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Abstract
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1 Introduction

Although structural vector autoregressive (SVAR) models are frequently used

for asset markets, not enough attention has been paid on the identification

methods in these models. For identification, most of the studies on asset

markets use contemporaneous restrictions due to Sims (1980), which restrict

the responses of variables to shocks on other variables contemporaneously

(e.g., Eun and Shim, 1989; Karolyi, 1995; Chen et al., 2002; Hsiao et al., 2003;

Knif and Pynnonen, 1999). However, as Sarno and Thornton (2004) note

asset prices respond to news rapidly, and these contemporaneous restrictions

are not appropriate. Long-run restrictions in the sense that one variable is

neutral to the shocks in another variable is another approach for identifying

SVARs (Shapiro and Watson, 1988; Blanchard and Quah, 1989), but this

approach is not appropriate for asset markets either since there is usually no

reasonable long-run restriction in the asset markets.

We believe that in order to identify a SVAR model in asset markets,

a customized identification approach, which is based on the properties of

asset markets, should be used.1 In this paper we present such a customized

approach.

In asset markets, under perfect efficiency, news is processed immediately

and completely resulting zero serial correlation in asset returns. However,

since Lo and MacKinlay’s (1988) finding of significant serial correlation in

stock returns, similar findings have been documented by various studies,

and return predictability was registered as part of the ‘new facts in finance’

1Recently, several studies used such customized identification approaches to identify
the effects of a monetary policy shock. For example, in an interesting study Faust et al.
(2004) impose restrictions on the dynamics of the impulse responses by assuming that
responses of the fed funds rate to policy shocks match the impulse responses estimated in
the futures market.
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(Cochrane, 1999).2

We use these documented deviations from efficiency in asset markets to

link the contemporaneous responses of the variables to their long-run re-

sponses. More specifically, we assume that contemporaneous reactions to

news deviate from long-run reactions because of two obstacles. One obstacle

is related with the domestic market and the other one is related with the

foreign market that the news originates from. Using these two obstacles, we

formulate the degree of immediate utilization of j-th market news in i-th

market and then use it as a constraint on the model parameters to identify

the structural VAR model parameters along with the degree of inefficiency

measures by employing a constrained maximum likelihood (ML) estimation.

While this approach identifies the column vectors of the variance decompo-

sition matrix, it does not identify the locations of these column vectors in

the matrix. This is analogous to the indeterminacy of column locations of

a matrix C whose columns are eigenvectors of a matrix A, i.e. CΛC−1 = A

where Λ is a diagonal matrix that holds the eigenvalues of A. In order to

identify the locations of the columns, we assume that idiosyncratic market

shocks explain their own asset markets’ variations at least as much as they

explain other markets’ variations.

Using this novel approach, we identify a SVAR model and study the

changes in the transmission of shocks among the largest four European stock

markets since the commencement of the Economic and Monetary Union

(EMU) in the financial markets on January 1, 1999. We find that while

2The literature has pointed out various reasons for possible sources of autocorrelation in
the stock returns. For example, some studies note the importance of psychological biases
which result in overreaction/underreaction to news (e.g., Barberis et al., 1998), some other
studies highlight the information processing constraints due to Sims (2003), (e.g., Hong et
al., 2003).
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the UK shocks were dominant before 1999, German innovations have been

playing a very important role since 1999.

We also study the characteristics of the inefficiency measures by checking

whether the estimated inefficiency measures are consistent with the impli-

cations of the rational inattention model of Sims (2003). If agents tend to

pay more attention to the more important news sources and tend to ignore

the less important ones, then we expect to find a negative relation between

the measure of inefficiency with respect to a particular news source and the

relative importance of that news source. We find a significant negative re-

lation between these two elements consistent with the rational inattention

explanation.

In the next section we present a framework to model the informational

efficiencies in the stock markets using a structural VAR model. Section 3 dis-

cusses the implications of the rational inattention model. Section 4 presents

the results and the last section concludes.

2 A novel structural VAR model

2.1 Short-run asset market inefficiencies

Suppose that returns in n assets are stacked in the vector rt = (r1t, ..., rnt)
′

which is covariance stationary with a Wold representation

rt = Φ(L)εt (1)

where Φ(L) = φ0 + φ1L + φ2L
2 + ... and φ0 = I, εt is serially uncorrelated

and E[εtε
′
t] = Ω for all t. Assuming that Φ(L) is invertible, rt has a reduced

form VAR representation

Ψ(L)rt = εt (2)

4



where Ψ(L) = Φ(L)−1 and Ψ0 = I.

