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Abstract 
 

Our study revisits Beck and Katz’ (1995) comparison of the Parks and PCSE estimators 
using time-series, cross-sectional data (TSCS).  Our innovation is that we construct 
simulated statistical environments that are designed to closely match “real-world,” TSCS 
data.  We pattern our statistical environments after income and tax data on U.S. states 
from 1960-1999.  While PCSE generally does a better job than Parks in estimating 
standard errors, it too can be unreliable, sometimes producing standard errors that are 
substantially off the mark.  Further, we find that the benefits of PCSE can come at a 
substantial cost in estimator efficiency.  Based on our study, we would give the following 
advice to researchers using TSCS data:  Given a choice between Parks and PCSE, we 
recommend that researchers use PCSE for hypothesis testing, and Parks if their primary 
interest is accurate coefficient estimates.   
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I.  INTRODUCTION 
 

Empirical studies frequently employ data consisting of repeated time-series observations 

on fixed, cross-sectional units.  While providing a rich amount of information, time-series 

cross-sectional (TSCS) data are likely to be characterized by complex error structures.  

The application of OLS to data with nonspherical errors produces inefficient coefficient 

estimates, and the corresponding standard error estimates are biased.  In contrast, GLS 

produces coefficient and standard error estimates that are efficient and unbiased, 

respectively, given certain assumptions.  Two such assumptions are (i) the error 

covariance structure is correctly specified, and (ii) the elements of the error covariance 

matrix are known.  Feasible GLS (FGLS) is used when the structure of the error 

covariance matrix is known, but its elements are not.  The finite sample properties of 

FGLS are analytically indeterminate. 

 Beck and Katz (1995) (henceforth, BK) use Monte Carlo methods to study the 

performance of FGLS in a statistical environment characterized by (i) groupwise 

heteroscedasticity, (ii) first-order serial correlation, and (iii) contemporaneous cross-

sectional correlation.  They dub the corresponding FGLS estimator “Parks” (after Parks 

[1967]).  BK report three major findings:   

1. Parks produces dramatically inaccurate standard errors.  
 
2. An alternative method, based on OLS but using “panel-corrected standard errors,” 

(henceforth, PCSE) produces accurate standard errors. 
 
3. The efficiency advantage of Parks over PCSE is at best slight, except in extreme 

cases of cross-sectional correlation, and then only when the number of time 
periods (T) is at least twice the number of cross-section units (N). 
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Consequently, BK prescribe that researchers use the PCSE procedure when working with 

TSCS data.1   

 BK has been very influential.  A recent count identified over 350 citations, 

primarily in the political science literature (cf. Web of Science, 

www.isinet.com/products/citation/wos).  Their PCSE estimator has been applied in 

studies using both U.S. and international data.  It was recently added as an estimation 

procedure within the statistical software package STATA (StataCorp, 2001).2

 Our paper constructs a statistical environment modeled after real-world TSCS 

data and revisits BK’s analysis of the Parks and PCSE estimators.  We first construct a 

“Parks-type” statistical environment, and then attempt to replicate BK’s findings using 

similar Monte Carlo techniques.  We confirm BK’s result that Parks consistently 

underestimates coefficient standard errors.  However, we find that PCSE can also 

substantially underestimate coefficient standard errors.  Further, we find that PCSE is 

much less efficient than reported by BK.    

 We next construct a completely general statistical environment, and repeat our 

analysis.  We once again obtain the result that PCSE generally does a better job than 

FGLS when estimating standard errors.  However, the standard error benefits of PCSE 

over Parks are less, and the costs in terms of diminished efficiency are greater.   

 Our results suggest that PCSE is superior to Parks when the researcher’s main 

focus is hypothesis testing.  However, even PCSE estimates of standard errors can be 

misleading.  Further, Parks is superior to PCSE when the main concern is obtaining 

                                                 
1 A further advantage of PCSE is that it is able to incorporate cross-sectional correlation when the number 
of time series observations (T) is less than the number of cross-sectional observations (N), whereas standard 
FGLS cannot. 
2 The corresponding command is “xtpcse”. 
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accurate coefficient estimates.  We conclude that researchers should use both procedures, 

relying on the PCSE estimates for hypothesis testing, and Parks for coefficient estimates. 

