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Abstract

In this paper we investigate the possibility of the application of
subsampling procedure for testing cointegration relations in large mul-
tivariate systems. The subsampling technique is applied to overcome
the difficulty of nonstandard distribution and nuisance parameters in
testing for cointegration rank without an explicitly formulated struc-
tural model. The contribution in this paper is twofold: theoretically
this paper shows that the subsampling testing procedure is consis-
tent and has asymptotically power 1; practically this paper demon-
strates that the subsampling procedure can be applied to determine
the cointegration rank in large scale models, where the standard proce-
dures hits already its limit. For empirical relevant cases our simulation
studies show that centered subsampling improves decisively the per-
formance of subsampling test procedure and makes it applicable also
for cases when the number of independent stochastic trends are very
large.
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1 Introduction

Over last decade considerable attention has been paid in empirical economics
to testing for the existence of long-run relations by using cointegration anal-
ysis. There have been two main approaches: the two step residual-based
procedure for testing either the null of no cointegration1 or the null of coin-
tegration2 and the system-based reduced rank regression approach 3. The
residual-based approach is applicable to analyzing single cointegration rela-
tions between variables4. The system-based approach is applicable to small
systems with a few variables due to its data intensive specifications of the
error correction models5.

Recently some non-parametric and semi parametric approaches are devel-
oped to test the cointegration relations. Bierens (1997) proposes a testing
procedure that is free from the specification of the data-generating process.
Breitung (2002) proposes a testing procedure that is invariant against log
transformation which is often used in the empirical applications. Boswijk
and Lucas (2002) aim at rising the power of testing procedure. More re-
cently Bai and Ng (2004) propose a test of cointegration relations by ana-
lyzing the number of nonstationary factors in large systems. However, this
approach works only for cases where the system is large but the numbers of
independent stochastic trends are vary small. Following this line of research
we propose a nonparametric subsampling approach to test of cointegration
relations, targeting at handling cointegration analysis in large systems with
moderate demand of data to identify either small or large numbers of inde-
pendent stochastic trends.

Large systems have always been the interest of research. For instance, finding
the number of independent stochastic trends in stock prices or bond prices
that all behavior like stochastic trends will help to gain more insight into the
driving forces of the financial markets, and knowing the number of indepen-
dent stochastic trends among main economic indicators of an economy will
help to understand the structure of the economy. But, the present standard
procedure of multivariate cointegration analysis - the Johansen procedure
can not applied to large systems. The basic reason is that the Johansen
procedure requires a completely specified vector error model(ECM). In case
of large scale systems this will certainly quickly use up degree of freedom
for practically available economic data. Furthermore, the large number of

1See Engle and Granger (1987), Phillips and Quliaris (1990)
2See Kwiatkowsi, Phillips, Schmidt, and Shin (1992)
3Johansen (1991) and Johansen (1995)
4For problems of the application of this approach to many variables see Hamilton (1994)
5Empirical systems analyzed by this approach usually do not exceed the dimensionality

of 8. Even the most used softwares provide only critical values of Johansen procedure up
to the dimensionality of 12.
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parameters in large VECM makes the statistical inference very unreliable.

The subsampling procedure for testing cointegration rank turns out in many
cases to be simple, robust and has correct size. For systems up to 40 vari-
ables with a moderate requirement on data of 200 observations subsampling
can provide reliable results for testing of cointegration ranks, while the stan-
dard procedure such as the Johansen procedure runs into problem already
at the dimension of 20. The plan of this paper is as follows: Section 2 sets
out the underlying model and motivates the basic idea of the testing proce-
dure. Section 3 and Section 4 describe the testing procedure and consider
the properties of the test statistics. Section 5 presents some simulation re-
sults. In Section 6 we give an empirical application. Section 7 provides some
concluding remarks. Technical details are included in the Appendix.
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2 The Assumption of the DGP and the Mo-

tivation of the Test

Let the n× 1 time series yt be specified as follows:

yt = Cξt + ut, (2.1)

where ut is n× 1 stationary time series

ut =
∞∑
j=0

ψjεt−j (2.2)

with
∑∞

j=0 |ψj| <∞; and ξt is g × 1 random walk 6

ξt =
t∑

s=1

ε2,t,

where (εt, ε2,t) are jointedly gauss-distributed with εt ∼ N(0, In), ε2,t ∼
N(0, Ig) and Ω = Cov(εt, ε

′
2,t). C is a n× g matrix with rank g. This model

has g independent stochastic trends. Let β be n×h matrix (h := n−g) such
that β′C = 0. β is called (one) basis of cointegration vectors because

β′yt = β′ut (2.4)

6This model can accommodate the model:

ξt =
t∑

s=1

u2,t

with u2,t =
∑∞
j=0 ψ2,jε2,t−j ,

∑∞
j=0 j|ψ2,j | < ∞ by using the Beveridge-Nelson decompo-

sition, see Hamilton (1994) P.504. In this context the formulation (2.1) encompasses the
error correction model. To illustrate this we consider following error correction represen-
tation of a cointegrated system:

