instability and differentiated spatial effects within and 

between spatial clubs. The spatial weight matrix W  is now split in three part: 1W  includes only the 

spatial interconnections between regions belonging to the North regime, 2W  includes only the 

spatial interconnections between regions belonging to the South regime and 3W  includes only the 

spatial interconnections between regions belonging to the North regime and regions belonging to 

the South regime. These matrices can be filled using two different approaches. The first one is 

based on the split of the previous standardized W  matrix leading to non-standardized jW  matrices 
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( 1,2,3j = ). The main advantage of this approach is that the homogeneity test of the spatial effects 

can be carried out in a straightforward manner since the model (11) is then the constrained model 

under the null hypothesis of equal jλ  coefficients. The drawback is the use of non-standardized 

matrices in the maximum likelihood estimation of model (15), which can be problematic since usual 

regularity conditions might not be met. In addition the interpretation of the jλ  coefficients as spatial 

autocorrelation coefficients becomes ambiguous. The second approach is based on the split of the 

non-standardized W  matrix, the jW  matrices being then standardized. The major drawback is then 

that model (11) can no more be considered as the constrained model for the homogeneity test. 

We will use the first approach as Rietveld and Wintershoven (1998) and estimate model (15) 

by Maximum Likelihood, the results are presented in Table 719. The results are in line with those 

previously obtained concerning the convergence parameters with spatial clubs. 

We can note that 1λ̂  for the Northern regions and 2λ̂  for the Southern regions are strongly 

significant and positive, while 3λ̂  representing the North-South interactions is surprisingly not 

significant (p-value 0.924). However this might be explained by the sparsity of the 3W  matrix, 

which contains too much zero values. We then carry out the LR test for the homogeneity of spatial 

effects under the maintained hypothesis of spatial clubs, it appears that the null hypothesis of 

equality of spatial effects cannot be rejected (p-value 0.793). We carry out also the LR test for 

spatial clubs under the maintained hypothesis of differentiated spatial effects20. The null hypothesis 

of no spatial clubs is strongly rejected (p-value 0.003). These results confirm the fact that model 

(11) with spatial regimes but non-differentiated spatial effects is indeed the most appropriate 

specification. 

 

 

                                                 
19 The Gauss code is available from the authors upon request. 
20 The ML estimation results of the constrained model are presented in Table 8. 
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Conclusion 

The aim of this paper was to assess if spatial dependence and spatial heterogeneity really 

matter in the estimation of β-convergence processes. Based on a sample of 138 European regions 

over the period 1980-1995, we showed that they do matter. In front of the well-known theoretical 

inadequacy and econometric problems faced by the standard β-convergence model, we improved it 

on both aspects. 

First, from the econometric point of view, the unreliability of statistical inference based on 

OLS estimation in presence of non-spherical errors is well known. Using the appropriate 

econometric tools, we detected spatial autocorrelation and overcame the problem by estimating the 

appropriate spatial error model that can be interpreted as a minimal conditional β-convergence 

model. Concerning spatial heterogeneity, it appeared that the problem was essentially due to 

structural instability in the form of spatial regimes. These spatial regimes, interpreted as spatial 

convergence clubs, were defined using Exploratory Spatial Data Analysis (ESDA), more precisely a 

Moran scatterplot. We therefore took into account spatial autocorrelation in conjunction with 

structural instability. The estimation of the appropriate spatial regimes spatial error model showed 

that indeed the convergence process is different across regimes. Furthermore it appeared that 

actually there is no such a process for northern regions, but only a weak one for southern regions. 

This non convergence result is consistent with that obtained for rich countries by De Long (1988) 

and Durlauf and Johnson (1995) using international data sets. It might be due to residual intra-

regime heterogeneity not taken into account. Inclusion of additional variables in a conditional β-

convergence framework might lead to a convergence result for the North regime using the Mankiw, 

Romer and Weil (1992) framework for example. Unfortunately, data for doing this are not available 

in the EUROSTAT-REGIO database. The global week convergence found in the estimation of the 

standard β-convergence model appears then as an artifact. 

Second, from the economic point of view, we estimated a spatial spillover effect in the 

framework of spatial convergence clubs. This effect appeared to be strongly significant indicating 
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that the average growth rate of per capita GDP of a given region is positively affected by the 

average growth rate of neighboring regions. The geographic environment plays then an important 

role in the study of growth processes. The spatial diffusion process implied by this model is also 

highlighted by a simulation experiment. 
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Data Appendix 
 

The data are extracted from the Eurostat-Regio database. 

