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1 Introduction 

In practice the specification of many microeconometric models 
requires the introduction of components capturing unobserved 
heterogeneity to account, inter alia, for overdispertion (in Poisson 
models, in duration models), for specific effects (when dealing with 
repeated measurements, or in the case of cluster specific effects) , for 
uncertainty about the model that should be considered (in the case of 
switching regression with unobserbed regime) etc… 
The specification of the model of the observed quantities of interest 
can often be decomposed into two parts. The first part describes the 
distribution of the unobserved component, and given the 
unobserved element and in general some covariates, the second part 
describes the conditional distribution (density) of the quantity of 
interest. Formally the distribution of the observed variable of 
interest, say Y , given a vector of covariates, say X , takes the general 
form of a mixture : 

[ ] [ ] ( )Pr | Pr | ,
ε

ε= = = = = =
�

D
Y y X x Y y X x e dF e ,  (1) 

where ε  is the unobserved random variable which describes 
unobserved heterogeneity over some domain  of definition εD , and 

where [ ]Pr | ,ε= = =Y y X x e  is usually fully specified. ( )F e  is the 

cumulative distribution function of ε .  At this stage ( )F e  can be 

assumed to belong to a well specified parametric family in which 
case the calculation of the observed likelihood is straightforward and 
the estimation proceeds, more or less directly, from there. 
Alternatively it can be left unspecified and the estimation problem 
can be thought essentially as a non-parametric problem. However, in 
this latter case it can be shown that the maximum likelihood 
estimator of the mixture takes the form of a finite discrete mixture 
(i.e. a list of discrete locations, i.e. values of ε  in  εD  and probability 
weigths, see Lindsay (1983) ), which in practice allows/demands the 
use of conventional maximum likelihood arguments. 
In this context the estimation problem is often solved using the EM 
algorithm (see for example Gouriéroux & Monfort, 1995). In this 
note, following Oakes (1999), I show that the EM algorithm in the 
discrete mixture case allow for a relatively simple evaluation of the 
matrix variance covariance of all the parameters of interest. I give a 
general analytic expression for the hessian of the observed likelihood 
of a model with finite discrete mixture with known number of types 
in terms of the gradient and the hessian of the latent likelihood. 
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Finally I discuss how this analytical expression allows for quasi-
Newton acceleration of the EM algorithm, and for an  Information 
Matrix specification test.  
 

2 The Model 

In what follows I assume that there are N (independent and 
identically distributed) observations/clusters, indexed � ���������� �� , 

and F (given) number of components to the mixture. However the 
allocation of observations to types is unobserved. For a given 
observation i and type f the contribution to the likelihood is 	 
� � �

 (I 
omit to indicate the values Y and X take…) where �  is a vector of k 
parameters. All the unknown locations �� , �������� �� ,  are elements 
of � , hence � �� . Indeed, in some case the model of interest will 
include some covariates and the parameters (type invariant or not) 
associated with the covariates are included in � . On the other hand 

the probabilities of each type �� , ������� !" , # $
% && '( )
*

, are not 

collected in θ . Assuming that we observe the type of each 
observation i  the (latent) likelihood  can be written as +-, .0/1 2343 5 6

798 :<; :;=: >@? AB CD4DEGFHFI
,     (2) 

where ( )1 1, ,...,φ θ −′ ′= Fp p , and JK LM N  if observation i is of type f, and 

0 otherwise. Note that the latent likelihood given complete 
observation ( )φ

O
 is to be distinguished from the observed likelihood 

given partial observation, ( )φL . In principle ( )φL  is easily defined: 

P-Q R0ST T
UV W<X WX WY Z[Y\ ]^ ^_ `a , 

however in practice it may be difficult to evaluate (see Lee, 2000) 
and/or difficult to maximise. In what follows I’ll assume that the 
evaluation of b cd ef g

 and its derivative is “straightforward” (or 
known, or at least easier to obtain than the equivalent quantities 
from the observed likelihood).  
 
