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DISTRIBUTION-FREE ESTIMATION OF THE GINI INEQUALITY
INDEX: THE KERNEL METHOD APPROACH
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1. INTRODUCTION AND PROBLEM STATEMENT

The measurement of income inequality allows the quantification of its magni-
tude as well as of the time and/or spatial evolution of the inequality itself. It may
be also used to evaluate the efficiency of the economic and financial policy imple-
mented by the governments and, in particular, to analyze the effect of taxation on
the redistribution of resources. A large amount of literature on these and related
problems is available; see, for instance, the monographs by Piesch (1975), Kakwani
(1980), Nygard and Sandstrém (1981), and Silber (ed.) (1999). From all these ref-
erences, it is apparent that there are several different inequality measures. Each of
them possesses different properties, leading to possible advantages and disadvan-
tages in their use. Therefore, the choice of a specific inequality measure must be
based on both its features and the main aspects which characterize the phenom-
enon under study. The most well-known and most frequently used measure of in-
equality is the Gini inequality index (in the sequel denoted by R), also called Gini
concentration ratio. Its fortune and topical interest (Giorgi, 1990, 1993), more
than 85 years after its appearance in literature (Gini, 1914), are due to its intuitive
appeal and to its close link to the Lorenz (1905) curve, as well as to its extensions
and interpretations from various points of view made by several scholars over the
last 30 years (Giorgi, 1992).

For a long time, inequality measures in general and the Gini index in particular,
have been used from a descriptive point of view. However, data available from sta-
tistical agencies frequently come from sample surveys; inequality indices turn out
to be computed on the basis of sample data. Therefore, it is necessary to use them
not only as descriptive tools, but also as tools for formal statistical inference. The
approach to statistical inference can be either ponparamentric (distribution-free) or
parametric. A comprehensive survey of the main results in the estimation of R ac-
cording to these two approaches is in Giorgi (1999). In the latter case the inequal-
ity measures are expressed as functions of the unknown parameter of the underly-
ing population distribution function. Estimates of such parameters naturally lead
to estimates of inequality measures. More precisely, it is usually assumed that the
data come from some heavy tailed distribution with positive asymmetry (e.g.
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lognormal, Burr, Weibull; see also Dagum, 1977; Sing and Maddala, 1976). How-
ever, the underlying distribution is unknown in practice, and the assumed model
may not be suitable for fitting the data or it may not be generally true. In fact,
virtually all parametric models commonly used are unimodal. On the other hand,
empirical evidence shows that the income distribution is frequently bimodal, or
even multimodal; see Park and Marron (1990), where the income distribution in
the United States in the Seventy’s and Eighty’s is analyzed. To make clear the
kind of error due to the use of a “wrong” model, Park and Marron (1990) showed
that if, for instance, the underlying population density data is assumed lognormal
and one wants to study its structure over a time period, it seems that it is
unimodal and does not change over the years. On the other hand, if a distribution-
free approach based on a kernel estimate of the income density function is used,
then completely different conclusions are drawn. In fact, data show that the popu-
lation density is at least bimodal, and that its structure significantly changes over
time., The population distribution can be actually considered as a mixture of a poor
subpopulation and an average income receivers population. In particular, in the
case studied by Park and Marron (1990) there was an increase in the poor over the
years.

Because of the good flexibility of the distribution-free approach and the ever
increasing use of the Gini index R not only for measuring inequality but also pov-
erty (see, for example, Foster and Sen, 1997), inferential problems for R should be
studied more deeply, following a distribution-free approach. In fact, the problems
of estimating the income distribution and related inequality measures are strictly
related. As a first step, one could be interested in estimating the underlying popu-
lation distribution, in order to get at least some qualitative ideas about its charac-
teristics (unimodality vs. multimodality, or other). As stressed by Park and Marron
(1990), the kernel method proves to be a “very useful tools for exploring the distri-
bution structure of unknown populations”. As a second step, the density estimate
obtained at the first step could be used to study the inequality in income distribu-
tion, and in particular to produce an estimate of the Gini inequality index.

According to the ideas exposed above, in this paper we study an estimator of
the Gini inequality index R obtained viz a preliminary estimate of the population
density based on the kernel approach. We mainly concentrate on its asymptotic
properties, that provide useful large sample approximations. In particular, (strong)
consistency and asymptotic normality are proved in Propositions 1 and 2, respec-
tively. Such results are used to obtain confidence intervals for R {Proposition 5).

2. ESTIMATION OF GINI'S INDEX: BASICS AND CONSISTENCY RESULTS

Let X,, ..., X, be a random sample of size # from a population X with density func-
tion f(-). Furthermore, let f;(-) be an estimate of f(-) based on the kernel method:

. n - X.
f;,(x)=#§K(if) seR o
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where K() is the kernel function, and » > 0 is the bandwidth. As usual, K(-) is
assumed to be a continuous density function, symmetric with respect to (w.r.t.) 0.
From the estimate (1) it is fairly natural to draw the following estimator of the

Gini’s index:

R=25 (2)
U
where
A= JRzlx - ylf,,(x)]},,(y)dx dy (3)

1 n
x flx)dx = —
= j fb (x) " g
The first result we obtain is the strong consistency of the estimator (2).

