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Abstract

The article proposes an iterative algorithm for the estimation of fixed and ran-

dom effects of a nonlinearly aggregated mixed model. The latter arises when an

additive Gaussian model is formulated at the disaggregate level on a nonlinear

transformation of the responses, but information is available in aggregate form.

The nonlinear transformation breaks the linearity of the aggregate model, yielding

a nonlinear tight observational constraint.

The algorithm rests upon the sequential linearization of the nonlinear aggre-

gation constraint around proposals that are iteratively updated until convergence.

Likelihood inferences on the hyperparameters are also discussed. As a by product

we provide a solution to the problem of disaggregating over the units of analysis

the aggregate responses, enforcing the nonlinear observational constraints.

Illustrations are provided with reference to the temporal disaggregation prob-

lem, concerning the distribution of annual time series flows to the quarters making

up the year.
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1 Introduction

The available statistical information often refers to space or time units that are

wider than the units of analysis. Using aggregate data, we are typically interested

in estimating a model that is specified at the disaggregate level; as a related prob-

lem, we are also concerned with distributing the available information over the

units of analysis that make up the aggregate (disaggregation).

Linear aggregation, that arises when the aggregate is linear in the unknown

disaggregate responses, has received a lot of attention in the literature and the

corresponding disaggregation problem has a closed form solution. This article is

concerned instead with a situation when the disaggregated model is a linear mixed

model formulated in terms of a transformation of the response, e.g. the Box-Cox

transformation (Box and Cox, 1964), and the aggregated value is a nonlinear func-

tion of the transformed disaggregated responses.

A leading example is provided by the distribution of of annual time series to-

tals of a flow variable to the quarters, using a linear mixed model formulated for

the logarithms of the original variables, rather than the levels. We specify a linear

time series model for the logarithms of a variable, as we deem that the assump-

tions of additivity, normality and homoscedasticity are more likely to hold on the

transformed scale, rather than the levels. As the annual aggregate results from the

sum of the levels of the quarters making up the year, a nonlinear observational

constraint arises.

This article proposes an iterative algorithm for estimating the fixed and ran-

dom effects of the disaggregated mixed model, and that solves the nonlinear dis-

aggregation problem. The algorithm is based on a Taylor first order approximation

of the nonlinear observational constraint around a trial value that is sequentially

improved; one of its virtues is that it can be implemented using standard linear

estimating equations.

Although in our applications we refer to temporal disaggregation, the solu-

tion is applicable to spatial disaggregation using intrinsic random functions (see
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Cressie, 1993, sec. 5.4) and to the estimation of contingency tables with known

margins, which can also be though of as a particular instance of disaggregation.

Section 2 introduces the problem of nonlinear aggregation of mixed models and

briefly reviews the most popular temporal disaggregation procedures. The estima-

tion of fixed and random effects is performed by our proposed iterative algorithm,

which is presented in section 3. The algorithm is a particular instance of a sequen-

tial linear constrained method for solving an optimization problem with nonlinear

constraints (see Gill et al., 1989) and its properties are illustrated using geometric

arguments. We also discuss how likelihood inference on the hyperparameters is

carried out.

Section 5 is devoted to two empirical illustration concerning the temporal dis-

aggregation of the total production series from the annual frequency to the quar-

terly frequency, using related indicators. Finally, in section 6 we draw our conclu-

sions.

2 Nonlinear aggregation

Suppose that n disaggregated responses, y, follow a mixed linear model:

y = Xβ + Zα + ε, (1)

where X and Z are known matrices, β is a vector of k fixed unknown parameters,

α is a vector of random effects, α ∼ N(0,Ω), and ε is an n × 1 vector of residuals,

ε ∼ N(0, σ2
ε In), that are distributed independently of α.