∆yt = βα′yt−1 + π∆yt−1 + εt. (2.3)

This model can be reformulated as follows:

yt = (I + βα′)yt−1 + π∆yt−1 + εt

= (α∗, α∗⊥)
(

α′

α′⊥

)
yt−1 + βα′yt−1 + π∆yt−1 + εt

= α∗⊥α⊥yt−1 + (α∗ + β)α′yt−1 + π∆yt−1 + εt

= Cξt + ut

where C = α∗⊥ is a n × g matrix; ξt = α′⊥yt−1 is g × 1 stochastic trend; and ut =
(α∗ + β)α′yt−1 + π∆yt−1 + εt is n× 1 stationary series.
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is stationary. Thus, this system has h cointegration relations7. The corre-
spondence of the cointegration representation (2.1) and the standard repre-
sentations, for example, the Phillips’s triangular representation, the Stock-
Watson common trends representation and the error correction representa-
tion can be seen in Hamiltion (1994) Chap.18. We choose the representation
of (2.1) and (2.4) to pave the way for a test without specifying a structural
model for the DGP.

(2.1) implies that cointegration is basically a phenomena of multicolinearity
up to a I(0) residuals. Hence the rank of the regression coefficient matrix of
the regression of ∆yt on yt−1 should reveal the number independent stochas-
tic trends. Difficulty in finding a decision rule to determine the number of
independent stochastic trends lies in the description of the distribution of
the statistics on the rank of the coefficient matrix, because it may not have a
standard distribution and may depend on nuisance parameters. This issue is
filly discussed in Stock and Watson (1988), where they construct the statis-
tical tests by looking at the corrected first order series correlation matrix of
the observed data, which yields tabulable standard distributions. Johansen
(1991) and Johansen (1995) take the maximum likelihood approach and con-
struct tabulable statistical tests by controlling for correlation of the I(0)
components through a completely specified structural model for the DGP.

Alternatively, we apply subsampling method to construct a subsampling
confidence interval for the test, such that we avoid the problem of the de-
scription of the distribution of the test statistic by drawing from the ”true”
distribution- the DGP.

The first step of the procedure is to regress ∆yt on yt−1 by OLS like follows:

∆yt = Πyt−1 + et (2.5)

We get the OLS estimator Π̂:

Π̂′ =

(
T∑
t=1

yt−1y
′
t−1

)−1( T∑
t=1

yt−1∆y′t

)
(2.6)

This regression equation differs from the error correction model of Johansen
procedure only in that it omits the specification of the short run dynamics.
Owing to the super consistence of LS in regression with I(1) variables, we
would nevertheless expect that the rank of Π̂ would converge to the cointegra-
tion rank n− g. Thus the information about the rank of Π̂, or equivalently,

7Following the general characterization of cointegrating vector in Hamilton (1994) P.
547, (2.1) and (2.4) consist a cointegrating system.
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the number of zero eigenvalues of Π̂ can be used to test the cointegration
rank.

The advantage of Johansen procedure is that through controlling for the short
run dynamics it achieves a test statistic based on the rank of the regression
matrix of ∆yt on yt−1

8 that is free from nuisance parameter and hence tables
of critical values for the test statistics can be calculated. However, the full
specification of the short run dynamics will quickly use up the degree of
freedom for large systems, such that Johansen procedure is only practically
applicable for small systems due to the availability of data for empirical
research in the real world9.

We sacrifice the specification of the short run dynamics for the ability to
handle large cointegration systems at the same availability of data and hope
that the super consistence of Π̂ will nevertheless provides a good estimate
for the calculation of the rank of Π. The difficulty is that the resulting
test statistic of the rank of Π̂ will be nonstandard and depends on nuisance
parameters. We overcome this problem by using subsampling method that
is immune against nonstandard distribution and the presence of nuisance
parameters. This is the motivation behind the test procedure.

3 Property of the LS Regression

The last section suggests that we could infer the number of the cointegration
relations from the rank of the estimated matrix Π̂

Π̂′ =
( T−1∑
t=0

yty
′
t

)−1( T−1∑
t=0

yt∆y
′
t+1

)
. (3.7)

where ∆yt = Cε2,t + ut − ut−1 =: vt. In this section the distribution of

the eigenvalues of Π̂ will be derived. We will see that the eigenvalues can
be separated into two groups which have different order of convergence as
T → ∞; one group corresponds to the cointegration space and the other
group corresponds to the space of stochastic trends. Later we will take
advantage of this fact to construct our test statistics.

Let β⊥ be a n × g matrix including a basis of the complement subspace to
β. Let B = (β, β⊥).