Proposition 1. Suppose that 5 tends to 0 as the sample size goes to infinity. Then

A 4.5,
R—>R asn — oo,

Proof. Since [I converges a.s. to i by the strong law of large numbers, it is enough
to prove that

A5 A asn — oo, )
Let Ag be equal to

By a little algebra, it is seen that

A:—-lz-ii{ijlx 5K ["'bxf)%K(y bX )dxdy}

n =1 j=1
=L S [ lu- ol K Koydudo+ L3 3 1h(u =)+ (X, - X)) K K(w)dudo
ﬂz i=1 RY ”2 i=1 f#i

=‘/1AK+”1—ZZ b —v)+(X; -X; ) K(w) K(v)dudv

Using the inequality [la] - 6] < 1a - &1, it is not difficult to obtain the fol-
lowing chain of inequalities
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* % > 3 foe bt =)+ (X, = XpI =1, ~ X; 1} Kw) K(v) du o

i=1 j#i

IA

x|

s+ LS > [l blu - ) K@) K(w)dudv = hag

i=1 j#i

3N|H

Taking into account that, from the strong consistency of V-statistics (see, for
instance, Serfling, 1980, p. 174 and p. 206)

a.s.
Vy—4 asn —> oo

we finally obtain

lA-al<la-v,l+1lv,-4l50

with probability 1, as # goes to infinity, from which (4) follows.

Remark 1. Proposition 1 states that the estimator (2) is (strongly) consistent under
the only assumption that 5 tends to zero as the sample size goes to infinity. At a
first glance, this result could appear far from intuition, since the condition 5 — 0
as n — oo does not ensure that the kernel estimator (1) is consistent. In fact, f,(-) is
consistent iff both the conditions » — 0 and #h — oo are fulfilled (Parzen, 1962).
In other words, (2) can be consistent even when (1) is not.

3. ASYMPTOTIC DISTRIBUTION AND CONFIDENCE INTERVALS

The main goal of the present section is to study confidence intervals for the
Gini’s index R. Now, unless to make specific parametric assumptions on the popu-
lation, it is virtually impossible to derive the exact sampling distribution of the es-
timator (2). For this reason, we resort to the asymptotic distribution, as the sample
size goes to infinity. The following proposition plays a key role in all subsequent
developments.

Proposition 2. Suppose that b tends to zero as # goes to infinity. Then, the follow-
ing result holds true:

" aod
Vn(A - E[A]) > N(0,407) (5)
as n goes to infinity, where

o2 = V(EIl X, - X, |1 X))

Proof. Let W,(X;, X)) be equal to
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W, (X, X)) ———ijlx y|K[ bX']K(y~bX/jdxdy, j#i

Then, it is easy to see that the equality

A=U,+S$, (©6)
holds, where

U, = [;’) Y T WX, X;)+S,

i=1 j>i

and

S=Lac- 23 Twx,

2
" (”“1 i=1 f>i

Now, it is not difficult to see that Sy=O,(»""). Furthermore, from Fubini’s
theorem, we can also write

- X, - X,
E[W,(X,,X)] = E |:'[Rzlx yIK( p JK[y ; ’jdxdy:'

[ijlb v) +(X; ~ X)) Kw) )dudv]

=jR2E[|/7(u-v +(X; - X;)| K(w) K(v) du do]

from which E[S;] = O(»~ 1 follows. Hence, we have essentially proved that
A=Uy+O0,m";  EIAl=E[UJ+ 00 Y (7)

From relationships (7) it follows that V(A - E[A]) possesses the same asymptotic
distribution as \/Z(Ub - E[U,)), provided that it exists.

The statistic Uy is a U-statistic of degree 2 with kernel depending on 4, and
hence on the sample size #. In can be studied in the same way as in the standard
case where the kernel does not vary with # (see, for instance, Lee, 1990, p. 12).

Let g,(X,) be equal to

g},(X,') = W/,(X,', X,‘) - E[Wb(Xj) X,')]

= W, (X, X) - E[U})

and

G =2%
Gy =2 3 gyX

i=1

Furthermore, define the variances

oty =VigX)l; 03 =VIW,X, X)]
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Now, it is easy to see that
A
VIU,] = (2) {2An - 2)0}, + 02}

VG = 2o ; Cov[U,,G,] = %05)
from which the relationship
E[(U, - GY1= 0 %) (8)

follows, uniformly for 0 < 5 < b, whatever h, > 0 may be. Relationship (8) implies
that

Vn(Uy - Gp) = 0,(1)

On the other hand, the central limit theorem for triangular arrays allows us to
write

d
VnG, = N(©0,40?)

as # goes to infinity, from which (5) follows.

Remark 2. Proposition 2 is proved under the only condition that » tends to zero as
n goes to infinity. It is important to notice that the condition » — 0 does not en-
sure that V#(E[A] - A) tends to zero as # increases. Hence, the asymptotic normal-
ity of V(A - ) does not follows from Proposition 2, unless further condition on 4
are considered. This problem is dealt with in Proposition 3.