Eurostat is the Statistical Office of the European Communities. Its task is to provide the 

European Union with statistics at European level that enable comparisons between countries and 

regions. These statistics are used by the European Commission and other European Institutions so 

that they can define, implement, and analyze Community policies. The Regio database is the 

official source of harmonized annual data at the regional level throughout the 1980-1995 period for 

the European Union and per capita GDP is likely to be one of the most reliable series in this 

database. 

We use the Eurostat 1995 nomenclature of statistical territorial units, which is referred to as 

NUTS (Nomenclature of Territorial Units for Statistics). The aim is to provide a single uniform 

breakdown of territorial units for the production of regional statistics for the European Union. In 

this nomenclature NUTS1 means European Community Regions while NUTS2 means Basic 

Administrative Units. For practical reasons to do with data availability and the implementation of 

regional policies, this nomenclature is based primarily on the institutional divisions currently in 

force in the Member States following “normative criteria”. Eurostat defines these criteria as 

follows: “normative regions are the expression of political will; their limits are fixed according to 

the tasks allocated to the territorial communities, according to the size of population necessary to 

carry out these tasks efficiently and economically, and according to historical and cultural factors” 

(Regio database, user’s guide, Methods and Nomenclatures, Eurostat, 1999, p.7). It excludes 

territorial units specific to certain fields of activity or functional units (Cheshire and Carbonaro 

1995) in favor of regional units of a general nature. The regional breakdown adopted by Eurostat 

appears therefore as one of the major shortcomings of the Regio database, which can have some 

impact on our spatial weight matrix and estimation results (scale problems). 

We use the series E2GDP measured in Ecu per inhabitant over the 1980-1995 period for 138 

regions in 11 European countries mentioned in the text. National GDPs according to the ESA 1979 

(European System of Accounts) are broken down in accordance with the regional distribution of 

gross value added at factor cost or, in some case at market prices (Portugal). For the United 

Kingdom, the use of NUTS1 level is used because there is no official counterpart to NUTS2 units, 

which are drawn up only for the European Commission use as groups of counties. This explains 

data non-availability at NUTS2 level throughout the period for this country. Luxembourg and 

Denmark may be considered as NUTS2 regions according to Eurostat. Our preference for NUTS2 

level rather than NUTS1 level, when data is available, is based on European regional development 

policy considerations: indeed it is the level at which eligibility under Objectives 1 and 6 of 

Structural Funds is determined (The European regions: sixth periodic report on the socio-economic 
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situation in the regions of the European Union, European Commission, 1999). Our empirical results 

are indeed conditioned by this choice and could be affected by missing regions and different levels 

of aggregation. They must therefore be interpreted with caution. 

We exclude Groningen in the Netherlands from the sample due to some anomalies related to 

North Sea Oil revenues, which substantially increase its per capita GDP (Neven and Gouyette 

1995). We also exclude the Canary Islands and Ceuta y Mellila (Spain), which are geographically 

isolated. Corse (France), Austria, Finland, Ireland and Sweden are excluded due to data non-

availability over the whole 1980-1995 period in the Eurostat-Regio databank. Berlin and East 

Germany are also excluded for well-known historical and political reasons. 
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Figure 1: Moran scatterplot for log per capita GDP in 1980
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Range (Km) [Min;Q1[ 

[8; 312[ 

[Q1;Me[ 

[312;582[ 

[Me;Q3[ 

[582;928[ 

[Q3;Max[ 

[928;1997[ 

Moran’s I 15.54 -3.35 -12.41 10.99 

p-value 0.000 0.001 0.000 0.000 

LMERR 157.38 10.45 91.74 29.93 

p-value 0.000 0.001 0.000 0.000 

R-LMERR 44.97 0.0097 34.92 0.0138 

p-value 0.000 0.922 0.000 0.907 

 
Table 1: Residual Correlogram 

 
Notes: Q1, Me, Q3 and Max are respectively the lower quartile (312 miles), the median (582 miles), the upper quartile 
(928 miles) and the maximum (1997 miles) of the great circle distance distribution between centroids of each region. 
For each range, we estimate the absolute β -convergence model and we perform the Moran’s I test, the Lagrange 

multiplier test and its robust version for residual spatial autocorrelation based on the contiguity matrix computed for that 
range. 
 