Our paper proceeds as follows.  Section II re-evaluates BK’s Monte Carlo 

analysis within a  “Parks-type” statistical environment.  We set the values of the elements 

of the population covariance matrix equal to their respective values in real-world TSCS 

data.  Section III repeats this analysis, generalizing the statistical environment so that it 

more closely approximates real-world TSCS data.  Section IV concludes. 

 
II.  RE-EVALUATING BK WITHIN A “PARKS-TYPE” STATISTICAL 
      ENVIRONMENT 
 
IIA.  Methodology for producing a “Parks-type” statistical environment patterned  
         on actual TSCS data 
 
BK build their Monte Carlo analysis around the following TSCS model:   
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where yi is a 1T ×  vector of observations on the dependent variable in the ith group, 

;  XN21i ,...,,= i  is a KT ×  matrix of exogenous variables; β is a 1K ×  vector of 

coefficients; iε  is a 1T ×  vector of error terms; and ε  ~ N(0, NTΩ ).   

 Following Parks (1967), they allow NTΩ  to consist of (i) groupwise 

heteroscedasticity; (ii) groupwise, first-order serial correlation; and (iii) cross-sectional 

(spatial) correlation.  Specifically,  
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They proceed by selecting various combinations of N and T, specifying the elements of 

the respective error covariance matrices (the NTΩ ’s) by positing values for the 

population parameters , , and , iju,σ iρ jρ N1,2,...,ji, = .   

Given NTΩ , experimental observations are generated in the usual manner.  Define 

u as a vector of standard normal random variables.  Define Q  such that NTΩ=′QQ .  

Error terms are created by uQε ′= .  These simulated errors are added to a deterministic 

component, ix0 x ββ + , to calculate stochastic observations of , where iy

iix0i x y εββ ++= ,  i=1,2,…,NT.  BK create the xi’s from a zero-mean normal 

distribution (fixed in all replications), and set 0β  and xβ  equal to 10 in all experiments.  

They perform 1000 replications for each experiment. 

BK compare the (i) Parks and (ii) PCSE estimates of xβ .  They employ several 

performance measures, including “Level” and “Efficiency.”  “Level” calculates the 

percent of estimated 95% confidence intervals that include the true value of xβ .  

“Efficiency” measures the relative efficiency of PCSE to Parks and is defined by 
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An Efficiency value less than (greater than) 100 indicates that PCSE is less efficient 

(more efficient) than Parks. 

IIB.  Constructing a “Parks-type” statistical environment based on actual TSCS  
         data 
 
Our experiments follow BK’s methodology with one major exception:  We pattern our 

simulated statistical environment on actual data according to the following two-stage 

procedure:  In the first stage, we estimate the parameters , , and ,   

from actual TSCS data.  In the second stage, we use these estimated values as population 

values in the subsequent Monte Carlo experiments.  This ensures that our simulated data 

look like real TSCS data.

iju,σ iρ jρ N1,2,...,ji, =

3   

For our “real-world” TSCS data, we use two data sets.  The first data set consists 

of annual, state-level observations on income (specifically, the log of real Per Capita 

Personal Income).  The second data set consists of annual, state-level observations on 

taxes (specifically, Tax Burden, defined as the ratio of total state and local taxes over 

Personal Income).   

We select these data for several reasons.  First, many of the studies that employ 

PCSE use state-level data (Nicholson-Crotty, 2004; Barrilleaux and Berkman, 2003; 

Kousser, 2002; Boehmke, 2002; Crowley and Skocpol, 2001; and Fording, 2001).  

                                                 
3 BK recommend that empirical estimation of PCSE’s restrict the autocorrelation parameters to be the same 
across groups (i.e.,  for all ρρρ ji == N1,2,...,ji, = ).  Accordingly, we directly impose this on the 
simulated statistical environment and then look to the TSCS data to provide a “realistic” value for ρ . 
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Second, both state incomes and state taxes have been the subject of much previous 

research, and continue to be actively researched.4   

 Third, there exists a long time series for both sets of data.  We employ 40 years of 

data, on 48 states (omitting Alaska and Hawaii), covering the period 1960-1999.  A long 

time series is crucial for our approach.  Most studies use time series where T is between 

10 and 25 years (cf. Table 1 in BK).  By having a data series substantially longer that T, 

we can sample multiple T-year, TSCS data sets in order to construct a “representative” 

error structure for a T-year (cross-sectional) time series.  We then use this representative 

error structure to generate experimental observations through the standard Monte Carlo 

procedure.   