Suppose that ut represents the idiosyncratic asset specific shocks ut = A−1εt

with E(utu
′
t) = I so that3

AA′ = Ω. (3)

From equation (1) we get

rt = Φ(L)Aut. (4)

Under efficient market hypothesis a shock should cause immediate adjust-

ment of the asset prices. That is, the full impact of an idiosyncratic shock

Φ(1)A should be reflected in the prices immediately after ut is observed so

that Φ(1)A = Φ(0)A. But since we have φ0 = I, the initial utilization of news

is represented by A and our perfect efficiency condition becomes Φ(1)A = A.

In other words, if rt is an efficient market variable and the agents efficiently

incorporate all the information in their decisions, the vector moving average

coefficient matrices φi, i ≥ 1, should be zero. Based on this, one can con-

struct a measure for the immediate utilization of the j-th market news in the

i-th market as

θ0,ij ≡ e′iAej

e′i (Φ(1)A) ej

(5)

where ei denote i-th column of the identity matrix. In equatioin (5) the

numerator represents the immediate utilization of news and the denominator

represents the full impact of news. When θ0,ij = 1, the asset prices in the

i-th market are efficiently formed with respect to the information in the j-th

market; when θ0,ij < 1, agents initially under react to news from the j-th

3In this study, we assume that the commonalties among the asset markets are driven
mainly by transmission of uncorrelated idiosyncratic asset market shocks across the mar-
kets. If it is assumed that market shocks are correlated with each other, then generalized
VAR models due to (Koop et al., 1996; Pesaran and Shin, 1998) can be used to study the
transmission of shocks.
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market; and when θ0,ij > 1 agents initially over react to the news from the

j-th market.

In order to identify the SVAR we impose a structure on the inefficiency

measure θ0,ij. To model the θ0,ij, we consider two obstacles that cause devi-

ations from efficiency: One related with the asset market that is of interest

and one related with the market the shock originates from. There can be

various interpretations of these obstacles. For example, if rt denotes the vec-

tor of stock market returns in n countries, the first source of inefficiency may

be related with the sentiment of a typical investor in one country or it may

be related with the institutions in that country. Similarly, the second source

of inefficiency may be related with a typical investor’s utilization of news

from a specific country or it may be related with the country’s institutions

that may affect the announcement and interpretation of news. Briefly, the

first obstacle affects how a particular stock market investor utilizes a typical

information and the second obstacle affects how a particular news source is

utilized by a typical investor.

The reaction coefficient of the agents in market i is denoted ki. The

reaction coefficient of agents to market j news is denoted dj. If ki > (<)1

we say that the agents in market i typically overreact (underreact) to news.

If dj > (<)1 we say that agents typically overreact (underreact) to the j-th

market news. When market j is shocked, the total reaction in market i is

measured as kidj. Then optimum value of the kidj is 1 and any deviation of

kidj from 1 is considered as a mis-reaction to news. As before, if kidj > (<)1,

we say that agents in market i over (under) react to the news originating

from market j. From equation (5), substituting θ0,ij = kidj, we get a relation
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between the initial reaction to news and the final impact of it4

Aij = kidj (e′iΦ(1)Aej) (6)

or in matrix notation

A = KΦ(1)AD (7)

where K and D are diagonal matrices K = diag(ki, i = 1 . . . n) and D =

diag(dj, j = 1 . . . n). The initial utilization of news in the whole system can

be represented by n× n matrix

Θ0 = {θ0,ij, i, j = 1 . . . n} = K1D

where 1 is a n× n matrix of ones so that [Θ0]ij = kidj.

To estimate the model parameters including the n2 elements of matrix A,

one can maximize the likelihood function subject to the constraints given in

equation (7). Formally, one can solve the problem

max
Aij ,ki,dj

− log(|AA′|)− trace[(AA′)−1Ω̂]

(8)

s.t. Aij = kidje
′
i [Φ(1)A] ej, i, j = 1, . . . , n.

where Ω̂ denotes the n× n estimated variance covariance matrix.