The vector y is not observed, but a nonlinear non-injective (many-to-one) trans-

formation is available, Y = f(y), where f(·) is a N ×1, N < n, vector function of y,

and Y denotes the N×1 vector stacking the aggregated transformed observations,

Y = {Yi, i = 1, . . . , N}.

This situation arises when a linear Gaussian mixed model is assumed to hold

for a scale that is different from the original scale of measurement, e.g. on the log-

arithms of the variable, but the aggregation is linear in the original measurements,
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which induces a nonlinear aggregation constraints in terms of the elements of the

vector y.

For instance, in the temporal disaggregation of flow variables or time averaged

stocks measured on a ratio scale (such as production, income and prices), a typical

situation is when a linear time series model is formulated for the logarithms of the

quarterly values, y, and the available data are only annual and arise from the sum

of the levels of the flow variable over the four quarters that make up the year.

In such cases, if s denotes the aggregation interval, s = 4 in our example, the

observations can be expressed in terms of the y’s as follows:

Yi =
s−1∑

j=0

f(yis−j), i = 1, . . . , N ; (2)

we shall mostly concentrate on f(y) = exp(y), but the theory applies to the general

class of Box-Cox inverse transformation with parameter λ, f(y) = (1 + λy)1/λ.

Throughout the paper we assume that the transformation is smooth in that the

function f(·) is twice continuously differentiable.

The problem of temporal disaggregation of flow variables using related indi-

cators has received a lot of attention in the literature and has practical relevance:

as a matter of fact, in many countries disaggregation techniques are an essential

ingredient for the construction of quarterly national accounts estimates from an-

nual data (Y) and quarterly related indicators, X. These techniques rest upon the

linearity assumption, by which Y = Ay, where the matrix A is a constant ag-

gregation matrix. Usually, the observations Y pertain to the sum of s consecutive

disaggregated values, so that A = IN ⊗ i′s, i′s = [1, . . . , 1].

The most popular disaggregation techniques postulate a simple time series pro-

cess for the random component. For instance, in the Chow-Lin (1981) linear disag-

gregation procedure the disaggregated model is a linear regression with first order

autoregressive errors, yt = x′tβ +αt, αt = φαt−1 + ηt, η ∼ N(0, σ2). In the represen-

tation (1), Z = I and Ω has elements ωij = φ|i−j|σ2/(1− φ2), and ε = 0.

Litterman (1983) proposed a linear disaggregation procedure based upon the
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disaggregate model yt = x′tβ + αt, where αt is an ARIMA(1,1,0) process: αt =

αt−1 + φ(αt−1 − αt−2) + ηt. Denoting by ∆ρ the n × n (quasi) differencing matrix

with ones on the diagonal and −ρ on the first subdiagonal, i.e.

∆ρ =




1 0 0 · · · 0 0

−ρ 1 0 · · · 0 0

0 −ρ 1 · · · 0 0
...

. . . . . . . . . 0 0

0 0 0
. . . 1 0

0 0 0 · · · −ρ 1




the Litterman model admits the representation (1) with Z = I, Ω = σ2
(
∆′

1∆
′
φ∆φ∆1

)−1

and ε = 0.

The Fernandez (1981) model is such that αt is a random walk, and thus can

be seen as a restricted version of the Litterman model featuring φ = 0. The case

when αt is an ARIMA process has been considered by Wei and Stram (1990), and

in general, (1) can be viewed as the stacked version of the the general linear state

space model:

yt = z′αt + x′tβ + εt, εt ∼ NID(0, σ2
ε )

αt+1 = Tαt + ct + Rηt, ηt ∼ NID(0,Q), E(ηtεj) = 0,∀j.

3 The iterative algorithm

Let A(y) = {ait(y)} denote the N × n Jacobian matrix, containing the partial

derivatives ait(y) = ∂fi/∂yt; for instance if in (2) f(·) = exp(·), ait(y) = exp(yt), t =

is− j, j = 0, . . . , s− 1, and ait(y) = 0 otherwise.