 Our approach works like this:  Suppose we want to construct a Parks-type error 

covariance structure ( NTΩ , N=5, T=10) for a regression model with either state income 

or state taxes as the dependent variable.  We begin by choosing the first 5 states in our 

data set.5  Next, we choose the 10-year period, 1960-1969.  We then estimate a fixed 

effects model relating the respective dependent variable (Y) to a set of state fixed effects 

( jD ), and an explanatory variable X (more on X below): 

 , itit1N
j

it

N

1j
jit termerror  XDY ++= +

=
∑ αα

where i=1,2, … ,N; t=1,2,…,T; N=5; T=10; and jD is a state dummy variable that takes 

the value 1 for state j.   We refer to this equation as the “residual generating function.” 

                                                 
4 For literature on state incomes, see Dye and Feiock (1995), Jones (1990), Brace (1991), Brierly and 
Feiock (1993), Hendrick and Garand (1991), Dye (1980), and Brace et al. (1989).  For literature related to 
state taxes/revenues, see Reed (2005), McAtee, Yackee, and Lowery (2003) and Alt and Lowery (1994, 
2000, 2003). 
5 The first 5 states in our data sets are Alabama, Arkansas, Arizona, California, and Colorado. 
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 The residuals from this estimated equation are used to estimate the “Parks-

method” error covariance matrix, , in the standard manner.  Our innovation is that 

we do this for every possible 10-contiguous year period in our 40 year sample (i.e., 1960-

1969, 1961-1970, …, 1990-1999 – a total of 40–T+1 subsamples). We then average these 

error covariance matrices to obtain a “representative” covariance matrix, 

105,Ω̂

105,Ω .  This 

becomes our “population” covariance matrix for the Monte Carlo experiments.   

We proceed by generating experimental observations of , where iy

iix0i x y εββ ++= , i=1,2,…,NT, NT=50, and the errors are simulated from the 

population error covariance matrix, 105,Ω .6  We set the values of 0β  and the xi’s to be 

representative of their respective data sets, and fix the value of xβ  consistent with the 

empirical literature on income/taxes.7   

 Given an experimental data set of NT=50 observations of ( )ii xy , we estimate xβ  

using the Parks and PCSE estimators, respectively.  We perform 1000 replications of this 

experiment, generating 1000 estimates of xβ  for both the Parks and PCSE estimators.  

These 1000 estimates are then analyzed to compare the performance of the two 

                                                 
6 Note that the iε  are orthogonal to the xi by construction.  Further, the influence of fixed effects is “filtered 
out” via the residual generating function employed in the first stage of the data-generating procedure.  
Hence there is no need to include fixed effects in the simulated data generating equation.   
7  For the income equations, we use Tax Burden as the explanatory variable and set 010x .−=β  (see, for 
example, Helms [1985] and Wasylenko [1997]).  For the tax equations, we use the log of real Per Capita 
Personal Income and set 01x .−=β  (see, for example, Reed [2005]).  The fact that each of the variables 
appears in the other residual generating function as an explanatory variable may raise concerns.  With 
respect to the literature, these are common specifications.  As a practical matter, the inclusion/exclusion of 
these explanatory variables in the residual-generating functions has a negligible effect on the results.  Our 
only motivation for including them is to address potential concerns that the resulting error structure be 
independent of the explanatory variable in the simulated data. 
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estimators.  This same procedure can be modified in a straightforward manner to conduct 

Monte Carlo experiments for alternative N and T values. 

At this point it bears revisiting the claim that our procedure approximates the 

error structure that the researcher is likely to encounter in real-life research problems.  

Admittedly, the residual-generating function specified above represents a stripped down 

version of the specifications usually employed by researchers.  Other variables typically 

would be included in the specification.   

 Unfortunately, there is no single specification that dominates the empirical 

literature on state incomes/taxes.  As a result, we experimented with alternative residual 

generating functions that added a lagged dependent variable and/or time fixed effects.  

We found that our main results were qualitatively unaffected by these more elaborate 

specifications.  Accordingly, we only report results based on the residual-generating 

function with state fixed effects.   

 Our study conducts experiments for a wide range of “sizes” of TSCS data sets:  

We set values for N equal to 5, 10, 20, and 48; and values for T equal to 10, 15, 20, and 

25 -- a total of sixteen N and T combinations.  This range encompasses most of the data 

sets reported in BK’s Table 1.   