2.2 Identification

If there are matrices A∗, K∗ and D∗ that satisfy equations (3) and (7) then

they also solve the maximization problem given in (8). So the basic idea

behind our identification method is that while we introduce 2n unknowns

via K and D matrices, we also introduce n2 equations in the system through

4In section 2.3 we propose a flexible estimation method to relax this structure and
check for the robustness of the results.
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equation (7), which, we hope, are sufficient for identifying the system for a

suitable n. In order to satisfy both equations, the order condition is given by

n ≥ 3 since the number of unknowns is n2 +2n and the number of equations

is (3n2 + n)/2. However, even if n ≥ 3, the parameter estimates still cannot

be determined uniquely. To see this rewrite equation (7) as

AD−1A−1 = KΦ(1). (9)

Suppose K∗ is a solution for K in equation (9), then A and D can be calcu-

lated using Jordan decomposition such that D contains the reciprocals of the

eigenvalues of K∗Φ(1) and A contains the corresponding eigenvectors. But

since the order of the eigenvalues in matrix D can be selected arbitrarily,

i.e. which eigenvalue will be the first, second, and so on, the corresponding

columns of matrix A can be selected arbitrarily as well. Moreover, the same

arbitrary selection of columns is true for the second condition AA′ = Ω, which

is implied by the maximum likelihood estimation too. Since AA′ =
∑

i aia
′
i

where ai is column i of A, switching the locations of two columns does not

change the value of AA′ but only the order of aia
′
i in the summation. All

of these imply that while we can detect the column vectors in matrix A, we

cannot identify the location of the columns in the matrix. Fortunately, a

refinement process can be applied without imposing any strong assumptions

and the position of the columns can also be identified.5

For elimination of unreasonable matrix formations of the matrix A, we

assume that, in terms of explained share in the steady-state variance decom-

positions, the idiosyncratic market shocks have the largest impact on the

own-markets. Note that this assumption does not rule out the case that, for

5The identification is a problem for individual K and D matrices too. But this is not a
major problem since kidj , i.e. the elements of Θ0, which are of great interest, are uniquely
identified.
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example, German shocks explain, say, 60 percent of the variation in French

stock market while French shocks explain less than 10 percent of French stock

market variation. Such a case is totally consistent with our assumption. But

in this case the assumption suggests that German shocks should explain more

than 60 percent of German stock market variations and French shocks should

not account for more than 10 percent of another country’s stock market vari-

ations. So if i-th market’s explained share of variation by the j-th market’s

shocks is represented by (i, j)th element of matrix V, then our assumption is

equivalent to arranging the columns of the steady-state variance decomposi-

tions such that in each column the largest number locates on the diagonal of

the matrix V . But it is not the same as arranging the columns of the matrix

such that in each row the largest number locates on the diagonal.

2.3 Constrained ML estimation and penalty function

Since the constraints imply n2 restrictions on the parameters, a maximization

algorithm that can handle large number of constraints can be used to solve

the problem given in (8).6 Note that the problem given in equation (8) can

be represented in a more general form by constructing the penalty function

problem

min
A,K,D

pl [Lu − L(A)] + pc


∑

ij

[A−KΦ(1)AD]2ij


 (10)

where L(A) = −T
2
(log(|AA′|)+trace[(AA′)−1Ω̂]), Lu is a predetermined value

of the likelihood function such as the unconstrained maximized value of the

relevant part of the likelihood function, e.g., Lu = L∗u ≡ −T
2
(log(|Ω̂|) + n).

6For example, Interactive Matrix language package of SAS (SAS/IML) has two non-
linear optimization functions “nlpmns” and “nlpqn” that can be used.
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The penalty function (10) is quite general and any constrained and un-

constrained maximization problem can be expressed as a special case of this

minimization problem by changing the penalty coefficients pl and pc. For

example the problem given in (8) is the case when pc → ∞ and pl > 0.

Similarly, the unconstrained maximization of the likelihood function is the

special case when pc = 0 and pl > 0.

Now consider the case in (8) so that pl > 0 and pc → ∞. In this case

the restrictions given in equation (7) will be fully satisfied at the expense

of possibly large deviations from zero in the first part of the minimization

problem. In this case, the maximized value of likelihood function could be

very low compared to the unconstrained maximized likelihood value, the

overidentifying restrictions could be rejected, and the estimates would not

be valid since the model information provided in the variance covariance

matrix of the system would be largely destroyed by the imposed constraints.