The latent log-likelihood can therefore be written as  h-i j0kl mnonp�q p�q p�qrts u v v u vuwv x yz { |}~}� �����

.    (3) 
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For a given value of the parameters, collected in � �� ��� �� �������	��
�� �� � �����
, the EM algorithm proceeds first (Expectation 

step) by calculating the Expected latent log-likelihood given what is 
observed (which we represent by �� ), we have  � � �������

� � � �  "!# $%
%&%

'�( ) * '�( +
* + '�( * + '�( ,

-. .-0/ . 1 . 1 . 1 . . 1.21
3

4 35
5 5

687 6
9 9 :;

;�;
< => ? @

> ABCB
D E

E E (4) 

where [ ]E . | .ψ  stand for the conditional expectation calculated with 

the joint distribution indexed by the vector of parameters ψ . In 
particular it can be shown that  F G H IH0I JLKM MM MN
O P QSR QR Q R R QT U R UU VXWVYW
Z [\ ] ^

[_
` `ab

.    (5) 

In the second stage (Maximisation step) c de�f gh ikj
 is maximised 

with respect to l . This procedure is repeated until convergence (i.e. 
until m noqpsrutvoqwyx�z {|}~ �8~�  ). The algorithm is known to be 

monotonic (i.e. the observed likelihood increases), and if convergent 
it solves the likelihood equations. Furthermore in some cases it can 
be shown to yield the maximum likelihood estimator, i.e. � ��q�s�u�v�q�y��� ��� �� . 

 
3 The Hessian of the Observed Likelihood 

In a recent paper Oakes (1999) shows that the Hessian of the 

observed log-likelihood, � �� ��� � ����� ���� , can be obtained from 

derivatives of � ���� ��  k¡
. For all φ , we have  ¢ £ ¢ £ ¢ £¤ ¤ ¤¥�¦ ¥	¦ § ¥�¦ §¨ ¨ ¨ ©«ª¬ ¬k ¬8¬�¬ ¬�¬ ¬� ®¯ °± ± ±² ²² ²³ ´µ ¶· · ·² ²±�± ±�± ±�±² ²¸ ¹ .  (6) 

While we would expect the first term (the information matrix for the 
parameters of the latent model) to be definite negative, the second 
term which represents the missing information is likely to be definite 
positive. In the multivariate context we may expect that the first term 
dominate the second term (in the sense that the difference between 
the two terms is a negative definite matrix). 
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In the context of discrete mixtures the evaluation of the quantities of 
interest is straightforward. Direct calculations of the gradients with 
respect to the components of �  give � � ��� ��� � �	 		 	
	 	�� � ���� �� � � � ���� �� � ���� � � � ���� ��� � ! ! "#" " ,  (7) 

with $�% $ %&& &'( ) *) * +, -- -
./ . , and 0 1 2�3 0�14 445 67 7 8 7 889 9:�; < ; :=>@? . A B C�D CEDF F FFGH I J K L K ML L MKNPO O OQ RS R Q RT
U VW XYZ [ XY XXYW \ ]^

, for all _a``` _b cd e . (8) 

The required second derivatives are then easy to obtain, we have f g h�i j�k j�kl m mm�m mmnmop q r�s rt u t u t ut�u tv w wxzy { y | ||n| }
} }~ � ��~n~ �#� � ,  (9) 

with ��� � �� �� �n��� � �� � �� �� �n�
�� ��n�  and ( ) ( ) ( )1 1

1

;
F

jf if if
f

H Hθ ψ π ψ θ
=

= � . � � ��� � � ���� � �� � � ���� � � �   � ¡¢    ¢   ¡�£¤ ¤ ¤ ¤¥ ¦§ ¦ ¥ ¦¨¨
© ª« ¬® ¯ ¯ ¬ ¬ ¬« « ° ±² ³

,    (10) 

for all ´ µa¶¶¶ µ·¹¸ º» ¼ .  ½ ¾¿ ÀÁÀÂÃ Ä ÅÆÇ È ÉzÊËÌ ÍÌnÌ ,  for all ÎaÏÏÏ ÎÐ ÑÒ Ó .         (11) Ô Õ Ö�× ØÚÙ Ø#ÙÛ ÜÝ Þ ßÞÞnßàá â ã ãäå æ ç æ çæè éëêíì î îïñðòzó ô ôônô õö ÷øönö ù
   

(12) 

where  úüû ý þ ý þÿ �
��� ýÚþ ý þ� � ��� �
	� � ��� �	� �� �

� � � �� � �
�

�
� � � � �� � �� � � � � � � � � � � � � �� � �

����� � �
� � � ���� � �

�  � � �  � �  �! ! !
" # #
$% % %

 
hence if 0 1θ θ= , & ' (*) +,- ./ 011 0243 5 678 9 :9; <>=@? ABDCEGF HHIH JK LMKIK N symmetric and p.s.d. . (12)’ 

Moreover it is straightforward to show that 
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� �
� ��

� � � �
� � �� �

� � �!�"�" "#""$ � " ""
$ � " " " "

" " ""

%&%
%&% %
%&% %%

' '( )* *'�' '�'+ ,- -- -*. (/ 0- -- -1 2* . )
.