 The first column of TABLE 1 summarizes salient characteristics of the data for 

the “Parks-type” statistical environment.  The top part of TABLE 1 reports on the income 

data, the bottom part on the tax data.  “Mean R2” refers to the average R2 for the 

respective residual generating functions in the first stage of the data-generating process.  

In other words, a typical fixed-effects regression equation “explained” approximately 
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73% of the variation in the (real) income data, and 70% of the variation in the (real) tax 

data. 

 The subsequent rows characterize the serial correlation, heteroscedasticity, and 

cross-sectional correlation behavior of the simulated data produced in the second-stage of 

the data-generating process, employing the “Parks-type” population covariance matrix, 

Ω .  These data comprised the actual observations used to estima xte β  with the Parks 

and PCSE procedures, respectively.   

 Both the simulated income and tax data evidenced substantial degrees of serial 

correlation.  The average of the estimated ρ̂  values, “Mean ρ̂ ” (averaged over all 

replications and experiments) was 0.61 for the income data, and 0.58 for the tax data.  

 As a measure of groupwise heteroscedasticity, we estimated group-specific 

standard errors ( iσ̂ , i=1,…,N) for each replication and rank-ordered them from smallest 

to largest.  We then calculated a “heteroscedasticity coefficient” (h), defined as the ratio 

of the upper quartile value of iσ̂  over its lower quartile value, again averaged over all 

replications and experiments.  The “heteroscedasticity coefficient” value for the income 

data was 1.24, and the corresponding value for the tax data was 1.59.   

 Finally, both the simulated income and simulated tax data were characterized by 

substantial cross-sectional correlation.  “Mean rij” is defined as the mean (absolute) value 

of the contemporaneous correlation between errors from groups i and j,  averaged over all 

possible cross-sectional correlations, and over all replications and experiments.  “Mean 

rij” for the income data was 0.74, and 0.36 for the tax data.  Note that the income data 

displayed a much greater degree of cross-sectional correlation than the tax data. 
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 In summary, our simulated data were characterized by precisely the kinds of 

statistical problems (i.e., serial correlation, groupwise heteroscedasticity, and cross-

sectional correlation) that the Parks and PCSE procedures are designed to handle.  

IIC.  Monte Carlo experiments assuming a “Parks-type” statistical environment 
 
 TABLE 2 reports the results of our Monte Carlo experiments assuming a “Parks-

type” statistical environment.  Each experiment consisted of a 1000 replications of 

simulated TSCS data of size NT.  Separate experiments were conducted for all sixteen  

NT combinations.  We note that the Parks method is not applicable when N > T, which is 

probably why BK do not report Monte Carlo results for these cases.  However, as BK’s 

Table 1 shows, N > T for many TSCS data sets, and thus we think researchers will be 

interested to know how PCSE fares (in an absolute sense) in these environments. 

 The left hand side of TABLE 2 reports the performance of Parks and PCSE with 

respect to “Level.”  The top panel (Panel A) of TABLE 2 reports the results using the 

simulated income data.  Centering our attention first on the Parks results, we find -- 

consistent with BK -- that Parks substantially, in some cases dramatically, underestimates 

coefficient standard errors, resulting in confidence intervals that are too narrow (i.e., 

“overconfident”).  The Parks “Level” values range from a high of 67.2 percent for N=5, 

T=25; to an abysmally low 8.8 percent for N=20, T=20.  In other words, when N=20 and 

T=20, less than 10 percent of the 95% confidence intervals include the true value of xβ , 

causing the null hypothesis to be rejected much too frequently.  While the biasedness of 

FGLS was known before BK, their work was important in establishing the degree to 

which Parks underestimates standard errors.  Our research confirms this finding of theirs.   
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 Turning now to the PCSE “Level” values, we come across our first surprising 

finding:  While PCSE always does a better job than Parks when estimating confidence 

intervals, it also underestimates standard errors.  The PCSE “Level” values range from a 

high of 88.0 percent (N=48, T=25), to a low of 72.0 percent (N=5, T=10).  Across all 

sixteen NT experiments, the mean “Level” value for PCSE is 79.3, substantially less than 

its “expected” value of 95. 

 The source of our surprise comes from the fact that there is no mention of this 

possibility in BK.  Upon reflection, however, this result should have been anticipated.  

The analytic expressions for the PCSE standard errors, like those for the FGLS standard 

errors, assume that the elements of the population covariance matrix are known.  In 

reality, they are unknown and must be estimated.  Estimation of these parameters 

introduces an additional degree of uncertainty that is not incorporated in the standard 

error formulae.8  Thus, the standard error formulae are biased downwards. 