An alternative approach would be relaxing the restrictions imposed by

equation (7). For example, instead of assuming that Aij = kidje
′
i [Φ(1)A] ej

is a deterministic process and exactly satisfied, we can let some small per-

turbations vij so that

Aij = kidje
′
i [Φ(1)A] ej + vij

and minimize the sum of squares of the elements of A−KΦ(1)AD as given

in (10). For example, when pl → ∞ and pc > 0, the likelihood function

will reach its unconstrained maximum value and the elements of the matrix

|A −KΦ(1)AD| will be minimized. This way, while the model information

summarized in Ω̂ will not be disturbed at all, the information imposed by the

constraints will be utilized in the best possible way. This is an interesting

way for identification since the constraints are used to filter out a large set
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of unreasonable solutions Ã whose likelihood functions give the same value

as L∗, i.e. L(Ã) = L∗, but do not fit with the assumptions behind the

constraints.

One can estimate the model with several different values of pl and pc to

check for the robustness of the estimates. If the estimates are very sensitive

to the values of pl and pc, then it would mean that the constraints are not

suitable for the model. To check for the robustness of our results we solve

the minimization problem given in (10) for three different cases:

i. when the likelihood function is maximized so that it reaches its uncon-

strained value and the constraints are utilized as well (pl → ∞ and

pc > 0); and,

ii. when pl >> 0 and pc > 0 is selected such that the estimated LR

statistic is less than LR∗ = 3 (an arbitrary selection to perturb the

model a little such that LR test does not reject the null hypothesis at

5 percent significance level even when the degrees of freedom is one).7

iii. when the constraints are fully satisfied at the expense of the information

in the variance-covariance matrix of the system (i.e., pc → ∞ and

pl > 0);

As we show later, while the results change somewhat in numerical values

for these three cases, the pattern of the variance decompositions generally

does not change and, more importantly, the conclusions of this study hold

for all three cases.

7Note that this case can be estimated by setting Lu = L∗u − LR∗
2 and pl →∞, pc > 0.
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3 Implications of rational inattention

Rational inattention model of Sims (2003) implies that agents have limited

information-processing capacity, which causes inefficient usage of informa-

tion. Implications of such a model on stock markets is presented by Peng

and Xiong (2002). They assume that investors have only limited total ca-

pacity and allocate their limited capacity on the most important factors and,

ignore some of the less relevant factors. Under this model we expect that the

degree of inefficiency in utilization of country j news in country i stock market

prices should be inversely proportional to the share of explained steady-state

variance of country i stock market prices by country j shocks.8

We can construct a measure of inefficiency using θ0,ij − 1 which gives the

degree of overreaction to j-th country’s news in i-th country’s stock market.

Alternatively, for measuring the degree of inefficiency, it will be useful to

ignore the direction of the reaction and just concentrate on the deviations

from perfect efficiency. If we take the absolute value of the deviations from

perfect reaction, we get such a measure

πij = |θij − 1| (11)

which is monotonic with respect to the absolute deviations from efficiency.

The share of how much of the variation in stock prices in the i-th variable

is accounted for by the j-th variable at the steady-state can be computed as:

wij =
(e′iΦ(1)Aej)

2

e′iΦ(1)AA′Φ(1)′ei

(12)

where the denominator gives the total variation in the i-th stock price and

the numerator gives the explained variance by the j-th innovation.

8Such a model is somewhat trivial and is available from the author.
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The rational inattention model implies that if πij = f(wij) where f (wij) ≥
0 for all wij, then we should have f ′ < 0. The validity of this conjecture is

checked when we discuss the empirical results.

4 Empirical results

4.1 The data and a preliminary analysis

We use daily stock index returns for the largest four countries of Europe:

Germany, the UK , France and Italy. The stock indices used are the Frankfurt

DAX 30 (Germany), the FTSE 100 Share Index (the UK), the CAC 40

Composite Stock Index (France) and the MIBTEL Index (Italy). The data

are downloaded from finance.yahoo.com. The data range from Jan. 1994 to

Dec. 2003. We pick this sample period on purpose so that Jan-1999, the

start of final stage of the Economic and Monetary Union (EMU) is at the

center of the sample period.

Table 1 presents the correlations for the daily stock returns over 1994-1998

and 1999-2003 periods. As it is seen from the table, the correlations seem

to be quite high and tend to increase even more after 1999. For example,

the correlation between German and French stock returns were 0.69 during

1994-1998 period, but it increased to 0.93 during 1999-2003 period. This

pattern can be seen for the other countries too.

