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-Abstract- 

Volatility of financial markets is an important topic for academics, policy makers and market 

participants. In this study first I summarized several specifications for the conditional variance 

and also define some methods for combination of these specifications. Then assuming that the 

squared returns are the benchmark estimate for actual volatility of the day, I compare all of 

the models with respect to how much efficient they are to mimic the realized volatility. At the 

same time I used a VaR approach to compare these forecasts. With the help of these analyses 

I examine if combination of the forecast could outperform the single models. 
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Introduction
 

1 Introduction 

Volatility of financial markets is an important topic for academics, policy makers and market 

participants. First, the volatility of an asset can be thought as a measurement of risk. After 

recognition of internal models to determine the capital charges of banks by Basel Committee, 

market participants deal with efficient computation of Value-at-Risk (VaR). Since volatility 

forecast plays a central role in VaR computation, forecasting asset volatility became more 

important for them. In the context of risk, forecasting volatility also received great concern 

from the policy makers. Especially in emerging markets, the financial liberalization process is 

not a smooth path. During last two decades, emerging markets experienced many financial 

crises caused or were leaded by huge capital inflows or outflows. While that is the situation, 

volatility is a good indicator for monitoring financial stability and understanding the 

mechanisms and exact relations behind those crises. Because stability of economy is much 

related with the stability of its financial market, volatility of financial markets have also many 

macroeconomic aspects. Another crucial role played by volatility is in the pricing of 

derivatives securities. Especially commonly used Black & Scholes formula is mainly based 

on the asset volatility. Although we don’t have organized derivative security markets in 

Turkey, the volume of trade in derivative market is growing both in Turkey and all over the 

world. From financial institutions’ point of view, problems like choosing the optimal portfolio 

or hedging portfolios are also mainly based on the volatility. 

Parallel to its importance related with various aspects, there is huge amount of literature on 

forecasting volatility. We will use many models including very simple ones like moving 

average type models and also strictly complex ones like asymmetric GARCH specifications. 

But my main concern will be combine all these forecast using different methods and show the 

robustness of thick models in forecasting. The idea of combination is first expressed by J.M. 

Bates and C.W.J. Granger (1969). In a recent work by C.W.J. Granger and Y. Jeon (2001) 

they called this alternative way as “Thick Modeling”. The idea is quite simple, combination or 

thick modeling uses many alternative specifications to produce one robust result (Granger and 

Jeon, 2001). Diebold and Lopez (1995) express the idea as; 

“Regardless of whether one forecast is "best," however, the question arises as to whether 

competing forecasts may be fruitfully combined -- in similar fashion to the construction of an 
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asset portfolio -- to produce a composite forecast superior to all the original forecasts. Thus, 

forecast combination, although obviously related to forecast accuracy comparison, is logically 

distinct and of independent interest.” 

As Diebold and Lopez (1995) mentioned, the combination of forecasts is also a distinct area 

of interest. The works on combination produced some methods for combining. I will use 

several methods such as equal weighting, trimming and weighting with loss functions.  

Organization of this paper will be as follows. First I will do a basic setup for all models. 

Secondly, I will shortly introduce single specifications that I used. Thirdly the combining 

methods will be reviewed. Fourthly, the empirical result for the Turkish data will be examined 

by using some loss functions. Finally I will conclude.  
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2 General Assumptions and Data 

The data set I use is the ISE100 index. ISE100 index covers 100 leading stocks from several 

sectors quoted on Istanbul Stock Exchange (ISE). ISE100 is a weighted index by market 

capitalizations. ISE100 data that I use starts from 2 January 1989 to 26 March 2004 and 

consists of 3999 daily observations. Therefore we have 3998 returns. I used logarithmic 

returns defined as follows; 

( )
1

log *100 2.1t
t

t

Pr
P−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

where  is the level of ISE100 index at time t.  tP

In this study we use realized volatility as benchmark to compare models. In general realized 

volatility can be defined as; 

( ) (2 2.2t trσ µ= − )2
 

where µ is the mean of return. And in this model if the mean of return is equal to zero, 

Eq.(2.2) can be re-written as; 

( )2.2t tr aσ =2 2

n

 

But before proceeding we should test whether these data series have zero median, by using 

Sign test which is a distribution free non-parametric test for zero median. Attractive feature of 

this test is that it imposes no distribution to the series. The sign test can be formulated as 

follows; 

( ) ( )
1

2.3t t t
t

S I r
=

=∑  

where  
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1 0
0

t
t

if r
I

otherwise
>⎧

= ⎨
⎩

 

Then test statistic is as follows (Diebold, 1995); 

( ) (2 0,1 2.4

4

asy

nS
N

n

−
∼ )  

By recursively applying the sign test for the sample, I observe that; if we look at the sub-

sample covers 2000-2004, we can say there is zero median except February 2001 which was 

the time that market crash occurred and 11 September-15 October 2001 after terrorist attacks 

in the USA. But the period that includes 1994 to 2000 we reject the null that claims the 

median is zero. 