 The right hand side of TABLE 2 reports the efficiency of PCSE relative to Parks.  

Values less than 100 indicate that PCSE is less efficient than Parks.  The right hand side 

of TABLE 2 makes clear that the improvement of PCSE with respect to standard errors 

comes at a cost of lower efficiency.  Actually, BK would have predicted these 

“Efficiency” results.  They write: 

                                                 
8 The formulae for the Parks and PCSE estimates of the coefficient covariance matrix are 

( ) FGLSParksCov −β̂ =  and ( ) 1−−′ XX 1Ω̂ ( )PCSECov β̂ = ( ) ( )( ) 11 −− ′′′ XXXΩXXX ˆ , respectively.  The reason given 

by BK for the poor performance of ( ) FGLSParksCov −β̂  is that there are relatively few observations to 

estimate the large number of parameters in Ω̂ .  The crux of the problem is this:  “Each element of the 
matrix of contemporaneous covariances is estimated using, on average, 2T/N observations.  Many…panel 
studies have ratios of T to N very close to 1, so covariances are being estimated with only slightly more 
than two observations per estimate!” (page 637).  It should be clear that this problem also affects 

( )PCSECov β̂ , since the same Ω̂  appears in both (Parks and PCSE) covariance expressions.   
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[PCSE] is, as expected, more efficient than Parks when the errors are 
uncorrelated (spherical).  But even when the average correlation of the 
errors rises to .25, [PCSE] remains slightly more efficient than Parks.  
Parks becomes more efficient than [PCSE] when average 
contemporaneous correlations rise to .50, but this advantage is noticeable 
only when the number of time points is at least double the number of 
units.  Even here, the efficiency advantage of Parks over [PCSE] is under 
20%.  Only when the average contemporaneous correlation of the errors 
rises to .75 is the advantage of Parks marked, and then only when T is 
twice N (page 642). 
 

Referring back to TABLE 1 we see that the simulated, income data sets are indeed 

characterized by a high degree of contemporaneous correlation (the average 

contemporaneous correlation across all the data sets used in Panel (A) of TABLE 2 is 

0.74).  Large efficiency costs occur only when T is more than twice the size of N.  

Therefore, we next turn to the tax data, where the average correlation of the errors is 0.36 

(cf. TABLE 1) and, according to BK, cross-sectional correlation should not be much of a 

problem. 

 In fact, the results for the simulated tax data are very similar to those for the 

income data.  Specifically, we once again find that: 

1. Parks substantially underestimates coefficient standard errors, resulting in 
confidence intervals that are much too narrow. 

 
2. PCSE produces more reliable standard error estimates than Parks.  However, 

PCSE also underestimates coefficient standard errors, producing overly narrow 
confidence intervals. 

 
3. The improvement in standard error estimates provided by PCSE comes at the cost 

of decreased efficiency.   
 
 Whether this tradeoff in improved standard error estimation is worth the cost in 

diminished efficiency is, of course, a subjective evaluation that each researcher must 

make for themselves.  However, two things are noteworthy here.  First, we find 

substantial efficiency costs even when the degree of cross-sectional correlation would be 
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in the “acceptable” range according to BK.9  The “Mean rij” value for the tax data is only 

0.36 (cf. TABLE 1), and was never higher than 0.41 for any of the individual 

experiments.   Yet the average “Efficiency” value across all experiments was only 81.9.  

And second, when faced with similar efficiency losses (cf. the last column in their Table 

5, page 642) BK counsel that “researchers should consider alternatives to [PCSE]” (page 

642).  

 We conclude this section by reporting that we obtained these same results using 

several different residual generating functions, all within the “Parks-type” statistical 

environment studied by BK.  Of course, in real life, there is no guarantee that the 

statistical environment falls within the “Parks-type” category.  How do Parks and PCSE 

compare in a statistical environment that more closely matches the kind of TSCS data 

that researchers are likely to encounter in real life?  That is the subject of our next 

section. 