Trading hours of these stock exchanges is an important determinant of

the identification method. If, for example, the trading hours did not over-

lap between these markets, then identification using Cholesky decomposition

would be reasonable. However, there are significant overlaps in trading hours

of these markets although they usually do not have exactly the same hours.

Moreover, in recent years several European stock exchanges made arrange-
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ments among themselves for synchronous trading.

One may wonder the impact of using Cholesky decomposition for identi-

fication in SVAR model. In order to demonstrate the importance of the or-

dering of the variables in the Cholesky decomposition, we estimate a VAR(2)

model on daily stock returns over 1994-1998 and 1999-2003 and use Cholesky

decomposition for identification. We employ two different orderings: i) Ger-

many, the UK, France, Italy; ii) the UK, Germany, France, Italy. The steady-

state variance decompositions are presented in Table 2. A look at the first

two rows will be sufficient to understand the impact of ordering. When Ger-

many is the first country in the ordering (top panel in the table), the UK

shocks have almost no effect on German stock prices (1.9 and 0.0 percent in

the pre-EMU and post-EMU periods respectively) and German shocks have a

very large impact on the UK stock prices (42.5 and 56.9 percent). But when

the UK is the leading country in the VAR (bottom panel), we get exactly the

opposite results. In this case, German shocks have almost no effect on the

UK stock prices (2.3 and 0.2 percent) but the UK shocks have a quite signif-

icant impact on German stock prices (50.0 and 46.0 percent). These results

suggest that it is not possible to draw a conclusion about the transmission

of shocks between the stock exchanges using Cholesky decomposition.

4.2 Identification of SVAR: An example

As noted earlier, by solving the constrained maximization problem we can

identify the column vectors uniquely but we cannot identify the positions of

these column vectors in the A matrix. This means that with different initial

conditions numerical maximization problem yields the very same vectors but

the position of the vectors in the matrix change. The same is true for Φ(1)A
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and for the steady-state variance decompositions calculated using (12) too.

In order to identify the locations of the columns in the matrix, we will use

our identifying restriction on the steady-state variance decompositions.

To understand the identification problem and our solution, we present an

example in Table 3. Table presents both the initial estimate of the steady-

state variance decomposition estimates and the final version of them after

we use our assumption to identify the location of the vectors. In the left

part of the table we present the initial estimates of vectors with titles, Vec1,

Vec2, Vec3 and Vec4. Note that, the locations of these column vectors are

arbitrarily selected. If we had used different initial conditions, we could have

found exactly the same vectors but they could be ordered, say, Vec2, Vec3,

Vec4 and Vec1. Our aim is to relate these vectors with country innovations.

The explained share of variation by each country is shown in the columns

of the table. The largest number in each column is shown in bold. If vec-

tor 1 were consistent with our assumption then the largest number in the

first column should be located in the first row, that is, for Germany. But

at its current position, the largest explained variation is for France (i.e., 33

percent). So this column should be in the third place to represent the in-

novations to France. Similarly, the largest number in the third column is

located in the first row (42 percent) and so this column should locate in the

first column. After this reshuffling of columns, we can now name the columns

with the corresponding country names, which is given on the right side of

the table.

In the previous example there was one bold number in each row. If we

have more than one bold numbers in a row, we can have several alternatives

for identification. First, a mechanical solution for identification would be to
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design a method that penalizes the degree of deviations from our assumption.

It is also possible to use any additional a priori information on the structure

of the matrix other than the assumption we made. For example, it may be

necessary to pick one dominant country among two countries as the leader.

Notice that such an assumption is much weaker than imposing restrictions

on matrix A (i.e., with Cholesky ordering), as it is usually done. If there are

no reasonable assumptions to refine the results, then it may be a good idea

to accept that there is more than one matrix formation that can explain the

system. In this case, as long as the possible explanations are not too many,

we can still get valuable information from this approach.