By the sign test simply, we show that for the data set the number of loses can not be thought 

equal to number of gains. So for the daily volatility we need to use mean. Therefore we use 

Eq. 2.2 for defining realized volatility.  

Figure 2.1 plots the series. As we can see in this graph, the ISE is highly volatile. It reaches a 

peak of 20000 at January 2000, and after crisis it declines to 7500. Especially after crisis we 

can see sharp increases and declines. However, this graph is not so useful to exhibit the 

volatility. Figure 2.2 shows the return of ISE100. By this graph we can identify the high 

volatility of late 1980’s and early 1990’s too. The squared returns which we use as benchmark 

are shown at Figure 2.3. In this graph we can clearly discern that there are more volatile 

periods and also relatively less volatile periods. Therefore even by the graph it is obvious that 

return is heteroscedastic. Now let us consider whether in presence of this heteroscedastic 

pattern, the return is forecastable or not, whether the history of the series could say anything 

about the tomorrow or not. In Figure 2.4 the correlogram of the return series are shown. The 

first order autocorrelation is quite low and the all higher order autocorrelations are lower than 

first order. This shows that the return series have very low level of memory. Because we used 

daily frequency, it is reasonable to have such a result. Further if we consider Figure 2.5 which 

exhibit correlogram of the squared daily returns, the autocorrelation rises noticeably. The first 

order autocorrelation is 0.3 and the higher order autocorrelations are not negligible. This is the 
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evidence of volatility clustering and suggest that even return is not predictable, we can predict 

the volatility.  

Table 2.1 shows the descriptive statistics of the return series. What we should focus with this 

table is normality test of Jarque-Bera. For the null hypothesis of normality, we reject very 

strongly. Kurtosis statistics also signals same problem. Figure 2.6 shows the estimated density 

against normal density. The main difference from normal distribution is original distribution 

has fat tails. QQ plot shows same. These are some evidences which suggest that we should 

consider some other distributions rather than normal. But in this study we concern with a 

comparison of thin and thick models, therefore we assume normality for Maximum 

Likelihood estimations. 

To compare the forecast efficiencies of thin and thick models, we need at least two sub-

samples for estimation and the forecast. But we divide data into three sub-samples. For the 

thin models, we use first two sub-samples to estimate parameters, and the last for forecasting. 

For thick models we use first sub-sample to estimate parameters of the models, second sub-

sample to combine their forecasts and the last sample for forecasting. Finally for the 

combination by bootstrapping we use first two sub-samples to estimate, and the last for 

forecasting. Our forecasting horizon is one day. To compare models we use three different 

loss functions, which briefly described at Appendix 2. 
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3 Thin Models 

In this section I will introduce the single models that I used. 

3.1 Random Walk 

If we assume that the volatility follows a random walk, the optimal forecast of future is 

today’s volatility. Therefore we can define the volatility forecast as; 

( )1 3.1t tf σ+ = 2  

3.2 Historical Average 

If we assume that conditional expectation of the volatility is constant than the out-sample 

forecast will be just an average; 

( )2
1

1

1 3.2
t

t i
i

f
t

σ+
=

= ∑  

 

where t is the forecast date. 

3.3 Heteroscedastic Models 

3.3.1 Simple Moving Average (MA) 

Simple moving average model might be considered as a modified version of the historical 

average model. In historical averaging we used an equally weighted average of the sample 

and we use all data from beginning to end for this average. In moving average, we again uses 

an equally weighted average, however, this time we use only a specific window for averaging. 

Then we can define simple moving average as; 

( )2
1 1

1

1 3.3t t w
w

f
W

σ+ + −
=

= ∑
W

 

where W is the width of the window. I use; MA-5, MA-10, MA-15, MA-20 and MA-60. 
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3.3.2 Exponential Smoothing (ES) 

Exponential smoothing weights past observations with exponentially decreasing weights to 

forecast future values. Therefore this is again a modified version of historical averaging. 

Instead of equally weighting, in exponential smoothing weights differ. The forecast value 

defined as; 

( ) ( )2 3.4

).4
t

1 1 0 1t t tf f whereλ σ λ λ+ = − + < <  

By repeated substitutions we can re-write the forecast as; 

( ) (1 2
1

1
1 3i

t i
i

f aλ λ σ−+
=

= − ∑  

equation (3.4a) shows the forecast is equal to a weighting average. The weights 

( ) t1 λ λ− decrease geometrically. The value of λ , decay factor, estimated simply by 

minimizing the one week forecast errors.  

RiskMetrics which is a common risk management program, called this method as EWMA1 

and they proposed that the optimum value of decay factor is 0.94 for daily data. Because it is 

easy to apply, many market participants used this calculation as benchmark. We also use this 

particular value of decay factor in our comparison. 