Proposition 3. I{ h=o(n" 12)  then

Vn (4 - 8)% N, 402) )

as the sample size # tends to infinity.

Proof. Using the inequality ||a|- 1511 < |4 - &| we first obtain
[ETAG -0) + (X, - X)| -EIX;, - X[ <hlu-vl
Taking into account that E| X; - Xil = A, we then have
E[W,(X;, X)] = A+ O(b) (10)

The conclusion (9) then follows from (10).
We are now in a position to obtain the main result of the present section, i.e.
the asymptotic distribution of the estimator (2).

Proposition 4. Let us denote by o2 the population variance, which is assumed to
exist. Then, the following two statements hold true.
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(1) If the bandwidth 4 tends to zero as the sample size goes to infinity, then:

(A A1) 4
JZ(R—ELA])an,o;) as 7 — oo (11)
where
2 2
g§:%{4"—12+£‘7~2A3(E[X1|X1—XZI]—uA)} (12)
poopt o

(1) Under the additional assumption b = o(#~ ), we have further

V(R - B 5 N©,02) as 7 —> oo 13)

Proof. (1) Using the delta-method, it is seen that the large sample distribution of
Jn (R - E[8] /1) coincides with the large sample distribution of

11 = - E[A] —
E{EJMA—EMD—jp-%hu—m}

From Proposition 2, conclusion (11) easily follows.
(m) To prove (13), Ait is enough to take into account that the assumption 4 = o(#™ '/?)
implies that Va(E[A] - 4) tends to zero as # goes to infinity.

Statement (11) of Proposition 4 is useful to construct large sample confidence in-
tervals for R. To this purpose, we have to estimate the asymptotic variance (12).

First of all, it is immediate to see that

o} = [ (x - 7fy(x)dx

and
M= jﬂlex - ylf;,(x)/};,(y)dxdy

are (strongly) consistent estimators of 02 and E[X,|X, - X, ], respectively. Fur-
thermore, a little re-elaboration of P.K. Sen’s technique (1960) (the only difference
is that we have a variable-kernel U-statistic) it is not difficult to see that the esti-
mator:

A 1 < 2
67y = - 2 (= Uy)

4 = ——= Y WX, X)) i=1..,n

is a (weakly) consistent estimator of 7. Hence, the quantity



12 P.L. Conti, G.M. Giorgi

A2 A2 Y R R
52 =7}{4%+%_2ﬁ{ (M—[LA)}

is a (weakly) consistent estimator of 0. From this last result, the following propo-
sition is obtained. Proof is immediate.

Proposition 5. Suppose that the bandwidth 5 tends to zero as the sample size »
goes to infinity‘ Then, we have:

as # — oo, (14)
Or

Furthermore, under the additional assumption 5 = o(#™ /), we can also write:

Vi R=R 4 oy (15)
ORr

as n goes to infinity.

Using a technique similar to that of Proposition 1, it is not difficult to see that
E[A] tends to A as A tends to zero, i.e. as z goes to infinity. Roughly speaking, this
means that we can approximately write E[A]/u ~ R as n is large and 4 is small.
Hence, from Proposition 5 it follows that the interval R = 2o Gp/Nn is an ap-
proxlmated confidence interval of size 1 - @, where z,is the (1 - y)-th quantile of
the normal standard distribution.

Remark 3. Equation (15) seems to provide a more intuitive support to the appro-
ximated confidence interval R T z,, 6p/V#, under the additional assumption
b =o(n""?). Howevet, the kernel density estimator fb ) achieves its maximum effi-
ciency if b ~ #»~ ', and this suggest not to use a bandwidth 4 =o(#" '?). At any
rate, the approximated confidence interval obtained from Proposition 5 essentially
rests on the approximation E[A] = A when A is “small”, and hence it can be used
without any restriction on the speed at which 4 tends to zero as the sample size »
increases.
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RIASSUNTO

Stima non parametrica dell’indice di disugnaglianza di Gini: un approccio basato su stimatori nucleo

In questo lavoro si considera un approccio non parametrico alla stima dell’indice di con-
centrazione di Gini. L'idea & quella di considerare una stima preliminare, basata sul metodo
del nucleo, della funzione di densita della popolazione, e poi nel calcolare il corrispondente
indice di concentrazione, Si studiano le proprieta statistiche dello stimatore introdotto, con
particolare riferimento al caso di grandi campioni (di solito disponibile dalle rilevazioni di
enti statistici). Come sottoprodotto, si ottiene un intervallo di confidenza per Iindice di
concentrazione.
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SUMMARY

Distribution-free estimation of the Gini inequality index: the kemnel method approach

In this paper a non-parametric approach to the estimation of the Gini inequality index is
introduced. The basic idea consists in taking first a preliminary estimation of the population
density function, and then in computing the corresponding inequality index. Statistical
properties of the estimator introduced are studied, with particulal reference to the case of
large samples (usually available from statistical agencies). As a by-product, approximated
confidence intervals are obtained.