4.3 SVAR results

We estimate the model in two steps. In the first step, we estimate a VAR(2)

model where disturbances are assumed to follow a GARCH(1,1) process.9

We construct the 4 × 4 variance covariance matrix using the residuals. In

the second step we maximize the likelihood function under the constraints

given in equation (7) for all three cases: i) pl → ∞ and pc > 0; ii) pl >> 0

and pc > 0 s.t. LR ≤ 3; iii) pc → ∞ and pl > 0. Remember that in

our first case, the maximized value of the likelihood function is the same

as the unconstrained maximized value. So this case can be thought as an

unconstrained maximum likelihood estimation along with some structure on

the estimated A matrix that is consistent with our assumptions on the form

of inefficiency. The second case is estimated in such a way that any positive

deviation from LR − 3 is penalized with pl → ∞. The third case satisfies

the constraints but the maximized value of the likelihood function is usually

9Number of lags are assigned using AIC.
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much lower than the maximum value of it causing quite large LR statistics

and rejecting the null hypothesis of overidentifying restrictions at 5 percent

significance.

Estimated steady-state variance decompositions are presented in Table

4. In the table left panel gives the steady-state variance decompositions

for 1994-1998 period and the right panel presents the results for 1999-2003

period. The top panel in the table presents the results for the first case

(pl → ∞ and pc > 0), the middle panel presents the results for the second

case (pl >> 0 and pc > 0 s.t. LR ≤ 3) and the bottom panel gives the results

for the last case (pc →∞ and pl > 0).

First note that, among all six models one of the models, the first case for

1994-1998, do not fit our assumptions exactly pointing an identification prob-

lem between the France and Italy columns. In the top panel for 1994-1998

period, we see that the diagonal element in the third column is slightly lower

than the fourth row value (52.2 percent vs. 53.5 percent), which suggests

that the third column should be actually in the fourth place. However, in

this case the third column would have larger deviations from the assumption

(17.9 vs. 20.4). So the current selection of columns deviates less from our

assumption. Moreover, our perturbed results in the the second case do not

point a problem in the current selection of columns.

The results show a clear difference in the variance decompositions be-

tween the two periods especially in the weights of Germany and the UK. For

example, while, during the pre-1999 period, all three cases consistently show

that the share of German shocks account for 42 percent (41.9, 41.6 and 42.3

percent in three cases respectively) of the variation in German stock market

index, in the post-1999 period German shocks dominate German stock mar-
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ket variations by accounting for more than 90 percent (97.5, 97.7 and 93.6

percent respectively) of the variation in German stock market variations.

As for the UK case, the situation is exactly the opposite. While during the

pre-1999 period, the UK shocks explain more than 90 percent of the variation

in the UK stock market index (96.3, 95.5 and 93.3 percent respectively),

during the post-1999 period explained share by domestic shocks decreases

substantially (30.8, 24.1 and 16.3 percent respectively).

The decrease in the importance of the UK shocks and the increase in the

importance of German shocks can be also seen for Italian and French stock

markets too. For example, in the second case, we find that the contribution of

the UK shocks decreases from 27.3 percent to 0.4 percent for Italy. Similarly,

the contribution of the UK shocks drop significantly from 29.4 to 0.5 percent

for France. Briefly, we find that in the post-1999 period, while the importance

of German shocks increased for all the countries, the importance of the UK

shocks decreased substantially.

Finally we study the relation between the degree of inefficiency and the

share of explained variance and we present the results in Figure 1 and Fig-

ure 2. In the vertical axis we give the degree of inefficiency as calculated

by absolute deviations from efficiency |θij − 1|. In the horizontal axis we

present the explained share of the variance wij as calculated from equation

(12). First note that the measures of inefficiencies in the 1994-1998 period

are larger than those in the 1999-2003 period. While the deviations from effi-

ciency are estimated as large as 0.7 in the pre-EMU period, in the post-EMU

period the largest deviation is found 0.29. Second, in both of the figures

we observe significant negative relation between the measure of inefficiency

with respect to a news source and the importance of that news source, which
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implies that the pattern of inefficiencies are consistent with the rational inat-

tention model.10

5 Conclusions

In this study we propose a new approach for identification of structural VAR

models in asset markets. We impose a structure on the deviations from ef-

ficiency by assuming that there are market specific and news source specific

obstacles, which cause overreaction or underreaction to a particular news

source in a particular market. We use this structure as constraints in the

maximum likelihood estimation and employ a constrained maximum like-

lihood estimation. In order to check for the robustness of our results, we

generalize our estimation method by introducing a flexible penalty function

representation of the problem. We allow small deviations from the constraints

and reach the unconstrained maximized value of the likelihood function as

if there were no constraints. This approach is interesting because the infor-

mation summarized in the variance covariance matrix of the system is not

damaged by the constraints at all and the constraints are utilized as well.