 
III.  EXTENDING BK’S ANALYSIS TO A MORE GENERAL STATISTICAL 
       ENVIRONMENT 
 
While a “Parks-type” statistical environment is generally viewed as being quite general, it 

should be noted that it imposes substantial limitations on Ω.  Given that ε  is 1NT × , 

there are ( )
2

1NTNT +  unique parameters in the unrestricted version of Ω.  In contrast, 

there are 
2

N3N 2 +
 unique parameters in the Parks specification of Ω (counting the 

group-specific AR[1] parameters).  In other words, the Parks model scales down the 

                                                 
9 In BK’s Table 5 (page 642), “Efficiency” is never below 100 when the average contemporaneous 
correlation is 0.25.  For experiments where 20N10 ≤≤ , 30T10 ≤≤  and the average contemporaneous 
correlation is 0.50, “Efficiency” is never below 88.  Compare this to the results in Panel (B) of TABLE 2:  
Here, “Efficiency” is always less than 88 except when T=N. 
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number of unique parameters in Ω by approximately 2T
1 .  As it is common in empirical 

studies using TSCS data for T to range between 10 and 25 years of data (or more), this 

constitutes a substantial restriction on Ω.  Since both FGLS (Parks) and BK’s PCSE 

procedure are not designed to be applied outside the “Parks-type” statistical environment, 

it is unclear how they will behave, both absolutely and relatively, in a more “realistic” 

statistical environment.   

 This section addresses the following questions:  Suppose one uses a “real-world 

data set” and assumes (incorrectly) that it fits the Parks-type statistical model.  Will 

PCSE still underestimate coefficient standard errors?  Will PCSE still do a better job than 

Park of estimating standard errors?  And will PCSE still be less efficient than Parks?  

While BK never compare Parks and PCSE outside a “Parks-type” statistical environment, 

we think that researchers will find our results of interest given the widespread popularity 

of the PCSE methodology.  

 To construct our more general statistical environment, we repeat the process 

described in Section (IIB) up to the point where the residuals from the “residual 

generating function” are used to construct the sample covariance matrix.  Rather than 

constructing a “Park-type” error covariance matrix, we construct the unrestricted error 

covariance matrix,  (similar to how “robust” covariance matrices are 

calculated).  As before, these sample covariance matrices are then averaged to obtain the 

“representative” error covariance matrix, 

ee ′=NTΩ̂

NTΩ .  NTΩ  becomes the “population” 

covariance matrix for the subsequent NT Monte Carlo experiment.   
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 The right-hand side column of TABLE 1 reports the salient characteristics of the 

data for this generalized statistical environment.  Of course, “Mean R2” is the same as in 

the left-hand side column, since the first-stage of the data-generating process – which 

produces the residuals used to construct the sample covariance matrices – is identical 

(same original data, same residual generating functions).  While the specific values differ, 

it is clear that the simulated data in this “generalized statistical environment” are likewise 

characterized by substantial degrees of serial correlation, groupwise heteroscedasticity, 

and cross-sectional correlation. 

 TABLE 3 reports the results from the Monte Carlo experiments.  These results are 

somewhat different from those of TABLE 2.  For example, it is no longer true that Parks 

and PCSE always underestimate coefficient standard errors.  When these procedures are 

applied in a “generalized statistical environment,” they can either under- or over-estimate 

coefficient standard errors.  For example, for the income data, the “Level’ values for 

Parks range from a low of 39.9 (N=20, T=20) to a high of 100 (several experiments).  

For the tax data, the corresponding range is 48.6 to 100.  The same is true for the PCSE 

estimates:  For both income and tax data, the corresponding “Level” values lie on both 

sides of 95. 

 Nor is it necessarily the case that PCSE always produces more accurate 

hypothesis tests than Parks.  For example, for the income data when N=10 and T=20, 

Parks produces a marginally more accurate “Level” result than PCSE (96.1 versus 97.6). 

Similar examples can be found for the tax data.  Indeed, were it not for a couple of 

egregious exceptions (N=10/T=10 and N=20/T=20), one might even be led to conclude 

that Parks was as good, if not slightly better, than PCSE for hypothesis testing with these 
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latter data.  That being said, PCSE overall appears to estimate coefficient standard errors 

more accurately than Parks.  However, PCSE can also be grossly inaccurate.  For 

example, there are cases where PCSE estimated coefficient standard errors that are twice, 

or more, their true size.10

 Turning now to “Efficiency,” we see that it is still true that there are efficiency 

costs in using PCSE rather than Parks to estimate xβ  .  If anything, the efficiency costs 

are greater in the “generalized statistical environment.”  The average value of 

“Efficiency” over all sixteen experiments was 51.8 for the income data, and 76.3 for the 

tax data.  The latter value would have been considerably lower were it not for one outlier 

case where PCSE was substantially more efficient than Parks (N=5, T=25).  Both values 

are lower than their counterparts in TABLE 2.  Further, it is no longer true that PCSE 

compares well with Parks on efficiency grounds when N and T are approximately equal.  