3.3.3 Exponentially Weighted Moving Average (EWMA) 

EWMA is the mixture of the previous two models; moving average and exponentially 

smoothing.  The forecast is defined as; 

( ) ( )2
1 1

1

11 0t t t w
w

f f where
W

λ λ σ λ+ + −
=

= + − < <∑ 1 3.5
W

                                                

 

As we can see this definition covers the exponential smoothing too. If we choose the W as 

one what we have is the same with the previous one.  

In this study, we use EWMA-5, EWMA-10, EWMA-15, EWMA-20 and EWMA-60. 

 
1 Even they call this method as EWMA, in this study EWMA is another method. In comparison of models we 
denote exponentially smoothing 0.94 as RiskMetrics to avoid such confusions.  
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3.4 Autoregressive Conditional Heteroscedastic Models 

3.4.1 ARCH  
 
The autoregressive conditional heteroscedasticity (ARCH) model which proposed by Engle 
(1982) can be defined by; 
 

( )

( )22

1

3.6t t t

q

t i t i
i

r

r

µ σ ε

σ λ α µ−
=

= +

= + −∑  

 
where (0,1)t iidε ∼ . Hence one-day forward volatility forecast can be represented as; 
 

( )2
1 1

1

3.7
q

t i t i
i

f λ α σ+ + −
=

= +∑  

 

This shows the proper forecast of the tomorrow’s volatility is based on the q most recent 

volatilities. Because of this, if we would not select a high order, ARCH might catch only the 

short memory of the data. However the conditional variance dynamics need a long memory 

model.  

In this study we will use AR(1), AR(2),AR(3) and AR(4). 

3.4.2 GARCH  

The Generalized ARCH model is a response to the short memory dynamic of the ARCH 

models. Bollerslev (1986) defined GARCH by; 

( )

( )22 2

1 1

3.8t t t

q p

t i t i j t j
i j

r

r

µ σ ε

σ λ α µ β σ− −
= =

= +

= + − +∑ ∑  

Therefore one day forward volatility forecast is shown as; 

( )2
1 1 1

1 1

3.9t i t i j t j
i j

f fλ α σ β+ + − + −
= =

= + +∑ ∑
q p
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GARCH imposes that the proper forecast for the tomorrow’s volatility is based not only on 

the recent volatilities and also previous forecasts which include the previous volatilities. Then 

the GARCH model is a long memory model.  

In this study we will use GARCH (1, 1). We choose this specification by the Schwarz 

information criteria. 

3.4.3 Asymmetric ARCH Models 

In the stock market it is common to observe that downward movements leads more volatile 

periods than upward movements, this called leverage effect. We will use two different 

asymmetric ARCH models; EGARCH and TARCH. 

3.4.3.1 Exponential GARCH  

The Exponential GARCH (EGARCH) model is proposed by Nelson (1991). The specification 

for the volatility is; 

( )2 2

1 1
log log 3.10

p q
t j t j

t i t i j j
i j t j t j

ε ε
σ ω β σ α γ

σ σ
− −

−
= = − −

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

In this model leverage effect is represented byγ . So if γ is statistically insignificant then we 

could say there is no leverage effect in our sample.  

If we assume that the errors are normally distributed, Eq 3.10 can be re-written as; 

( )2 2

1 1

2log log 3.10
p q

t j t j
t i t i j j

i j t j t j

a
ε ε

σ ω β σ α γ
σ π σ

− −
−

= = − −

⎛ ⎞
= + + − +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

The one day volatility forecast can be shown as; 

( ) ( ) ( )1 1
1 1

1 1 1 1

2log log 3.11
p q

t j t j
t i t i j j

i j t j t j

r r
f f

f f

µ µ
ω β α γ

π
+ − + −

+ + −
= = + − + −

⎛ ⎞− −
⎜ ⎟= + + − +
⎜ ⎟
⎝ ⎠

∑ ∑
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3.4.3.2 Threshold ARCH  

Threshold ARCH is introduced independently by Zakoïan (1994) and Glosten, Jaganathan, 

and Runkle (1993)2. The model for the volatility is defined as; 

( ) ( )2 2 2 2

1 1

3.12t i t i i t i t i j t j
i j

dσ ω α ε γ ε β σ− − − −
= =

= + + +∑ ∑
q p

 

where 

1 0
0

t
t

if
d

otherwise
ε <⎧

= ⎨
⎩

 

In such a model leverage effect is represented byγ . The effect of the bad news , the 

effect of the good news isα . So if γ is statistically insignificant then we could say there is no 

leverage effect in our sample. 

γ α+

The proper forecast of tomorrow’s volatility is; 

( ) ( )2 2
1 1 1 1 1

1 1

3.13t i t i i t i t i j t j
i j

f d fω α ε γ ε β+ + − + − + − + −
= =

= + + +∑ ∑
q p

                                                

 

 
2 TARCH also called as GJR (Glosten, Jaganathan, and Runkle) 
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4 Thick Models 

One can use many methods to combine forecasts of different models and to have one robust 

forecast of tomorrow. I will introduce the methods I used. Of course, it is possible to produce 

many new methods by changing and mixing these methods. Thick modeling provides us a 

space of possibilities. In this sense it is so flexible.  