Applying our method to identify a SVAR model on four major stock

markets in Europe, we find that there has been a significant change in the

transmission of shock structure among the European stock markets since

1999. While the UK shocks were dominant before 1999, German shocks have

become dominant since 1999. We also observe that deviations from efficiency

have decreased since 1999 and are consistent with the rational inattention

model of Sims (2003).

10For brevity, we only present the results for the third case. The other two cases give
similar results. All three cases show significant negative relation between the inefficiency
measure and the importance of news.
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Table 1: Correlations of daily stock market returns

1994-1998 1999-2003
Germany UK France Italy Germany UK France Italy

Germany 1 1
UK 0.66 1 0.73 1
France 0.69 0.73 1 0.83 0.83 1
Italy 0.57 0.6 0.61 1 0.74 0.71 0.81 1
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Table 2: Impact of ordering: Steady-state variance decompositions using
Cholesky Decompositions (%)

Order of variables: Germany - UK - France - Italy

Innovations
Market 1994-1998 1999-2003

Germany UK France Italy Germany UK France Italy
Germany 95.4 1.9 2.5 0.2 100.0 0.0 0.0 0.0
UK 42.5 57.2 0.1 0.2 56.9 43.1 0.0 0.0
France 37.1 10.2 52.6 0.1 76.6 7.2 16.1 0.0
Italy 22.9 6.6 8.6 61.9 59.6 5.0 5.3 30.1

Order of variables: UK - Germany - France - Italy

Innovations
Market 1994-1998 1999-2003

Germany UK France Italy Germany UK France Italy
Germany 49.8 50.0 0.1 0.1 54.0 46.0 0.0 0.0
UK 2.3 91.2 5.9 0.7 0.2 99.8 0.0 0.1
France 6.3 41.8 51.8 0.1 16.5 67.2 16.3 0.0
Italy 3.2 26.0 9.0 61.8 13.6 50.8 5.3 30.3

Table 3: Initial and final estimates of variance decompositions (%)

Initial Estimate Final Estimate
Market Vec1 Vec2 Vec3 Vec4 Germany UK France Italy
Germany 7 41 42 10 42 41 7 10
UK 6 93 0 0 0 93 6 0
France 33 22 1 44 1 22 33 44
Italy 13 13 2 72 2 13 13 72

Notes: Vec1, Vec2, etc., denotes Vector1, Vector2, etc. The largest values in the columns
are shown in bold.
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Table 4: Steady-state variance decomposition estimates (%)

pl →∞ and pc > 0

Innovations
Market 1994-1998 1999-2003

Germany UK France Italy Germany UK France Italy
Germany 41.9 41.5 12.7 4.0 97.5 0.0 0.0 2.5
UK 0.7 96.3 0.6 2.4 56.0 30.8 10.3 2.8
France 1.1 28.8 52.2 17.9 74.7 0.0 24.1 1.2
Italy 2.3 23.7 53.5 20.4 73.6 1.8 7.9 16.8

pl >> 0 and pc > 0 s.t. LR ≤ 3

Innovations
Market 1994-1998 1999-2003

Germany UK France Italy Germany UK France Italy
Germany 41.6 41.8 12.5 4.0 97.7 0.0 0.9 1.4
UK 0.6 95.5 0.3 3.7 58.1 24.1 15.0 2.9
France 1.1 29.4 51.7 17.8 73.4 0.5 24.3 1.8
Italy 2.5 27.3 49.5 20.8 72.4 0.4 0.5 26.7

pl > 0 and pc →∞

Innovations
Market 1994-1998 1999-2003

Germany UK France Italy Germany UK France Italy
Germany 42.3 40.6 7.0 10.0 93.6 5.1 0.2 1.2
UK 0.5 93.3 6.1 0.1 80.2 16.3 2.1 1.3
France 1.0 21.9 32.7 44.4 42.8 14.5 42.5 0.2
Italy 2.4 12.8 13.1 71.7 34.1 13.7 18.5 33.7

Notes: See the section (2.3) for the details of the estimation process.
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Figure 1: Absolute deviations from efficiency (|1−θij|) versus explained share
of variance (wij), 1994 - 1998, ( pl > 0 and pc →∞)

Figure 2: Absolute deviations from efficiency (|1−θij|) versus explained share
of variance (wij), 1999 - 2003, ( pl > 0 and pc →∞)
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