Let us denote by y∗ a trial value and set A∗ = A(y∗). Writing Y∗ = f(y∗), the

first order Taylor approximation of Y = f(y) around the trial value y∗ is:

Y ≈ Y∗ + A∗(y − y∗). (3)
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Replacing the mixed model representation for y into (3), we obtain the pseudo

linear aggregated model:

Ỹ∗ = X∗β + Z∗α + ε∗, (4)

where Ỹ∗ = A∗y∗+Y−Y∗, X∗ = A∗X, Z∗ = A∗Z, and ε∗ = A∗ε ∼ N(0, σ2
εA

∗A∗′).

Letting Σ = σ2
ε IT +ZΩZ′, and applying standard optimal prediction principles

(see Robinson, 1991), the estimators of the fixed and random effects are respec-

tively:

β̂ =
[
X∗′(A∗ΣA∗′)−1X∗

]−1
X∗′(A∗ΣA∗′)−1Ỹ∗, (5)

α̂ = ΩZ∗′(A∗ΣA∗′)−1
(
Ỹ∗ −X∗β̂

)
, (6)

ε̂ = σ2
εA

∗′(A∗ΣA∗′)−1
(
Ỹ∗ −X∗β̂

)
, (7)

These inference can be combined so as to construct a new trial value

ŷ∗ = Xβ̂ + Zα̂ + ε̂

= Xβ̂ + ΣA∗′(A∗ΣA∗′)−1
(
Ỹ∗ −X∗β̂

)
.

(8)

The latter can be used to form a new linear approximating model via a Taylor first

order approximation.

The previous arguments suggest the following iterative scheme:

1. Start from a trial value y∗. A possibility is to solve the linear disaggregation

problem assuming Y = Ay, for a fixed aggregation matrix A; in this case the

trial value is said to be feasible, as it satisfies the constraint f(y∗) = Y. In

general, y∗ does not have to be feasible.

2. Form the linear approximating model using the first order Taylor expansion

around y∗.

3. Estimate the fixed and random effects and ε from the linearized model using

(5)-(7), and combine them to form ŷ∗ as in (8).

4. If ||y∗− ŷ∗||, or equivalently ||Y− f(ŷ∗)||, is greater than a specified tolerance

value, set y∗ = ŷ∗ and return to step 2.
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4 The nature of the solution

The iterative algorithm outlined in the previous section is a sequential linear con-

strained (SLC) method for solving a constrained nonlinear optimization problem.

Denoting by g(·) a Gaussian density, the problem consists of choosing β̂, α̂ and ε̂

so as to maximize the joint density g(y,α) subject to the observational constraints:

Y = f(y), that is:

max
β,α,ε

{ln g(y|α) + ln g(α)} subject to: Y = f(Xβ + Zα + ε).

SLC methods, reviewed in Gill et al. (1989), section 7, rests upon the lineariza-

tion of the constraint around a trial value y∗, which does not have to be a feasible

value. This yields the optimization problem with linear constraints:

min
β,α,ε

{
σ−2

ε ε′ε + αΩ−1α
}

subject to: Ỹ∗ = A∗Xβ + A∗Zα + A∗ε,

for which an exact solution is available. The latter is obtained in two stages: for a

given β, the solution for α and ε is given as in (6)-(7). Replacing into the objective

function yields the solution for β̂ as given in (5). The new value is then obtained

by a linear combination of these estimates and the process is iterated until conver-

gence.

At convergence, Y = f(ŷ∗), so that Ỹ∗ = A∗ŷ∗, and the log-likelihood of the

linearized model, concentrated with respect to β, is

L(Y;Σ) = −1
2

{
ln |A∗ΣA∗′ |+ (Ỹ∗ −X∗β̂)′(A∗ΣA∗′)−1(Ỹ∗ −X∗β̂)

}
. (9)

The restricted log-likelihood (Patterson and Thompson, 1971, Harville, 1977) is de-

fined as follows:

L[R](Y;Σ) = L(Y;Σ)− 1
2

ln |X∗′(A∗ΣA∗′)−1X∗|.