8The the matrix of canonical correlation coefficient has the same rank as the matrix Π̂.
9Furthermore, for large systems small sample property of the Johansen test statistics

dependent sensitively on the number of observations, especially when the number of in-
dependent stochastic trend is large. In these cases the Johansen test is not reliable (See
Section 4).
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First we look at the following terms

B′
T−1∑
t=0

yty
′
tB =

(
β′

β′⊥

) T−1∑
t=0

(Cξtξ
′C ′ + utξ

′
tC
′ + Cξtu

′
t + utu

′
t)
(
β β⊥

)
(3.8)

=

(
β′(
∑T−1

t=0 utu
′
t)β β′(

∑T−1
t=0 utξ

′
tC
′ +
∑T−1

t=0 utu
′
t)β⊥

β′⊥(
∑T−1

t=0 Cξtu
′
tβ +

∑T−1
t=0 utu

′
t)β β′⊥

∑T−1
t=0 (Cξt + ut)(ξ

′
tC
′ + u′t)β⊥

)

=:

(
G1,T G2,T

G3,T G4,T

)

and

B′
T−1∑
t=0

yt∆y
′
t+1 =

(
β′

β′⊥

) T−1∑
t=0

(Cξtv
′
t+1 + utv

′
t+1) (3.9)

=

(
β
∑T−1

t=0 utv
′
t+1

β′⊥
∑T−1

t=0 (Cξt + ut)v
′
t+1

)

=:

(
G5,T

G6,T

)
.

Before we discuss the limit distributions of the matrices above we define
wt =

∑∞
s=0 φ1,sεt−s +

∑∞
s=0 φ2,sε2,t−s, where wt is n× 1 vector, φ1,s are n× n

matrices and φ2,s are n × g matrices. Recall that the n × g matrix Ω is the

covariance matrix of εt and ε2,t. Let
P−→ denote the convergence in probability

and
D

=⇒ denote the convergence in distribution-

Lemma 3.1 (i)

lim
T→∞

1

T

T−1∑
t=0

utw
′
t

P−→
∞∑
j=0

ψjφ
′
1,j +

∞∑
j=0

ψjΩφ
′
2,j.

(ii)

lim
T→∞

1

T

T−1∑
t=0

ξtw
′
t = Ω′φ1(1)′+φ2(1)′+

∫ 1

0

W2,sdW
′
sφ1(1)′+

∫ 1

0

W2,sdW
′
2,sφ2(1)′,

where (Ws,W2,s) are jointedly Brownian motion with the same correlation as
(εs, ε2,s) and φi(1) =

∑∞
j=0 φi,j for i = 1, 2.

(iii)

lim
T→∞

1

T 2

T−1∑
t=0

ξtξ
′
t =

∫ 1

0

W2,sW
′
2,sds.
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Proof
The statements (i), (ii) and (iii) follow the results of (f), (h) and (b) of
Lemma 1 in Sims, Stock, and Watson (1990) P.121. 2

Here we introduce two notations:

GT = OC(Tα) iff lim
T→∞

GT

Tα
P−→ g (g is a constant and g 6= 0),

GT = OD(Tα) iff lim
T→∞

GT

Tα
D

=⇒ G (G is a random variable and G 6= 0) .

Remark OC(Tα) can be seen as a special case of OD(Tα) where OC(Tα)/Tα

converges to a degenerated distribution (constant). Sometimes we do not
distinguish these two cases if the difference is not relevant.

Using Lemma 3.1 we have

Property 3.2
G1,T = OC(T ) G2,T = OD(T )
G3,T = OD(T ) G4,T = OD(T 2)
G5,T = OC(T ) G6,T = OD(T )

2

Let Gi be the limit (as a distribution) of Gi,T for i = 1, · · · , 6, that means

Gi := lim
T→∞

Gi,T

Tαi
in distribution.

Lemma 3.3 Gi,T = OD(Tαi) for i = 1, · · · , 6 are defined in (3.8) and (3.9).
Gi are the limit as described above. Then it holds
(i) For Gi,T and Gi invertible,

G−1
i,T = OD(T−αi)

(ii) For Gi,T , Gj,T such that Gi 6= 0, Gj 6= 0 and that Gi,T ·Gj,T and Gi ·Gj

are well-defined matrix multiplication and Gi ·Gj 6= 0, we have then

Gi,T ·Gj,T = OD(T αi+αj).

(iii) If αi > αj, then
Gi,T +Gj,T = OD(Tαi).

Proof See Appendix.

Remark The results (i), (ii) and (iii) hold for Gi,T as defined above, because
these sequences Gi,T are continuous functionals of the white noise (εt, ε2,t)
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so that we can apply the continuous mapping theorem to them10. As the
result, the product of two sequences converges to the product of the limits
in distribution as (ii) in the Lemma above. Similarly it holds for inversion
and summation as in (i) and (iii).

Let

(
G7,T

G8,T

)
:=
(
B′

T−1∑
t=0

yty
′
tB
)−1

B′
T−1∑
t=0

ytv
′
t+1 =

(
G1,T G2,T

G3,T G4,T

)−1(
G5,T

G6,T

)
= B−1Π̂.

We denote particularly G1 and G5 as g1 and g5 in small capital to emphasize
that the limits are constants instead of (non-degenerated) random variables.
Then we have:

Lemma 3.4

lim
T→∞

G7,T
P−→ g−1

1 g5 =: g7

lim
T→∞

TG8,T
D

=⇒ −g1G
−1
4 G3g5 +G6G4 =: G8.