This is evidenced by both income and tax data (cf. N=10/T=10 and N=20/T=20). 

 The following summarizes our main findings from this analysis of the Parks and 

PCSE estimators within a “generalized” statistical environment: 

1. In a “generalized” statistical environment, both Parks and PCSE can either under- 
or overestimate coefficient standard errors, so that we cannot sign the direction of 
the bias associated with using these techniques for hypothesis testing. 

 
2. PCSE usually, but not always, produces more reliable standard error estimates 

than Parks.  However, PCSE estimates can sometimes be highly unreliable. 
 
3. Whenever PCSE provides a benefit in the form of more accurate standard error 

estimates, it comes at a cost of reduced efficiency. 
 

                                                 
10 This was true for the income data when N=5 and T=10; and true for the tax data in the following cases: 
N=5/T=15; N=10/T=20; N=10/T=25; and N=20/T=25.  While not reported in the text, we calculated a 
“Standard Error Ratio” consisting of the ratio of the average estimated standard error based on the  
associated covariance formula, over the sample standard deviation calculated from the 1000 values of  .  
This is essentially the inverse of BK’s “Overconfidence” measure. 

xβ̂
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We note that these findings remained valid when alternative, more fully specified 

residual-generating functions were used to construct our statistical environments. 

 
IV.  CONCLUSION 

 
Time-series, cross-sectional (TSCS) data are extremely useful to researchers and have 

been widely employed in published research.  However, the complex nature of the 

associated error structure can cause inaccurate estimates of coefficients and their standard 

errors.  Beck and Katz (1995) study the properties of FGLS (Parks) and “OLS with 

Panel-Corrected Standard Errors” (PCSE) within a simulated statistical environment 

characterized by serial correlation, groupwise heteroscedasticity, and cross-sectional 

correlation.  They find that Parks produces estimates of coefficient standard errors that 

are too small, and that the extent of this bias can be substantial.  In contrast, PCSE 

produces accurate estimates of standard errors, at little to no cost in efficiency, except in 

extreme cases.  Consequently, BK prescribe that researchers use the PCSE procedure 

when working with TSCS data 

 Our study revisits BK’s comparison of the Parks and PCSE estimators.  Our 

innovation is that we construct simulated statistical environments that are designed to 

closely match “real-world,” TSCS data.  We pattern our statistical environments after 

income and tax data on U.S. states from 1960-1999.  For these data, we find that the 

benefits of PCSE are smaller, and the costs greater, than a reading of BK would suggest:  

While PCSE generally does a better job than Parks in estimating standard errors, it too 

can be unreliable, sometimes producing standard errors that are substantially off the 

mark.  Further, we find that the benefits of PCSE can come at a substantial cost in 

estimator efficiency. 
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 Based on our study, we would give the following advice to researchers using 

TSCS data:  Given a choice between Parks and PCSE, we recommend that researchers 

use PCSE for hypothesis testing, and Parks if their primary interest is accurate coefficient 

estimates.  We caution that our advice is predicated on the assumption that researchers’ 

TSCS data resemble our simulated income and tax data.  It would be valuable to 

supplement our findings with results from other simulated statistical environments 

patterned after actual TSCS data.  That is a topic for future research.   
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TABLE I 
Summary of Diagnostics 

 
 

“PARKS-TYPE”  
STATISTICAL ENVIRONMENT 

GENERALIZED  
STATISTICAL ENVIRONMENT 

 
 

Income Data 
 

 

Mean R2 0.728  0.728
Mean ρ̂  0.61  0.82

Mean ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

percentile th25

percentile th75h
σ
σ
ˆ
ˆ

 1.24  1.31

Mean 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

jjii

ij
ijr

,,

,

ˆˆ
ˆ

εε

ε

σσ
σ

 0.74  0.64

   
 

Tax Data 
 

Mean R2 0.701  0.701
Mean ρ̂  0.58  0.64

Mean ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

percentile th25

percentile th75h
σ
σ
ˆ
ˆ

 1.59  1.55

Mean 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

jjii

ij
ijr

,,

,

ˆˆ
ˆ

εε

ε

σσ
σ

 0.36  0.41

   
 