The solution ŷ∗ provides the mode of the distribution of y conditional on Y and

the aggregation constraint. Thus, if we apply the inverse transformation, e.g. if

f(·) = exp(·), we exponentiate the elements of ŷ∗, a set of disaggregated estimates
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of the unknown observations, that are consistent with the aggregated totals, are

obtained.

It should be noticed that in the linear case Y = Ay, starting from any trial value

y∗, the algorithm converges at the first iteration. This is a reflection of the fact that

the linear disaggregation problem admits a closed form solution.

A similar iterative algorithm arises in the estimation of the nonlinear mixed

model (NLMM):

Y = f(y) + ε, ε ∼ N(0, σ2
ε I),

y = Xβ + Zα, α ∼ N(0, Ω)

This model is considered in Lindstrom and Bates (1990), see also Pinheiro and

Bates (2000, ch. 7) and the references therein, and addresses a different situation,

in which the observable Y is nonlinearly related to a signal, composed of fixed and

random effects, and is affected by measurement error. As a matter of fact, the map-

ping y 7→ f(y) is one to one and the Jacobian is a square diagonal matrix. In our

perspective, it is a different model since the observational constraint is not binding

and the measurement error is absent from the disaggregated mixed model.

Inference for the NLMM is carried out iteratively via a linearization of f(y)

around proposals y∗ that are sequentially updated. The values of β and α that

maximize ln g(Y,α) = ln g(Y|α) + ln g(α) are formally given as in (5)-(6), but the

updated ŷ∗ = Xβ̂ + Zα̂ (and thus Ỹ∗) obviously differs.

Moreover, the evaluation of the likelihood poses different issues: for the NLMM

it is needed to compute the integral
∫

g(Y|α)g(α)dα, which can be done by Monte

Carlo simulation methods using importance sampling techniques and other ap-

proximating methods reviewed in Pinheiro and Bates (1995).

In the framework considered by this paper the only option that is available is

to use the Gaussian likelihood (9) when the iterative estimation scheme has con-

verged. Denoting R = {y : Y = f(y)}, R∗ = {y : A∗y = Ỹ∗}, the likelihood,

defined by a multiple integral over the surface R,
∫
R g(y)dy, is approximated by

∫
R∗ g(y)dy = g(Ỹ∗). In practice, the surface R is replaced by the hyperplane tan-
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gent to the surface at the optimized ŷ∗, defined by A∗(y − ŷ∗) = 0, Ỹ∗ = A∗ŷ∗.

Maximum likelihood estimation of the variance parameters Ω and σ2
ε can thus

be based on a quasi-Newton algorithm, which at each iteration approximates the

likelihood for a given parameter configuration by the Gaussian likelihood for Ỹ∗

at convergence, given by (9).

4.1 Illustration of the algorithm

For simplicity, consider the case when regression effects are absent. Then, denoting

by D∗ = Y − f(y∗) the discrepancy between the observed aggregate values and

the transformed initial values, the new estimate of the disaggregate observations

arises as follows:

ŷ∗ = Zα̂ + ε̂

= ΣA∗′(A∗ΣA∗′)−1Ỹ∗

= y∗ +
[
I−ΣA∗′(A∗ΣA∗′)−1A∗]y∗ + ΣA∗′(A∗ΣA∗′)−1D∗

Setting M1 =
[
I−ΣA∗′(A∗ΣA∗′)−1A∗] and M2 = ΣA∗′(A∗ΣA∗′)−1, we have

that

A∗M1 = 0, A∗M2 = I, M1M2 = 0.

M1 is a projection matrix that spans the null space of A∗; as a result M1y∗ is a

movement along the hyperplane normal to A∗, defined by the equation A∗(y −
y∗) = 0. On the contrary, M2 lies in the range space of A∗, and thus it projects a

point onto the subspace generated by the rows of A∗.