 

 

Estimation results OLS-White Tests  

alpha 
0.130 

(0.000) 
JB 

8.50 
(0.014) 

beta 
-0.00797 
(0.002) Moran 

12.94 
(0.000) 

Conv. speed 
0.85% 
(0.000) LMERR 

140.68 
(0.000) 

Half-life 
87 

R-LMERR 
16.61 

(0.000) 

R2-adj 
0.14 

LMLAG 
124.58 
(0.000) 

LIK 
446.35 

R-LMLAG 
0.509 

(0.475) 

AIC 
-888.69 

BP / 1980ln( )y  14.57 
(0.000) 

BIC 
-882.88 

BP / D1 5.85 
(0.015) 

2ˆεσ  7.984.10-5 

White test 
28.39 

(0.000) 

JLM1 
155.25 
(0.000) 

JLM2 
46.53 

(0.000) 

Table 2: Estimation results for the unconditional ββ -convergence model 

Notes:  P-values are in parentheses. OLS-White indicates the use of the White (1980) heteroskedasticity consistent 
covariance matrix estimator for statistical inference in the OLS estimation. LIK is the value of the maximum likelihood 
function. AIC is the Akaike (1974) information criterion. BIC is the Schwarz information criterion (1978). JB is the 
Jarque-Bera (1987) estimated residuals Normality test. MORAN is the Moran’s I test adapted to OLS residuals (Cliff 
and Ord, 1981). LMERR is the Lagrange multiplier test for residual spatial autocorrelation and R-LMERR is its robust 
version. LMLAG is the Lagrange multiplier test for spatially lagged endogenous variable and R-LMLAG is its robust 
version (Anselin and Florax, 1995; Anselin et al., 1996). BP is the Breusch-Pagan (1979) test for heteroskedasticity. 
White is the White (1980) test of heteroskedasticity. JLM1 is  the LM test of the joint null hypothesis of absence of 
heteroskedasticity linked to 1980ln( )y and residual spatial autocorrelation, JLM2 is the LM test of the joint null 

hypothesis of absence of heteroskedasticity linked to D1 and residual spatial autocorrelation (Anselin 1988a, 1988b). 
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Estimation results ML           GMM Tests 
 

alpha 
0.156        0.157 
(0.000)     (0.000) LR-SED 

74.15 
(0.000) 

beta 
-0.0110    -0.0110 
(0.000)    (0.000) LMLAG* 0.808 

(0.369) 

lambda 
0.788        0.828 

(0.000) 
LR-com-fac 

0.177 
(0.674) 

Conv. speed 
1.2% 

(0.000) Wald-com-fac 
0.185 

(0.667) 

Half-life 63 gamma 
0.0084 
(0.871) 

Sq. Corr. 
LIK 

0.14          0.14 
483.42 

S-BP / 1980ln( )y  3.06 
(0.080) 

AIC 
BIC 

-962.85 
-957.03 

S-BP / D1 4.27 
(0.039) 

2ˆuσ  4.078.10-5  
 

 

Table 3: Estimation results for the spatial error model 

Notes: P-values are in parentheses. ML indicates maximum likelihood estimation. GMM indicates iterated generalized 
moments estimation (Kelejian and Prucha, 1999). Sq. Corr. is the squared correlation between predicted values and 
actual values. LIK is value of the maximum likelihood function. AIC is the Akaike (1974) information criterion. BIC is 
the Schwarz information criterion (1978). LR-SED is the likelihood ratio test for spatial error autocorrelation, LMLAG* 

is the Lagrange multiplier test for an additional spatially lagged endogenous variable in the spatial error model (Anselin 
1988a). LR-com-fac is the likelihood ratio common factor test; Wald-com-fac is the Wald common factor test 
(Burridge, 1981). S-BP is the spatially adjusted Breusch-Pagan test for heteroskedasticity (Anselin 1988a, 1988b). The 
gamma coefficient is not estimated but computed using the accepted restriction; its significance is assessed using the 
asymptotic delta method. 
 