Proof See Appendix.

Following Lemma 3.4 T Π̂ behaves asymptotically like follows:

T Π̂ = B

(
TG7,T

TG8,T

)
∼ B

(
Tg7

G8

)
. (3.10)

Now we are interested in the distribution of the eigenvalues of T Π̂. We
present the following theorem:

Theorem 3.5 Let λ1,T , · · · , λn,T be the eigenvalues of T Π̂. Then there are
h eigenvalues for i = 1, · · · , h such that

lim
T→∞

λi,T
T

P−→ λi constant (3.11)

or equivalently

lim
T→∞

λi,T
P−→∞ (3.12)

the rest g eigenvalues for i = h+ 1, · · · , n

lim
T→∞

λi,T
D

=⇒ λi distributions. (3.13)

Proof See Appendix.

10See Hamiltion (1994) P.482.
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Corollary 3.6 We have h eigenvalues, for i = 1, 2, ...h,

lim
T→∞

|λi,T |
T

P−→ |λi| constants (3.14)

and the rest g eigenvalues, for i = h+ 1, · · · , n,

lim
T→∞

|λi,T | D
=⇒ |λi| distributions. (3.15)

4 The Test Procedure

The hypothesis of the existence of g independent stochastic trends or equiv-
alently h cointegration relations implies that the g in absolute value smallest
eigenvalues of T Π̂ converge to some random variables λi, (i = 1, 2, ...h) in
distribution while other h eigenvalues will diverge. (3.12) and (3.13) tell us
if we were able to construct a 1−α percent confidence interval based on the
distribution of λi, i = 1, 2, ..., g, then 1−α percent of the g smallest eigenval-
ues of the matrix T Π̂ will lie in the corresponding confidence interval, while
the other h eigenvalues will asymptotically escape from any empirical confi-
dence interval constructed by using subsamples. This difference between the
divergence of the h largest eigenvalues of T Π̂ and the convergence of the g
smallest eigenvalues yields a sharp separation between these two groups of
eigenvalues. In this sense this test of the cointegration rank has asymptotical
power one.

Using Theorem 4.2.1 of Politis, Romano, and Wolf (1999), and the results of
Theorem 3.5 we can get asymptotic valid test results.

Following is the result from Politis et al. (1999):

Let θ̂T = θ̂(Y1, Y2, ...YT ) be an estimator of θ(P ) ∈ R, the parameter of
interest. Let θ̂T,b,t = θ̂b(Yt, Yt+1, ...Yt+b−1) the estimator of θ(P ) based on
the subsample {Yt, ...Yt+b−1}. Define Jb,t(P ) be the sample distribution of

τb(θ̂n,b,t − θ(P )), where τb is an appropriate normalizing constant. Also,
define the corresponding cumulative distribution function:

Jb,t(x, P ) = ProbP{τb(θ̂T,b,t − θ(P )) ≤ x}
For notation convenience, let JT (P ) = J1,T (P ) and JT (., x) = J1,T (., P ).
Denote the empirical distribution function as follows:

LT,b(x) =
1

T − b+ 1

T−b+1∑
t=1

1{τb(θ̂n,b,t − θ̂T ) ≤ x}.

Essentially the only assumption that will be needed to consistently estimate
JT (P ) is the following:
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Assumption 4.1 There exits a limiting law J(P ) such that

• i. JT (P ) converges weakly to J(P ) as T →∞.
• ii. For every continuity point x of J(P ) and for any sequences T, b with
T, b→∞ and b/T → 0, we have 1

T−b+1

∑T−b+1
t=1 Jb,t(x, P )→ J(x, P )

Theorem 4.2 (subsampling) Assume Assumption 4.1 and that τb/τT →
0, b/T → 0, and b → ∞ as T → ∞. αT,b(h) → 0 as T → ∞, where αT,b(.)
denotes the α-mixing coefficients corresponding to series of the test statistics
{ZT,b,t, t = 1, 2, ...T − b+ 1} with ZT,b,t = τb(θ̂T,b,t − θ(P )).

• i. If x is a continuity point of J(., P ), then

Lb,T (x)
P−→ J(x, P ) (4.16)

• ii. If J(.,P) is continuous, then

supx|Lb,T (x)− J(x, P )| P−→ 0 (4.17)

• iii. For α ∈ (0, 1) let

cT,b(1− α) = inf{x : LT,b(x) ≥ 1− α}. (4.18)

Define:

c(1− α, P ) = inf{x : J(x, P ) ≥ 1− α}. (4.19)

If J(.,P) is continuous at c(1− α, P ), then

ProbP{τT [θ̂T − θ(P )] ≤ cT,b(1− α)} P−→ 1− α as T →∞. (4.20)

Thus, the asymptotic coverage probability under P of the interval I1 = [θ̂T −
τ−1
T cT,b(1− α),∞) is the nominal level 1− α.