4.1 Equally Weighted Combination 

This is the simplest strategy to combine out-sample forecasts. This combination might be 

optimal when there is no significantly best single model to forecast. In other words, there 

would be no robust model for all periods, and then this is an optimal. Many of the models that 

are used in combination might be best forecasts in particular periods. For instance one model 

might best in the times of high volatility, however for less volatile periods, the model might 

be useless.  Or another might be best for more stabile periods of the market. Of course another 

possibility is structural change. Because we deal with an emerging market, market conditions 

change so quickly. The regulations might change, the financial institutions might change, and 

therefore every model might be optimal for a short period of time. 

We can show an equally weighted combination as follows; 

( )
1

1 4.1i
t t

i

F f
N =

= ∑
N

i

 

where tf is the forecast of ith single model at time t. As we can see in the Eq. 4.1, all 

forecasts are equally weighted. Hence the equally weighted combination of the forecasts is 

just an average of thin model forecasts. 

4.2  Trimming 

Trimming introduced by Stock and Watson (1999). Although I used trimming as a modified 

version of the equally weighted combination, one might apply this method to all other 

combination techniques. 
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Basically trimming follows a procedure like; first, rank all forecasts, second remove α % 

largest and smallest and use simple average of remaining forecasts as combined forecast. 

( )
1

1 4.2i
t t

i

F f
N T =

=
− ∑

N T−

)
N

N

ˆ

 

where T is the number of trimmed forecasts.  

In this study, I removed smallest and largest forecast of the day. In fact this is nearly equal to 

5% trimming.   

4.3 Combination with OLS 

Another way to combine forecasts might be usage of OLS. Up to, we saw equally weighted 

forecasts. But if we can weight better forecasts high and worse forecasts low, it will improve 

our combinations’ ability to catch tomorrow. Therefore, the choice of weight becomes 

important.  

At this point, OLS can be thought as a good tool to combine several forecasts. But usage of 

OLS causes some disadvantages too.  For example in our case, we generate all volatility 

forecasts with same and one data that is realized volatility of today. And we optimize each 

model’s parameters -if it has- to mimic tomorrow’s realized volatility as best as possible. 

Therefore, while each forecast is correlated with actual volatility, they are highly correlated 

with each others. Then possibly we would have high degrees of Multicollinearity if we try to 

regress all forecasts that we have, on actual volatility. Instead, we can combine some of them.   

Then we can estimate the parameters of the model by the following regression; 

( ) (2

1

4.3i
t i t t

i

r f uµ α
=

− = +∑  

then the combined forecast is as follows; 

( )
1

ˆ 4.4i
t i t

i

F fα
=

=∑  

where α is the estimated weight vector and N is the number of forecasts combined.  
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4.4 Combination with Loss Functions 

As we mentioned earlier the notion behind weighting the models is simply weight high better 

models and weight low the worse models. To solve such a problem the OLS is good solution, 

but due to Multicollinearity to combine all forecasts with OLS is not possible –at least in our 

case. Then usage of some loss functions to combine all forecasts might be the solution. 

In this study I used three loss functions that are introduced at appendix2. In this section I used 

Linex loss function which gave me the best results among other loss functions.  

The weights are calculated as follows; 

( )
2

2

1

( , ) 11 4
( , )

i

i N
i

i

lw
Nl

=

⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
σ f

σ f
.5

2 i

N

 

where l is the loss function,  is the vector of realized volatility and  is the forecast vector 

of the ith model. Then the combined forecast is; 

σ f

( )
1

4.6i
t i t

i

F w f
=

= ∑  

where N is the number of the single models to combine. 

4.5 Ranking 

Another weighting method is ranking. Since our main concern is weighting most the best and 

weighting least the worst, the ranking should work. I used a ranking procedure as follows; 

first I ranked all forecasts with respect to their loss function values. Secondly I weighted them 

with; 

( )

( )
( )

2

1

1
4.7

1

i
i N

i
i

N d
w

N d
=

+ −
=

+ −∑

2
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where  is the rank of ith forecast. Hence the combined forecast is; id

N

 

( )
1

4.8i
t i t

i

F w f
=

= ∑  

where N is the number of forecasts. 

4.6 Combination with Bootstrapping 

One of the major problems with the combination is loss of data, because one needs two 

samples to constitute a combination (one sample to estimate the parameters of the single 

specifications and one sample to choose the weights). The idea of combination with 

bootstrapping might be a solution to this problem.  

The notion is quite easy, use all data that you have to estimate proper parameters for the 

single models and combine those forecasts with bootstrapped data. This should work by two 

reasons; first the single models would be more efficient because the sample size increased, 

and second the weights will be more efficient again due to the same reason. 