 

 

Estimation results FGLS Tests  

alpha 
0.120 

(0.000) 

2
,1ˆεσ  6.228.10-5 

(0.000) 

beta 
-0.00677 
(0.000) 

2
,2ˆεσ  11.141.10-5 

(0.000) 

Conv. speed 
0.71% 
(0.000) Wald het. test 

3.78 
(0.052) 

Half-life 102 LMERR 
129.59 
(0.000) 

Sq. Corr. 0.14 LMLAG 119.20 
(0.000) 

 

Table 4: Estimation results for the groupwise heteroskedastic model 

Notes: P-values are in parentheses. FGLS indicates feasible generalized least square estimation. Sq. Corr. is the squared 

correlation between predicted values and actual values. 2
,1ˆεσ  and 2

,2ˆεσ  are respectively the estimated variances for the 

north and south regimes. Wald het. test is the Wald test for different variances across regimes. LMERR and LMLAG 
are respectively the Lagrange multiplier tests for residual spatial autocorrelation and endogenous spatial lag. 
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OLS -White North 1 South 2 Tests  

alpha 
-0.000825 

(0.981) 
0.252 

(0.000) Ind. stability test 
18.64 

(0.000) 

beta 
0.00663 
(0.093) 

-0.0228 
(0.000) Ind. stability test 

18.39 
(0.000) 

Conv.speed 
- 2.80% 

(0.000) 
Chow - Wald test 
overall stability 

18.86 
(0.000) 

Half-life 
- 

30   

R2-adj 
LIK 

0.25 
457.81 

Moran 11.95 
(0.000) 

AIC 
BIC 

-907.62 
-896.00 

LMERR 109.57 
(0.000) 

2ˆεσ  6.840.10-5 R-LMERR 
12.59 

(0.000) 

JB 
0.395 

(0.821) LMLAG 
97.48 

(0.000) 

BP / D1 4.015 
(0.045) R-LMLAG 

0.512 
(0.474) 

 

Table 5: Estimation results for the spatial regimes model 

Notes: P-values are in parentheses. OLS-White indicates the use of the White (1980) heteroskedasticity consistent 
covariance matrix estimator for statistical inference in the OLS estimation. LIK is the value of the maximum likelihood 
function. AIC is the Akaike (1974) information criterion. BIC is the Schwarz information criterion (1978). JB is the 
Jarque-Bera (1987) estimated residuals Normality test. BP is the Breusch-Pagan (1979) test for heteroskedasticity. The 
individual coefficient stability tests are based on asymptotic Wald statistics using adjusted White (1980) covariance 

matrix, distributed as 2χ  with 1 degree of freedom. The Chow – Wald test of overall stability is also based on an 

asymptotic Wald statistic using adjusted White (1980) covariance matrix, distributed as 2χ  with 2 degrees of freedom. 

MORAN is the Moran’s I test adapted to OLS residuals (Cliff and Ord, 1981). LMERR is the Lagrange multiplier test 
for residual spatial autocorrelation and R-LMERR is its robust version. LMLAG is the Lagrange multiplier test for 
spatially lagged endogenous variable and R-LMLAG is its robust version (Anselin and Florax, 1995; Anselin et al., 
1996). 
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ML North 1 
ML           GMM 

South 2 
ML          GMM 

Tests  

alpha 
0.0798      0.0837 
(0.014)    (0.009) 

0.263       0.280 
(0.000)    (0.000) Ind. stability test 

12.88 
(0.000) 

beta 
-0.0026   -0.0030 
(0.438)    (0.405) 

-0.0238   -0.0261 
(0.000)   (0.000) 

Ind. stability test 
12.57 

(0.000) 

lambda 
  0.788  (ML)             0.793  (GMM) 
(0.000) 

Chow-Wald test 
Overall stability 

13.06 
(0.001) 

Conv.speed 
- 2.94% 

(0.000) LR-SED 
63.68 

(0.000) 

Half-life 
- 

29 LMLAG* 0.032 
(0.857) 

Sq. corr. 
LIK 

0.22  (ML)              0.25  (GMM) 
489.65 

LR com. fac. 5.38 
(0.068) 

AIC 
BIC 

-971.31 (k=4)           -969.31 (k=5) 
-959.68 (k=4)           -954.78 (k=5) 

S-BP / D1 3.396 
(0.065) 

2ˆεσ  3.719.10-5   

gamma 
0.002 

(0.970) 
0.0187 
(0.729) 

  

 