Proof: see Politis et al. (1999) P. 273.

Comments:

For the application of the theorem above to testing for cointegration rank, the
limiting law are the weakly convergence in (3.13). Because every summand
in (ii) of Assumption 4.1 has the same limiting distribution for b→∞, the
average has the same limiting distribution. Therefore, we can apply the sub-
sampling procedure to get an asymptotically valid test for the cointegration
rank.
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Under H0 of g independent stochastic trends, up to g absolutely smallest
eigenvalue of T Π̂ will lie in the corresponding empirical confidence interval
constructed by subsampling with probability 1−α while the other h eigenval-
ues of the test statistic of the whole sample will lie beyond the corresponding
”subsampling confidence interval”.

The testing procedure:

• Calculation of TΛ(Π̂) as the whole sample test statistic for each eigen-
values, where Λ(Π̂) is the diagonal matrix of the eigenvalues of Π̂.

• Choice of a proper subsample size bT
11

• Calculation of T − b + 1 subsample test statistics |bTΛ(Π̂bT ,t)| (t =

b, b+ 1, ..., T ) for each eigenvalues of T Π̂

• Calculation of the empirical distribution function based on the subsam-
ple test statistics and calculation of the empirical confidence intervals
at a given confidence level α for each norm of eigenvalues of T Π̂.

• Check of the whole sample test statistic with the corresponding confi-
dence interval and conclude the test result.

Remark 1

We can also calculate the sample canonical correlation coefficient as the test
statistic. For this alternative way we have following results. Let Πn be the
matrix to calculate the sample canonical coefficient between ∆Yt and Yt−1.

Πn =

(
T−1∑
t=0

∆yt+1∆y′t+1

)−1(T−1∑
t=0

∆yt+1y
′
t

)(
T−1∑
t=0

yty
′
t

)−1(T−1∑
t=0

yt∆y
′
t+1

)
.

We have:

TΠn

= T

(
T−1∑
t=0

∆yt+1∆y′t+1

)−1(T−1∑
t=0

∆yt+1y
′
t

)
BB−1

(
T−1∑
t=0

yty
′
t

)−1

B−1B

(
T−1∑
t=0

yt∆y
′
t+1

)

=

(
Oc(T ) Oc(T )
Oc(T ) Oc(T )

)−1 (
OC(T ) OD(T )

)( G1,T G2,T

G3,T G4,T

)(
G5,T

G6,T

)

L−→ (Tg9, G10)

11Theoretically any subsample block sizes satisfying the condition b→∞ and b/T → 0
as T → ∞ will have the same asymptotical result. However the choice of an optimal is
sensitive practical issue, because the test results may depend on the choice of the block
size. See Politis et al. (1999) and Choi (2003) for detailed discussion.
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The convergency in distribution in the last line above follows from the results
of Lemma 4.3 and the Slucky theorem12. According to the results of The-
orem 3.5 we can also apply subsampling procedure to the sample canonical
coefficient to test the cointegration rank. One advantage of using canonical
correlation coefficient instead of Π is that we do not need to care about the
problem of complex eigenvalues, because the matrix used to calculate the
canonical correlation coefficients is positive definite, while Π̂ may contains
complex eigenvalues.

Remark 2

In the presentation above we have assumed that there is no drift involved in
the stochastic trends. However, the subsampling result can still apply for the
cases with drifts, if g > 1. In the presence of drifts in the stochastic trends,
only the smallest eigenvalue of Π̂ will converge at the rate T−

3
2 to zero under

null. The convergence rate of other g−1 eigenvalues that corresponds to the
space of independent stochastic trends are T−1, and the convergence rate of
the remaining n− g eigenvalues that corresponds to the cointegration space
are T−

1
2 . 13 For the null of g = 1 with drift we use the scaling factor T

3
2

to test for cointegration. Furthermore, we can apply different the scaling
factor T

3
2 or T to the smallest eigenvalue to test the presence of drift in the

stochastic trends.

5 Simulation Studies

5.1 Uncentered Subsampling

Subsampling procedure is an asymptotically valid test. For the application of
this procedure to empirical research the performance of the this procedure in
finite sample size is relevant. Therefore we conduct Monte Carlo simulation
to assess the small sample property of the subsampling procedure. We would
like to known how well the subsampling performs, when (i) the dimension of
the DGP varies, and (ii) the coefficients of autocorrelation in ut increase.

The DGP for the simulation studies is:

yt = Cξt + ut (5.21)

12To apply Slucky theorem we need in fact stronger condition, namely the product of
convergence in probability and convergence in distribution. We have here the product of
convergence in distribution only. However, following Föllmer (1981), the convergence of
unit root processes to functionals Brownian motion has a version of strong convergence
and hence forth convergence in probability. Therefore we can apply Slusky theorem in our
cases.