This method might be used with all previous combination techniques. In this study we will 

use only ranking method with bootstrapping. 
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5 Comparison of the Models 

In this chapter we will compare our findings. First the results from the models including thin 

and thick will be compared with some loss functions. Second we will use a Value at Risk 

comparison. As we mentioned in introduction for financial institutions the calculation of VaR 

is very important. And the calculation of the VaR is mainly based on volatility of asset, and 

then we will test the robustness of combined forecasts of volatility to RiskMetrics which is 

commonly used by market participants. 

5.1 Comparison with Loss Functions 

In this study, I used Root Mean Squared Errors (RMSE), Theil-U and Linex loss functions. 

For all loss functions the results are very similar. 

First of all, TARCH (2, 2) is the best model among the all thin and thick models. This model 

outperforms others with respect to all loss functions. But the equally weighted combination is 

slightly worse than the TARCH (2, 2) again with respect to all loss functions.  

The combined models generally work well. If we consider the best five models, the four of 

them are always combined models. Even TARCH (2, 2) is better than thick models the 

difference is very small and negligible. Moreover when we replicate the forecast procedure 

for some other sub-samples of the data the combined forecasts always outperforms others. 

The different nature of this period is strongly related with the deep crisis that we have in this 

period. Due to the crisis the leverage effect which is well represented by the TARCH model 

dominates the period. Hence if we consider all models we can say that the thick models are 

possibly better than thin models for forecasting one day forward volatility.  

Among the combined forecasts the equally weighted combination performs well. According 

to all loss functions it is the second leaded by the TARCH (2, 2). But for all loss functions the 

difference is very small. Again if we consider different sub-samples generally ranking with 

bootstrapping combination is better than equally weighted combination. However the 

difference between these two is generally very small too. Then we can say that even equally 

weighting works well enough to combine forecasts. 
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One can also realize that the bootstrapped combination is clearly better than the other. 

Therefore this might be evidence for that one can handle with the loss of data problem with 

bootstrapped combination. It is also important to notice that the sample size of equally 

weighted combination and other combined models are not same, because the weighted 

combination models need to out of sample forecasts for combinations. However the equally 

weighted combination does not need to out of sample forecasts for estimation of the weights 

than its sample size twice of other combination models. Therefore this is another evidence for 

the importance of the sample size, because it performs better than other combinations. 

It is interesting to see that the RiskMetrics model is one of the worst. First, all of the 

combinations are better than the RiskMetrics. And many of the single specifications are also 

better than the RiskMetrics. But I should mention that for other sub-samples the RiskMetrics 

is generally second best after combined forecasts. In fact if we consider several sub-samples 

one can say the RiskMetrics model is one of the best among the thin models. But definitely 

the combinations are the best in this sense. The reason for the worse performance in this 

period is again related with the crisis. Because the RiskMetrics can not cover the leverage 

effect, it is worse in this period.  

For the asymmetric models, we can easily say that the TARCH model is better than the 

EGARCH model. Exponential behavior of the model might be problematic in many cases. It 

generally over estimates the volatility. On the other hand both TARCH model is good with 

respect to all loss functions. But again if we consider sub samples it is not that much easy to 

compare the EGARCH and TARCH. Some time TARCH does well and some times 

EGARCH. In general TARCH is slightly better, because it has a more stabile nature as a 

model. This also shows that we need to combine forecasts. Because the best single model 

definitely changes, using all of them is a better way. 

5.2   VaR Comparison 

Value at Risk is simply the worst possible return (which is possibly a loss) of an asset or 

portfolio with a given confidence level. Therefore VaR is nothing but a quantile analysis. For 

example if the confidence level isα , then VaR gives us 1  lower tail of the return 

distribution. 

α−

There some methods to calculate VaR. In general, we can there are two types of methods to 

calculate VaR; first is the non-parametric methods and the second is parametric methods. For 
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parametric methods the estimation of the volatility is vital. The volatility is on the centre of 

these methods.  

In this study we will calculate VaR for ISE100. It is similar like one would have a portfolio 

which consists of the stocks in ISE100 and weights of each stock in the portfolio are same 

with ISE100 too. Hence the formula for the VaR is quite simple one; 

( ) ( ). 5t tVaR N fα µ= + .1i i

i

 

where is the VaR at time t, calculated by the ith volatility model, N(.) is a function gives 

the cumulative standard normal distribution, 

tVaR

α is the confidence level,µ is the average return 

and i
tf is again volatility at time t, forecasted by the ith model. 

After a quick introduction for the VaR concept, let us return back to the VaR comparison of 

our forecasts. The Basel Committee announced some rules for backtesting of the VaR models. 

In our further analysis, we will use a similar method with this framework. They want financial 

institutions to calculate VaR with 99% of confidence level and record their exceptions of last 

year. And according to the number of these exceptions they define some zones (see Table 

5.5).  