3�3
3�3 3
3�3 33

4

4
       (13) 

where 5�6 5 67 88 9 :9 : ; << <=<
>? @>=>A

 .  B C
DFE G�H G�HI J DFE G�H G�HI J

K
L M

M M M ML LL

N�O P
QR S Q S TS Q S S T SQ TS
UV

W W W WV V

X YZ
[ Y [ YZ Z Z Z\

] ^_] ]` a_ _ bc d d d bc bbce fg (14) 

h i
jFk lnm lnmo p j�k lnm lqmo p

r sut
s s s st ts

v�w xyz { y { |{ y { { | {y |{
} ~

� � � �~ ~
� ��

� � � �� � � ��

� ����� � �� � � � �� ���� ��     (15) 

such that whenever φ ψ= , � � � �� �
�u�� �

��� � ��� ���
� ���� � � � ���

�� �� ����� � .  

 
Finally for all   ¡£¢�¢�¢ ¡¤¦¥ §¨ © , we have :  ª «

¬F ® ¯ °F±
°F± °F± °F± °�±

² ³ ´
³F´ ³µ´³
³ ³ ´ ´

¶�· ¸

¹

º »¼ ½ º ½ ¾»¿ºº�º ¾�¾½ ½ º ½ »½ ¾ ½ ¾
º ¾ » ¾

ÀÁ Á
ÁFÁ ÁµÁ
Á Á Á Á

Â Ã
Ä Ã Ä Ã
Ä Ã Ä ÃÄ Ã Ä ÃÅÅ

Æ ÇÆ ÆÈ É ÊË Ì ÍÊË ÊÊËÎ ÏÈ ÉÐÈ ÉÊ ÊË ËÍ ÍÊ ÊË ËÊ ÊÊ ÊË ËÎ ÏÐÎ Ï
Ñ Ò

       (16) 

such that whenever Ó ÔÕ ÕÖ Ö×  for all 1... 1= −f F ,   
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� � � �
��� ��� ��� ���

� �
� � � �

� � � ��

	�
 � 	�
 � �  �� �  � �� � � �
 � � ��

� �� � � �
� � � �

��� ���
� � � �� � � �

�

� �� �� � � �� ��� �  ! !" " "  ! !    ! !# $�# $%     (17) 

which is symmetric in the indices f and g. 
These expressions define the observed information, and therefore can 
be used together to obtain an estimate of the variance covariance of 
the parameters (i.e. by taking the inverse of the observed information 
matrix). 
 

4 Implications 

A first direct consequence of the expression above is that it is in 
principle possible to accelerate the convergence of the EM algorithm. 
At least when the likelihood gradient is small enough (this would 
have to be determined in practice), the calculation of the hessian of 
the observed likelihood allows one or more “safe” Newton Raphson 
step (safe in the sense that it does not lead to a reduction in the 
likelihood) with the advantage of a quicker convergence. Moreover, 
the expressions above can be used in conjunction with the 
acceleration methods proposed elsewhere (on this topic see for 
example Louis, 1982 and Jamshidian & Jennrich, 1997) to lead to 
faster convergence of the EM algorithm.  
  
Furthermore, the formulae above provide expressions, in terms of 
the latent likelihood, for the restrictions that have to hold under 
correct specification, i.e. when the information matrix equality holds. 
In particular, given correct specification and for any value of the 
parameters we have (allowing for the covariates) 

&('
&)'

&�' &(' &(' &('* +
, - . .
, - .

/ /

/ / 021

3 4546 34 7877
36 4 4 4 44

9
9�:

; < <
=

=

>
>

? @ > > >
A A
A

B B CDCE E FDFE E FDFE E FDFHGE E FDFE E FDFE E FDFE E FDFI I JDJB B CKCE E FKFLM GE E FKFI I JKJ

N N
N

O
  (18) 

as a consequence of P QR S TU
V WXWWY Z\[ ] ^H]_` abc

 and differentiating twice 

with respect to d .  Furthermore, we can easily see that (again as a 
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consequence of � �� � ��
� ����	 
��  ���� ���

 this time differentiating with 

respect to θ  first and then with respect to �� ), for all 1... 1= −f F , and 
for � �� : � � ��� ��� ���

��� ���
���

�
� �

  
  !#"