13See Sims et al. (1990) and Hamilton (1994) P.555 for more details.
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with

ξt =
t∑

τ=1

eτ (5.22)

et =
4∑

τ=0

ρeτεet−τ , εet ∼ i.i.d.N(0, Ig) (5.23)

and

ut =
4∑

τ=0

ρτ εt−τ , εt ∼ i.i.d.N(0, In) (5.24)

Table 1 presents the results of simulation studies of the subsampling proce-
dure. The numbers in the table are the relative frequency on non-rejection
of the H0 of zero eigenvalues calculated through 500 replications.

No. n g0 T b H0 : g = g0 − 1 H0 : g = g0 H0 : g = g0 + 1
1 15 5 200 90 0.922 0.938 0.00
2 20 5 200 90 0.944 0.944 0.00
3 30 5 200 90 0.944 0.922 0.00
4 40 5 200 90 0.938 0.866 0.00
5 60 5 200 90 0.814 0.688 0.00

Table 1: Estimated coverage probability of various nominal 90% subsampling
confidence intervals. n is the dimension of the system. g0 is the number of
independent stochastic trends of the DGP. g is the hypothetical numbers of
independent stochastic trends under test. T is the total sample size. b is the
used subsample size. ρ1 = ρ2 = ρ3 = ρ4 = 0, ρe1 = ρe2 = ρe3 = ρe4 = 0.

Table 1 shows that the subsampling procedure provides satisfactory results
even at moderate number of observations. These simulation results show that
the subsampling is a very promising method to handel the test of cointegra-
tion rank in large scale models14. In most cases the test will have correct
size15. Obviously, the power of the test is very high, i.e. in the simula-
tion the testing procedure did not falsely accept any stochastic trend. This
is due to the sharp contrast between the asymptotical diverging property

14The standard Johansen procedure will fail to apply due to its data demanding formu-
lation, i.a. in case of a system with 50 variables, an error correction model with 4 lags will
use up all the degree of freedoms for 200 observations.

15The size downwards distortion becomes significant when the dimension of the system
become large. According to Politis et al. (1999) Chapter 9, calibration method can be used
to adjust the nominal coverage frequency to get a correct size. We show the subsampling
coverage frequency to document this nominal downwards distortion in case of limited
sample size.
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of the h largest eigenvalues and the converging property of the g smallest
eigenvalues. To illustrate this point we plot(See Figure 1) the whole sample
test statistic and the confidence bounds based on the empirical quantiles of
subsample test statistics together in one graph. For the converging eigen-
values the whole sample test statistic that is presented by the dot-and-dash
constant line in the graph will lie with probability 1 − α within confidence
bounds that are presented by a solid line for the upper bound and a dot-
ted line for the lower bound respectively. Figure 1 shows the simulation
case with following parameters: T = 200, n = 16, g = 5, b ∈ (50, 100),
ρ1 = ρ2 = ρ3 = ρ4 = 0, ρe1 = ρe2 = ρe3 = ρe4 = 0.
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Figure 1: Subsampling confidence interval without autocorrelation
N = 16, g = 5, T = 200, b ∈ (50, 100)

The 4 graphs in the first column and first graph in the second column show
the subsampling confidence intervals for the 5 smallest eigenvalues that cor-
respond to 5 independent stochastic trends. The horizontal axis indicates the
subsample sizes from 50 to 100, the vertical axis indicates the respective up-
per and lower bounds of the confidence intervals as well as the test statistics
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over the whole sample. These graphs show that for the 5 smallest eigenval-
ues the whole sample test statistics and the confidence intervals are of the
same order and in most cases the test statistics lie within the corresponding
confidence intervals, while for the other 11 larger eigenvalues the whole sam-
ple test statistics and the subsample confidence interval bounds are not of
the same order, and the whole test statistics are about T/b times larger (in
absolute value) than the corresponding bounds (See Theorem 3.5). These
graphs provide a clear picture about the consistence of the subsampling test.

In case of the presence of moderate autocorrelation16 in the stationary com-
ponents (ut is autocorrelated.) this testing procedure works still quite well.
The next panel of graphs are simulation results with following parameters:
T = 200, n = 16, g = 5, b ∈ (50, 100), ρ1 = 0.4, ρ2 = 0.3, ρ3 = −0.2, ρ4 = 0.1
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Figure 2: Subsampling Confidence Interval with Autocorrelation

16It is to note that if the autocorrelation in ut are getting close to units, subsampling
will not have good results with finite number of observations. This is due to the same
reason why Dick-fuller test can not differ the unit root process from a AR process with a
autocorrelationcoefficient close to unit if the number of observations are limited.
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5.2 Centered Subsampling

The above subsampling test performs well, when the number of independent
stochastic trends are small. However, it has generally a tendency to under
estimate the number of stochastic trends when the number of stochastic
trends is large. Following graph shows a typical result of the subsampling
performance in the case when the number of independent stochastic trends
are close to the dimension of the system.