NOTE:  Means are calculated over all replications (1000 replications per experiment) and experiments (a total of 16 
experiments based on 16 possible N and T combinations). 
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TABLE II 
Performance of Parks and PCSE Estimators in a “Parks-type” Statistical Environment

 

A.  Income Data 
 

Level  Efficiency
 T=10        T=15 T=20 T=25 T=10 T=15 T=20 T=25

Parks 62.1    65.2 67.1 67.2N=5 PCSE 72.0        72.6 77.5 76.9 101.4 98.9 79.6 58.8

Parks 29.2    49.3 51.1 49.4N=10 PCSE 79.6        75.3 75.3 81.6 98.2 94.1 84.8 61.6

Parks ----    ---- 8.8 11.2N=20 PCSE 82.5        79.3 78.8 86.9 ---- ---- 98.0 83.6

Parks ----    ---- ---- ----N=48 PCSE 82.1        78.7 81.9 88.0 ---- ---- ---- ----

Parks 46.1 
MEAN 

PCSE 79.3 
85.9 
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TABLE II: Continued 
Performance of Parks and PCSE Estimators in a “Parks-type” Statistical Environment

 

B.  Tax Data 
 

Level  Efficiency
 T=10        T=15 T=20 T=25 T=10 T=15 T=20 T=25

Parks 66.1    70.2 76.5 77.6N=5 PCSE 83.3        82.0 84.6 86.1 84.9 77.8 72.2 71.7

Parks 23.4    52.3 61.0 65.3N=10 PCSE 86.1        85.3 87.1 86.0 96.8 84.0 76.0 72.8

Parks ----    ---- 8.4 23.2N=20 PCSE 87.6        89.9 87.4 86.6 ---- ---- 97.4 85.7

Parks ----    ---- ---- ----N=48 PCSE 86.5        88.0 90.0 89.8 ---- ---- ---- ----

Parks 52.4 
MEAN 

PCSE 86.6 
81.9 

 
NOTE:  “Level” and “Efficiency” are defined in the text.(cf. Section IIA).  “Mean” refers to the average value over all replications 
(1000 replications per experiment) and all experiments.  For the PCSE “Level” estimates, there are a total of 16 experiments.  For the 
Parks “Level” estimates and the “Efficiency” estimates, there are only 10 experiments, because Parks cannot be calculated when N < 
T. 
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TABLE III 
Performance of Parks and PCSE Estimators in a Generalized Statistical Environment

 

A.  Income Data 
 

Level  Efficiency
 T=10        T=15 T=20 T=25 T=10 T=15 T=20 T=25

Parks 100    100 99.9 99.8N=5 PCSE 100        100 83.7 98.8 95.2 48.5 30.6 21.6

Parks 81.7    100 96.1 93.0N=10 PCSE 100        99.4 97.6 97.5 49.8 28.6 49.0 52.9

Parks ----    ---- 39.9 59.7N=20 PCSE 96.0        94.2 98.9 96.2 ---- ---- 77.6 64.7

Parks ----    ---- ---- ----N=48 PCSE 94.2        91.0 99.7 87.5 ---- ---- ---- ----

Parks 87.0 
MEAN 

PCSE 95.9 
51.8 

 
 

 24



TABLE III: Continued 
Performance of FGLS and PCSE Estimators in a Generalized Statistical Environment

 

B.  Tax Data 
 

Level  Efficiency
 T=10        T=15 T=20 T=25 T=10 T=15 T=20 T=25

Parks 100    100 99.6 99.7N=5 PCSE 100        100 100 100 38.5 74.2 100.3 176.4

Parks 72.9    99.4 99.8 99.7N=10 PCSE 100        99.9 100 100 60.4 37.5 65.9 81.2

Parks ----    ---- 48.6 90.9N=20 PCSE 98.9        99.8 100 100 ---- ---- 72.3 56.4

Parks ----    ---- ---- ----N=48 PCSE 98.8        100 100 100 ---- ---- ---- ----

Parks 91.1 
MEAN 

PCSE 99.8 
76.3 

 
NOTE:  “Level” and “Efficiency” are defined in the text.(cf. Section IIA).  “Mean” refers to the average value over all replications 
(1000 replications per experiment) and all experiments.  For the PCSE “Level” estimates, there are a total of 16 experiments.  For the 
Parks “Level” estimates and the “Efficiency” estimates, there are only 10 experiments, because Parks cannot be calculated when N < 
T. 
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