The previous decomposition shows that the new proposal results from two dis-

tinct movements: the first determines the optimal solution (BLUP) along the hy-

perplane that is orthogonal to A∗ (this hyperplane is parallel to that tangent to the

curve Y = f(y)); the second aims at reducing the distance from the curve Y = f(y);

M2D∗ is thus a movement towards the nonlinear attractor Y = f(y).

In the presence of known fixed effects, the previous decomposition becomes

ŷ∗ = Xβ + M1(y∗ −Xβ) + M2D∗. In the general case, when fixed effects are esti-
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mated, a further additional component comes out in the revision of a trial estimate,

which depends on the change in the estimates of β.

Figure 1 illustrates the algorithm with respect to the simple case when y is two-

dimensional and is drawn from a bivariate Gaussian distribution, y ∼ N(µ,Σ)

with µ = [1, 2]′, Σ = {σij , i, j = 1, 2}, σ11 = σ22 = 1, σ12 = 0.8. The plotted

ellipsoids are density contours corresponding to the probability levels 0.25, 0.50

and 0.75; the true value, drawn at random from this distribution, is y = [0.35, 1.75]′,

giving an aggregated value Y = exp(y1) + exp(y2) = 7.20.

The set of points in the plane satisfying the above nonlinear observational con-

straints is the solid curve labelled Y = f(y). Suppose we start from a trial value

y∗ = [0, 4]′, which yields a discrepancy equal to -48.40. The first five iterations of

the sequential algorithm are reproduced in the following table:

Iteration ỹ∗ Discrepancy D∗

1 [1.87, 3.08]’ -21.03

2 [1.26, 2.29]’ -6.24

3 [0.83, 1.82]’ -1.25

4 [0.70, 1.66]’ -0.09

5 [0.68, 1.65]’ -5.e-04

The value obtained at the second iteration, ŷ2 = [1.26, 2.29]′ is obtained from the

previous, ŷ1 = [1.87, 3.08]′, by performing two movements: the first is along the

subspace A∗(y − ŷ∗1) = 0, which is a line in our two dimensional illustration, and

aims at minimizing the estimation error variance along that subspace; the second

is a movement towards the curve exp(y1) + exp(y2) = 7.20 that reduces the bias

due to the violation of the observational constraints. After five iterations the ŷ5 =

[1.87, 3.08]′ is already very close to the solution, which is a point along the attractor.
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5 Empirical illustrations: disaggregation of eco-

nomic time series

Our empirical illustrations deal with the temporal disaggregation of two economic

flows referring to total annual production. The annual observations are to be dis-

tributed across the quarters using the quarterly information on related series.

Both the annual series and the indicators are made available by Istat, the Italian

National Statistical Institute, which carries out routinely the disaggregation using

a variant of the Chow-Lin procedure, that was briefly recalled in section 2.

The series under scrutiny are annual total production at current prices for the

Communication sector (which accounts for 2.4% of total GDP in the year 2000), and

for Food, Beverages and Tobacco (2.6% of GDP).

The quarterly indicator for Communication is a survey based measure of turnover,

whereas for the Food, Bev. & Tob. sector it consists of the quarterly index of indus-

trial production, inflated by the producer price index of the same sector. The series

are plotted in figure 2, which illustrates a high degree of concordance between the

annual series on the left, and the corresponding indicator on the right.

The Chow-Lin procedure adopted by Istat assumes that the aggregated annual

observations are the sum of the unknown disaggregated observations, that are as-

sumed to follow an AR(1) model with regression effects in their levels. Hence, the

observational constraint is Yi = y4i + y4i−1 + y4i−2 + y4i−3.