Table 6: Estimation results for the spatial regimes spatial error model 

Notes: P-values are in parentheses. ML indicates maximum likelihood estimation. Sq. Corr. is the squared correlation 
between predicted values and actual values. LIK is value of the maximum likelihood function. AIC is the Akaike (1974) 
information criterion. BIC is the Schwarz information criterion (1978). The information criteria are computed both for 4 
and 5 parameters, as lambda may be considered as nuisance parameters. The individual coefficient stability tests are 
based on spatially adjusted asymptotic Wald statistics, distributed as 2χ  with 1 degree of freedom. The Chow – Wald 

test of overall stability is also based on a spatially adjusted asymptotic Wald statistic, distributed as 2χ  with 2 degrees 

of freedom (Anselin, 1988a). LR-SED is the likelihood ratio test for spatial error autocorrelation, LMLAG* is the 
Lagrange multiplier test for an additional spatially lagged endogenous variable in the spatial error model (Anselin 
1988a, 1990a). LR-com-fac is the likelihood ratio common factor test; Wald-com-fac is the Wald common factor test 
(Burridge, 1981). S-BP is the spatially adjusted Breusch-Pagan test for heteroskedasticity (Anselin 1988a, 1988b). The 
gamma coefficients are not estimated but computed using the accepted restrictions; their significance is assessed using 
the asymptotic delta method. 
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ML North 1 South 2   

alpha 
0.0853 
(0.007) 

0.259 
(0.000) 

LIK 489.89 

beta 
-0.0032 
(0.350) 

-0.0234 
(0.000) 

AIC 
 

BIC 

-971.78 (k=4) 
-965.78 (k=7) 
-960.16 (k=4) 
-945.44 (k=7) 

lambda1 
0.871 

(0.000) 
2ˆεσ  3.653.10-5 

lambda2 
0.704 

(0.000) LR-regime 
11.84 

(0.003) 

lambda3 
-0.0914 
(0.924) LR-spatial effects 

0.464 
(0.793) 

Conv. speed - 
2.89% 
(0.000) 

  

Half-life - 29   

 
Table 7: Estimation results for the spatial regimes spatial error model with 

differentiated spatial effects 

Notes: P-values are in parentheses. ML indicates maximum likelihood estimation. LIK is value of the maximum 
likelihood function. AIC is the Akaike (1974) information criterion. BIC is the Schwarz information criterion 
(1978). The information criteria are computed both for 4 and 7 parameters, as lambdas may be considered as 
nuisance parameters. 
 
 
 
 
 

Estimation results ML   

alpha 
0.159 

(0.000) 
LIK 483.97 

beta 
-0.0114 
(0.000) 

AIC 
 

BIC 

-965.94 (k=2) 
-957.93 (k=5) 
-958.13(k=2) 
-943.41 (k=5) 

lambda1 
0.871 

(0.000) 
2ˆεσ  4.007.10-5 

lambda2 
0.714 

(0.000)  
 

lambda3 
-0.488 
(0.595)  

 

Conv. speed 
1.25% 
(0.000) 

  

Half-life 61   

 
Table 8: Estimation results for the spatial error model with differentiated spatial effects 

Notes: P-values are in parentheses. ML indicates maximum likelihood estimation. LIK is value of the maximum 
likelihood function. AIC is the Akaike (1974) information criterion. BIC is the Schwarz information criterion 
(1978). The information criteria are computed both for 2 and 5 parameters, as lambdas may be considered as 
nuisance parameters. 
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out of sample
0 - 0.025
0.025 - 0.066
0.066 - 0.106
0.106 - 0.167
0.167 - 0.248
0.248 - 0.375
0.375 - 0.984
0.984 - 2.482
2.482 - 3.742
3.742 - 21.22

 
Figure 2 

Diffusion in the spatial regimes spatial error model using the Q1-distance weight matrix 
Percent variation of average growth rates due to a shock in Ile de France 1980-1995 (North) 

out of  sample
0 - 0.026
0.026 - 0.128
0.128 - 0.308
0.308 - 0.536
0.536 - 1.498
1.498 - 2.432
2.432 - 3.22
3.22 - 5.244
5.244 - 8.528
8.528 - 20.904

 

Figure 3 
Diffusion in the spatial regimes spatial error model using the Q1-distance weight matrix 

Percent variation of average growth rates due to a shock in Madrid 1980-1995 (South) 