Subsampling Confidence Interval
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Figure 3: Uncentered Subsampling in the case of large number of stochastic
trends. N = 30, g = 28, T = 200 and b ∈ (80, 100)

We have here 28 independent stochastic trends. But only 20 whole sample
test statistics lie within the corresponding confidence bounds. This means
that the subsampling would predict only 20 independent stochastic trends.
The reason for the tendency of under estimation of the number of the in-
dependent stochastic trend is that the corresponding eigenvalues of T Π̂ will
converge to the asymptotical distribution one-sidedly. Consequently, the
center of the approximated sample distribution of λ̂bT ,i and λ̂T,i are not the

same as that of the asymptotical distribution of λi; and λ̂bT ,i has larger
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bias than λ̂T,i. To demonstrate the difference in bias we plot (see Figure 4)

the (average) of T times the eigenvalues of Π̂T that is the OLS estimate of
∆Yt = ΠYt−1 + et and bT times the eigenvalues of Π̂bT against the order of
the eigenvalues. T = 200, bT = 70 are numbers of observations that are used
to calculate Π̂T and Π̂bT . Yt is generated according to (2.1) with n = 30 and
g = 30.

Mean Eigenvalues
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Figure 4: Mean eigenvalues of Π̂T over 200 runs

Figure 4 shows these biases. Asymptotically these two curves should lie over
each other on the curve E(λi), i = 1, 2, ..n because Theorem 3.5 says TΛ(Π̂T )
and bTΛ(Π̂bT ) should have same distribution and thus their expected values

are the same. However the curve of TΛ(Π̂T ) lies below the curve of bTΛ(Π̂bT ).
The discrepancy between the two curves is directly related two the under-
estimation of the umber of stochastic trends. In subsampling tests we ap-
proximate the distribution of T Π̂T by that of bTΛ(Π̂bT ). Because bTΛ(Π̂bT ) is

biased one-sidedly upwards biased for T Π̂T , subsampling underestimates the
number of independent stochastic trends. We observe also the the first few
(absolutely smaller) eigenvalues calculated with difference number of obser-
vations are more close together than the latter (absolutely larger) eigenvalues.



5 SIMULATION STUDIES 19

In the context of subsampling test of cointegration rank in a system, if the
number of stochastic trends in the system is small, only the first few (abso-
lutely smaller) eigenvalues are relevant for test. Because in these cases the
biases are small the subsampling can get good results. As the number of
stochastic trends increases, more eigenvalues are relevant for test. The big
biases have here significant influence on the performance of subsampling test.
If we use λ̂bT ,i as an approximation of λ̂T,i as we did in the case of subsam-

pling, λ̂T,i tends to lie below the the confidence interval calculated base on

bT λ̂bT ,i. This is what we observe the Figure 3 and Table 2.

One way to solve this problem is to adjust the test statistics with respect to
these biases. Instead of (3.12) and (3.13) we look at the centered distribution:

lim
T→∞

(λi,T − λi,T ), (5.25)

where λ̄i,T is the center of distribution of λi,T . It is calculated as the average
of λi,T . For the centered subsampling version we have following result:

Theorem 5.1 Let λi,T , λi be defined as in Theorem 3.5. If we replicate the

estimation of Π̂T by drawing from the same DGP as defined in (2.1) at the
same starting point, then λi,T can be seen as a function of realization of one
draw. Let λi,T,j be the j-th draw. λi,T,j is independent and identical to λi,T .
We define λi,T = 1

m

∑m
j=1 λi,T,j.

For i = 1, 2, ...h

lim
T→∞

λi,T − λi,T√
T

D
=⇒ λ̃i(distribution), (5.26)

where λ̃i is a random variable that has the limiting distribution of (5.26), or
equivalently

lim
T→∞

λi,T − λi,T P−→∞. (5.27)

For i = h+ 1, · · · , n

lim
T→∞,m→∞

(λi,T − λi,T )
D

=⇒ λi − E(λi). (5.28)

Proof: See Appendix

Theorem 5.1 implies that subsampling of λi,T − λi,T is a consistent test for
identification of the cointegration rank, because for i ≤ h the whole sample
test statistic λi,T − λi,T will asymptotically escape any empirical confidence
interval based on the subsample test statistics {λi,bT − λi,bT }.
The procedure of the centered subsampling test:
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• For a chosen g (g = 1, 2, ...n) simulate the (2.1) m times and get
{Y s

t }, s = 1, 2, ..m. The superindex s indicates Y s
t are the simulated

series.

• Calculate the eigenvalue of Π̂s
T and Π̂s

bT
based on the simulated series

for each run, respectively. The superindex s indicates the estimation
is based on the simulated data. T is the total number of observations
and bT is properly chosen subsample block size.

• Calculate the average of the (n+ 1− g)-th elements of the eigenvalues
(ordered decreasingly according to the absolute values) over m runs,
and take this as the (n+ 1− g)-th element of correction vector ΛT and
Λg respectively.

• Calculate Λ(Π̂T ) based on the observed data and take T (Λ(Π̂T )− ΛT )
as the centered whole sample test statistic for each eigenvalues, where
Λ(Π̂T ) is the vector the eigenvalues of Π̂T .