Our aim is to assess the sensitivity of the disaggregated total production series

to the linearity assumption, by comparing the linear standard Chow-Lin method

with the nonlinear alternative, which arises when the linear Gaussian mixed model

(1) is assumed to hold with y representing the logarithms of the disaggregated

unknown values. In such case the annual observations arise as Yi = exp y4i +

exp y4i−1 + exp y4i−2 + exp y4i−3.

This is a more consistent and realistic framework, as total production is mea-

sured on a ratio measurement scale (it cannot assume negative values) and the
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assumptions underlying the disaggregated model (additivity of effects, normality

and homoscedasticity of errors) appear more suitable for the logarithms, rather

then the levels, of total production. See also Banerjee et al. (1993), section 6.3, for

further arguments and discussion concerning the modelling of the logarithms ver-

sus the levels of an economic time series.

In both cases the disaggregate model is formulated as follows:

yt = β0 + β1t + β2t
2 + β3xt + αt, αt − φαt−1 = ηt ∼ NID(0, σ2),

where xt denotes the indicator and t is time. The model entails that yt and xt are

cointegrated (Engle and Granger, 1987), so that αt has a stationary distribution,

possibly around a quadratic deterministic trend.

The linear and nonlinear models were estimated by restricted maximum like-

lihood (REML). The disaggregated series (in the nonlinear case exp ŷ∗, where ŷ∗

is obtained from the iterative algorithm of section 3 using the REML estimates of

the hyperparameters) are displayed in the left upper panel of figures 3 and 4. The

right upper panel is a plot of the profile log-likelihood for the φ parameter, in the

range [0, 1), adjusted for a vertical shift; for the Communication series the REML

estimates of the autoregressive parameter resulted 0.58 for the linear specification

and 0.77 for the nonlinear one. For Food, Bev. & Tob. the estimates were 0.87 and

0.76, respectively.

For the nonlinear specifications the estimated regression coefficient on the quar-

terly indicator (β3) were 0.77 and 0.67, respectively for the Communication and the

Food, Bev. & Tob. series. Their approximate standard error, computed for the linear

Gaussian approximating model based on the Taylor expansion around the opti-

mized ŷ∗, were 0.11 and 0.10.

There lower panels of figures 3 and 4 compare the quarterly and annual growth

rates of the disaggregated series. They convey the message that the linear and non-

linear specifications may entail important differences in the estimation of growth

rates, the identification of their turning points, and in characterization of the sharp-

ness of the turning points, As a matter of fact, in both of the cases considered in
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this section the linear estimates will tend display lower amplitude. In sum, essen-

tial business cycle features, such as the depth of the fluctuations, the location and

sharpness of turning points seem to be affected by the choice of the specification.

6 Conclusions

This article has proposed an algorithm for the estimation of fixed and random ef-

fects of a disaggregate linear mixed model with nonlinear aggregation. The al-

gorithm rests upon the sequential linearization of the nonlinear observational con-

straint around proposals that are iteratively updated until convergence. Likelihood

inferences on the hyperparameters have also been discussed.

The proposed algorithm is easily implemented as it involves linear estimating

equations, and provides a solution to the nonlinear disaggregation problem of dis-

tributing the observed aggregate values over the more refined unit of analysis.

Linear disaggregation methods have the attractive property of having a closed

form solution; however, they come at odds with the need of formulating a disag-

gregate mixed model that features additivity of effects, normality and homogene-

ity of variance. Statistical models are in fact often formulated in terms of a transfor-

mation of the scale of the response variable, e.g. belonging to the class considered

by Box and Cox (1964).

The examples concerning the estimation of quarterly time series from annual

ones have illustrated that the linearity assumption may bear relevant implications

for the measurement of business cycle features, such as the positioning of turning

points and the amplitude of economic fluctuations.
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Figure 1: Illustration of the iterative algorithm.
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Figure 2: Plot of the annual production series for the Communication and Food, Bev-

erages and Tobacco sectors, and the corresponding quarterly indicators.
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