Since we use 99% confidence interval, we can use the 2.5 and 10 as cut-off value for 

exception respectively for 252-day period and 1000-day. In Table 5.6 we can see the number 

of exceptions for each model. The first 15 models are lower than our cut off value while all 

symmetric ARCH family and TARCH (1, 1) made higher mistake than we could tolerate. An 

important point is that there is no “Thick Model” that has higher exceptions than our cut-off 

value. In this sense, if one has a combination for volatility, he or she possibly had no problem. 

For one who uses thin model, however, he must choose a correct model, other wise he/she 

would make mistake.  

If we consider the zones that defined by Basel Committee, the first 19 is in the Green Zone. 

This means all combinations are at the Green Zone. On the other hand GARCH (1, 1), 

TARCH (1, 1) and Exponentially Smoothing are at the Yellow Zone. And all lags of the 

ARCH and the Random Walk are at the Red Zone. Even tough the Basel’s criterion is more 

tolerable than our first one, the result did not change. Again all combinations performed well, 

they are all in green zone.  
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Another important point, one should realize is that, VaR performance is meaningless if we do 

not consider their performance with loss functions. On the other hand one model might have 

no exception, but this does not mean it is a good model, because our objective is not only 

have less exception but also mimic the realized volatility as good as possible. For example in 

VaR comparison the Historical Average seems like the best model, because it has no 

exception. However, it highly overestimates the volatility, because the ISE100 index was 

historically more volatile respectively its recent volatility. Figure 5.2 shows the graphs of the 

VaR calculated by each model against the realized volatility. It is clear by the graphs; some of 

the models like Historical Average, RiskMetrics and MA (60) consistently overestimate the 

volatility. Therefore we should look at the Table 5-1 again; as we can see these three models 

were not as good as the combinations. Result is the same if we consider other loss functions.  

Hence if we consider both comparison with loss functions and VaR comparison, it becomes 

clearer that all combinations are better than single specifications. And also particularly the 

ranking with the bootstrapped combination is the best. We can see that for both comparisons 

combination with bootstrapping improved the efficiency of the combined forecast.   
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6 Conclusion 

The main purpose of this study was comparison of “Thin” and “Thick” models with Turkish 

data. All our finding shows that the combination of the single specifications is possibly better 

than a single specification. Because a model might better than a combination in a specific 

period there is no model that is better than a combined forecast in every period. The behavior 

of the market changes over time. And also if you deal with an emerging market, it changes 

very quickly. Then one of the major reasons for why is combination better is these quick 

changes in market structure. One can understand it as institutional change or other might think 

of a deep change in the market participants’ expectations or a deep external change, like 

entering EU … one can count numerous reasons to change. 

Another important point is the nonlinear nature of these combinations. In this study we used 

linear models; however this is a very restrictive assumption on the behavior of the series. The 

combination provides an enormous flexibility. Even one imposes some restriction on the data 

in single models, when they are combined what it becomes do not have any restrictions. In 

this sense they are extremely flexible. 

The normality assumption that we did in models that are estimated by Maximum Likelihood 

provides another room for better estimations. In fact, with Maximum Likelihood estimation 

we always impose a distribution to data, it can be normal or student or some other 

distribution. At the end of the day, even we use a very good distribution that well fits the real 

distribution; this is a big restriction on the data. In this point of view, the combination is again 

very flexible method. Because one can combine some models that are estimated by assuming 

normal distribution and some other models that are estimated by assuming any other 

distributions. Then these models are combined, it is neither normal nor any other distribution. 

For example, if one knows the real model but not the real distribution, by estimating model 

with several distributions, it is possible, at least theoretically, to have real distribution of the 

data by weighted combinations. This is an advantage of “Thick Models”. 

To improve the combinations efficiency, we used a bootstrapped sample to combine the 

forecasts. Our results show that it works. To express why it does works, first we should 

consider an efficient weighting of the models is always better than the equally weighting, 

because with equally weighting, we has no punishment for the bad performers and no reward 
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for the good performers, like a benevolent father. And we combine them equally. But if we 

would combine them in most efficient way, it would be better for sure. In this study we use a 

primitive weighted combination model, ranking as an example. Both comparisons showed 

that the ranking which is combined with bootstrapping is better. The reason is obvious I think. 

In an emerging market, one must use the recent data for estimation of the model parameters, 

because every thing can change over a period like one-year. But to weight them we use recent 

data for efficient combination. With bootstrapping we lost no data. We used all data to 

estimation of the parameters and combined those reshuffled or bootstrapped data.  For 

example without bootstrapped combination if economy had a recent crisis, there would be no 

change in the parameters of the models. With bootstrapping, since one can use all data for 

estimation of model parameters, this is not the case. 

To sum up, the Turkish data shows the robustness of the “Thick Models” over thin models. 