$ %& ' $ %$ %
$ %& ' % ()((

* *+ +, ,
+ ,

-
-

. / . /0 0
0 00 001

2 2 3435 5 6467 85 5 6469 9 :4:2 2 3;3<5 5 6;6<75 5 6;6< <5 5 6;6 85 5 6;65 5 6;65 5 6;65 5 6;69 9 :;:=
   (19) 

These restrictions are the basis of the Information Matrix test (for an 
introduction see Gouriéroux & Monfort, 1995, for more details see 
White, 1994). As an illustration of the type of restrictions obtained, 
consider the example of a mixture involving two types, and such 
that, given the type, the latent distribution of Y  given a vector of 
covariates > , is Poisson with parameter ?A@ B CDFEHGI IJ JK L MN O . In 

this context  P QRTSUTUV WTXYXZ Z[ . 
We have the following expressions for \ ]^_ `

 and a bcd e
 f�g hAij k lm mmno p nqr stvu wxy zwx wwx{v|      (20) 

}�~ � � ��� �� � ���� � � ��� ���� �� ���A� �� ������      (21) 

and therefore  ��� ��� ��� � � �A�� � ���� ��  ¡ ¡ ¡ ¡ ¡ ¡¡¢£ ¤ ¤ ¢ ¥ ¦ ¢ ¢¥§ § § ¨ ¨©vª «¬ ® ¯ ° °«¬ ««¬±v²  (22) 

where fe  is a vector of zeros with a 1 in position f. 

Substituting (22) in (18) and making the required simplifications I 
obtain the restrictions: ³ ´ µ·¶ ¸º¹» ¼ µ·¶ ¸½¹» ¼¾ ¿ÀÁ Á ÂHÃÅÄFÆ Á Á Á ÇÉÈÊ Ë Ì ÌÍÎÍ ÏÑÐ�ÒYÓ ÓÔ Õ×Ö Õ×ÖØ Ø Ù;ÙÚ Û ÜÝ Ý Þ;Þß ß à;à      (23) 

where  áãâ ä åæ ç è é êAë ì í ê�ëî î ï ïð ð ñò ó ô ôõ×ö ÷ øTù ÷ øTùú û    (24) 
and  ü·ý þºÿ� � ��� ���� 	 
�� ���� 	 � �  � �������� � � � ���� � � � � � � ! " !  (25) 
and where #%$&('*),+.-  is the operator which stacks the functionally 
independent elements of a symmetrix matrix. /�0 1�23 4 1�25 67

89 9 :�;< = > > >? @ ? ?A B C D DE E FGFH H IJ J KGKL L MGM  for NPORQS T
.  (26) 
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��� ���� � ���� 	
�� � ��� � � � �� � ���� � � �� � ���� � �� �  � ! ! "�"     for #%$'&( )
. (27) 

The first set of restrictions (23) assesses the heteroscedasticity of an 
average second order residual, *,+ - ./ 0 1,2 3 4/ 05 5 56 6798;:=< <>@? >A?B  , 
while the second set of restrictions in (26) and (27) assesses the 
heteroscedasticity of each type specific second order residual. In 
particular, the last set of restrictions demands that the posterior 
allocation of an observation to a type, C DEF G , and the type specific 

second order residual, H�IJ K L�MNO OP Q QR RS S ,  are uncorrelated. 

 
Following an identical process of substituting (22) in (19) and 
simplifying leads to the following restrictions T U V�W V�WX X Y YZ X Y X Y[ [ \�]^ _ ` `` ab c d c dd d d d

ef f g hji�ikle e mn n o�okl klp qen n o�or r s�s   (28) 
t u vxwy z{ |} ~�� � ���� � � �� �� � � �� �  for ���'�;�� �

   (29) 

where � ��� ��
� ����  for ���' ;¡¢ £

 

The first of this latter set of restrictions (28) requires that ¤x¥ ¤x¥¦ ¦ § §¦ §
¨ ¨© ª « ª «« «

¬¬ ¬  and  ®¯ °± ² ²³  are uncorrelated. For this 

restriction to have any power, ´ µ¶ ¶·  must be different from zero, 
which is equivalent to require that ¸x¹ ¸x¹º »¼ ¼½ ½¾  for all values of ¿ , 
i.e. the two types must be different. The second set (29) requires that 
the posterior allocation to type, À ÁÂÃ Ä  is uncorrelated with the type-

specific residual ÅxÆÇ ÈÉÊ ËÌÍ .
 The generalisation to a larger number of types seems 

straightforward, however how well would such a test perform in 
practice remains to be studied.  In particular, it would be of interest 
to understand how such a test performs when the number of type is 
too small or too large. 
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