To impose one specification on a series seems misleading. The possibility of different 

distributions and nonlinearity might create room for better, more flexible models. And also 

usage of bootstrapping to combine forecasts can improve the results. 
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Figure 2.1 shows the ISE100 index along the period. 
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Figure 2.2 shows the return of ISE100 over period. 
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Figure 2.3 plots squared return of ISE100. 
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Figure2.4 shows correlogram of the returns 
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Figure 2.5 shows the correlogram of the squared returns 
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Figure 2.6 estimated density versus normal density graph and Quantile-Quantile graph (against normal). 
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Table 2-1 shows the descriptive statistics  
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Std. Dev.   0.027336
Skewness   0.410191
Kurtosis   7.068904

Jarque-Bera  386.2169
Probability  0.000000

 

Figure 5.1 differences between forecasted and realized volatilities 
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Table 5-1 shows the results from RMSE 

 Model RMSE 
1 TARCH(2,2) 22.91991365 
2 Equally Weighted 22.96373095 
3 Trimming 22.98106452 
4 Cobined with linex 22.99324737 
5 Ranking2 23.02576792 
6 ARCH(2) 23.09702707 
7 ARCH(3) 23.18128627 
8 GARCH(1,1) 23.18874241 
9 Regressed 23.21372854 
10 Ranking 23.24955042 
11 TARCH(1,1) 23.25378047 
12 ARCH(4) 23.34511884 
13 EWMA(60) 23.52851636 
14 EWMA(10) 23.55580143 
15 EWMA(15) 23.55580163 
16 EWMA(5) 23.55699927 
17 EWMA(20) 23.55813809 
18 RiskMetrics 23.72942839 
19 ES 23.73136505 
20 MA(60) 23.83023953 
21 ARCH(1) 23.9846088 
22 Historical Average 24.22853009 
23 MA(20) 24.57949551 
24 MA(10) 24.5818688 
25 EGARCH(1,1) 24.58408306 
26 MA(15) 24.59981647 
27 MA(5) 24.63746929 
28 Random Walk 28.49191514 
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Table 5-2 shows the results from Theil-U 

 Model Theil-U 
1 TARCH(2,2) 0.647061094 
2 Equally Weighted 0.649558148 
3 Trimming 0.650533049 
4 Cobined with linex 0.651225098 
5 Ranking2 0.653059291 
6 ARCH(2) 0.657152274 
7 ARCH(3) 0.661952362 
8 GARCH(1,1) 0.662354354 
9 Regressed 0.663763791 

10 Ranking 0.665814414 
11 TARCH(1,1) 0.666072584 
12 ARCH(4) 0.671327272 
13 EWMA(60) 0.681888747 
14 EWMA(10) 0.683476151 
15 EWMA(15) 0.683476162 
16 EWMA(5) 0.683545778 
17 EWMA(20) 0.683611976 
18 RiskMetrics 0.693563032 
19 ES 0.693712363 
20 MA(60) 0.699465194 
21 ARCH(1) 0.708634014 
22 Historical Average 0.723038689 
23 MA(20) 0.744170584 
24 MA(10) 0.744296172 
25 EGARCH(1,1) 0.744428401 
26 MA(15) 0.745401846 
27 MA(5) 0.747662773 
28 Random Walk 1 
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Table 5-3 shows the results from Linex with a=10 

 Model Linex(a=10) 
1 TARCH(2,2) 0.000276616 
2 Equally Weighted 0.0002783 
3 Trimming 0.000278589 
4 Cobined with linex 0.000278773 
5 ARCH(2) 0.000281647 
6 Ranking2 0.000281688 
7 ARCH(3) 0.000282833 
8 GARCH(1,1) 0.000283265 
9 Ranking 0.000284423 
10 TARCH(1,1) 0.000284917 
11 Regressed 0.000285734 
12 ARCH(4) 0.00028662 
13 EWMA(10) 0.000289555 
14 EWMA(15) 0.000289555 
15 EWMA(5) 0.000289562 
16 EWMA(20) 0.00028957 
17 EWMA(60) 0.000289988 
18 ES 0.000292248 
19 RiskMetrics 0.000299041 
20 MA(60) 0.000302235 
21 ARCH(1) 0.000306601 
22 MA(5) 0.000314221 
23 Historical Average 0.000314237 
24 MA(10) 0.000317014 
25 MA(15) 0.000319233 
26 MA(20) 0.000319899 
27 EGARCH(1,1) 0.000323979 
28 Random Walk 0.000411936 
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Table 5-4 shows the results from Linex with a=20 

 Model Linex(a=20) 
1 TARCH(2,2) 0.001170723 
2 Equally Weighted 0.001180686 
3 Trimming 0.001181287 
4 Equally Weighted 0.001181564 
5 Cobined with linex 0.001181652 
6 ARCH(2) 0.001194832 
7 ARCH(3) 0.00119634 
8 GARCH(1,1) 0.001199385 
9 Ranking 0.00120297 
10 Ranking2 0.0012034 
11 TARCH(1,1) 0.001206718 
12 ARCH(4) 0.001211639 
13 EWMA(20) 0.001214202 
14 EWMA(5) 0.001214259 
15 EWMA(15) 0.001214324 
16 EWMA(10) 0.001214324 
17 Regressed 0.001218222 
18 ES 0.001218699 
19 EWMA(60) 0.001220922 
20 RiskMetrics 0.00127728 
21 MA(60) 0.001293685 
22 MA(5) 0.001307458 
23 ARCH(1) 0.001314972 
24 MA(10) 0.001337386 
25 Historical Average 0.001353581 
26 MA(15) 0.001354432 
27 MA(20) 0.001362565 
28 EGARCH(1,1) 0.001397605 
29 Random Walk 0.001686253 

 

Table 5-5 the zones defined by Basel Committee 

 Number of Exceptions Increase in k
Green 0-4 0.00 
Yellow 5 0.40 

 6 0.50 
 7 0.65 
 8 0.75 
 9 0.85 

Red 10+ 1.00 
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Table 5-6 shows the number of exceptions with 99% confidence level. 

    Number of Exceptions Percentage 
    last 252 long period (1000) last 252 long period (1000) 
1 Historical Average 0 0 0.00% 0.00% 
2 MA(60) 0 0 0.00% 0.00% 
3 Ranking2 0 1 0.00% 0.08% 
4 RiskMetrics 0 1 0.00% 0.08% 
5 EGARCH(1,1) 0 8 0.00% 0.60% 
6 MA(15) 1 2 0.40% 0.15% 
7 Cobined with linex 1 3 0.40% 0.23% 
8 MA(20) 1 3 0.40% 0.23% 
9 Ranking 1 3 0.40% 0.23% 
10 Regressed 1 3 0.40% 0.23% 
11 Equally Weighted2 2 4 0.79% 0.30% 
12 EWMA(60) 2 5 0.79% 0.38% 
13 TARCH(2,2) 2 5 0.79% 0.38% 
14 MA(10) 2 6 0.79% 0.45% 
15 Trimming 2 6 0.79% 0.45% 
16 EWMA(10) 3 9 1.19% 0.68% 
17 EWMA(15) 3 9 1.19% 0.68% 
18 EWMA(20) 3 9 1.19% 0.68% 
19 EWMA(5) 3 9 1.19% 0.68% 
20 GARCH(1,1) 5 13 1.98% 0.98% 
21 TARCH(1,1) 5 13 1.98% 0.98% 
22 ES 6 15 2.38% 1.13% 
23 MA(5) 7 23 2.78% 1.73% 
24 ARCH(3) 18 72 7.14% 5.40% 
25 ARCH(4) 19 51 7.54% 3.83% 
26 ARCH(2) 35 123 13.89% 9.23% 
27 Random Walk 38 143 15.08% 10.73% 
28 ARCH(1) 62 237 24.60% 17.78% 
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Figure 5.1 VaR calculated with forecasted volatility versus daily returns 
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Root Mean Squared Error 

Root Mean Squared Error (RMSE) can be defined as follows; 

 ( )22
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where t is the sample size, f is the forecast value, and 2σ  is the realized volatility. Although 

RMSE has a very simple functional form it is one of the common loss functions in the 

literature. It is symmetric, an overestimation and underestimation affect equally the loss value. 

However, for our case overestimating and underestimating should not be equally treated.  For 

example, if we consider a financial institution, an overestimation means generally loosing 

some profit opportunities, but an underestimation means miscalculation of the risks and even 

default of the institution. 

Even tough it has a disadvantage expressed above; it is still a good criterion for testing the 

accuracy of our forecasts. 

Theil-U 

Theil-U loss function is a standardized version of the RMSE and can be defined as follows; 
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where t is the sample size, f is the forecast value, and 2σ  is the realized volatility. As it seen 

this loss function uses random walk model as benchmark, then the value of random walk is 

just equal to 1. Because it the worst forecast, other models loss value is between one and zero. 

The benefit form usage of this loss function is a better comparison, because in standard 

RMSE, the difference between two loss values is meaningless. On the other hand with this 
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standardized values, the difference between some models’ loss values becomes more 

meaningful.  

Linex 

The functional form of the Linex function is; 

 
( ) ( )
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σ σ− −

=
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where t is the sample size, f is the forecast value, 2σ is the realized volatility and a is the 

parameter which determines the degree of asymmetry in the function.  For this loss function 

the value of “a” is very crucial. If the “a” is positive, then the loss function becomes 

exponential for underestimations and linear for overestimations. If the “a” is negative, then 

the loss function becomes exponential of for the overestimations and linear for the 

underestimations. In this study, we used two values of the “a”; 10 and 20. We did not use 

negative values of the “a” because it is not reasonable, for our study, to punish more the 

model that overestimates the volatility than another that underestimates it.  
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