• Calculate T − b + 1 subsample test statistics bT (Λ(Π̂bT ,t − ΛbT ) (t =
b, b+1, ..., T ) and calculate calculate the empirical confidence region at
a given confidence level α based on the subsample statistics.

• If the centered whole the sample test statistic T (ΛΠ̂T −ΛT ) lies within
the corresponding confidence region based on subsample statistics, con-
clude that this eigenvalue belongs to the space of stochastic trends.
Find the absolutely largest eigenvalues that lies within the correspond-
ing confidence region. The index of this eigenvalue is the number of
independent stochastic trend of the system.

Following graph is one typical result of centered subsampling test based on
the Theorem above. A simulation assessment of centered subsampling is
documented in Table 2.
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Figure 5: Centered Subsampling with large number of stochastic trends
N = 30, g = 28, T = 200, b ∈ (80, 100)

It can be clearly seen that after centering, the whole sample test statistic
of first 28 eigenvalues lie within the corresponding confidence regions based
on subsample statistics, while for the last two eigenvalues, the whole sample
statistics lie far below the corresponding confidence regions.

In Table 2 we report some simulation results of tests based on the uncentered
subsampling procedure, the centered subsampling and the Johansen proce-
dure. The reason for taking the Johansen procedure as the benchmark for the
comparison with the subsampling procedure is that the Johansen procedure
seems to be the most popular one in applied cointegration research17. Fur-
ther, the H0 under test are the same - the number of independent stochastic
trends.

17There are some other methods: Stock and Watson (1988), Phillips (1991), Bierens
(1997), and Bierens (1997) which can be used to test for the number of cointegration
relations. See Haug (1996) for a study of the comparison of some of these methods.
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N g0 T b JH JH UCSS UCSS CSS CSS
g = g0 g = g0 + 1 g = g0 g = g0 + 1 g = g0 g = g0 + 1

20 1 200 90 0.50 0.00 0.90 0.00 0.96 0.00
20 3 200 90 0.96 0.00 0.93 0.00 0.93 0.00
20 5 200 90 0.90 0.06 0.90 0.00 0.90 0.00
20 7 200 90 0.93 0.13 0.96 0.00 0.96 0.00
20 9 200 90 0.73 0.26 0.90 0.00 0.97 0.00
20 11 200 90 0.80 0.13 0.80 0.00 1.00 0.00
20 13 200 90 - - 0.83 0.00 1.00 0.00
20 15 200 90 - - 0.76 0.00 1.00 0.00
20 17 200 90 - - 0.80 0.00 1.00 0.00
20 19 200 90 - - 0.70 0.00 0.96 0.00

30 1 200 70 0.50 0.00 0.90 0.00 0.90 0.00
30 4 200 70 0.86 0.20 0.88 0.00 1.00 0.00
30 7 200 70 0.90 0.70 0.90 0.00 0.93 0.00
30 10 200 70 0.90 0.66 0.76 0.00 0.83 0.00
30 13 200 70 - - 0.43 0.00 0.90 0.00
30 16 200 70 - - 0.35 0.00 1.00 0.00
30 19 200 70 - - 0.16 0.00 0.85 0.00
30 22 200 70 - - 0.07 0.00 0.90 0.00
30 25 200 70 - - 0.00 0.00 0.97 0.00
30 28 200 70 - - 0.00 0.00 0.85 0.00

40 1 200 70 0.60 0.00 0.83 0.00 0.90 0.00
40 4 200 70 0.96 0.53 1.00 0.00 1.00 0.00
40 7 200 70 1.00 0.90 0.76 0.00 0.93 0.00
40 10 200 70 0.96 0.83 0.43 0.00 0.93 0.00
40 13 200 70 - - 0.16 0.00 0.90 0.00
40 16 200 70 - - 0.10 0.00 0.83 0.00
40 19 200 70 - - 0.03 0.00 0.80 0.00
40 22 200 70 - - 0.00 0.00 0.80 0.00
40 25 200 70 - - 0.00 0.00 0.79 0.00
40 28 200 70 - - 0.00 0.00 0.67 0.00
40 31 200 70 - - 0.00 0.00 0.68 0.00
40 34 200 70 - - 0.00 0.00 0.73 0.00
40 37 200 70 - - 0.00 0.00 0.67 0.00

Table 2: Relative frequency of acceptance of H0 at the nominal level of 90%.
N is the dimension of the system. g0 is the number of the independent
stochastic trends. T is the total sample size. b is the subsample size. H0

under test are g = g0 and g = g0 + 1 respectively. ρ1 = ρ2 = ρ3 = ρ4 =
0, ρe1 = ρe2 = ρe3 = ρe4 = 0. ut and uet are i.i.d draws from standard nor-
mal distribution. The matrix C are filled with random numbers drawn from
normal distribution with variance 4. The lag in the VAR of the ECM of Jo-
hansen procedure is 2. JH indicates the Johansen procedure. USS indicates
the uncentered subsampling method. CSS indicates the centered subsampling.
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Obviously, the power of Johansen procedure in rejection of false stochastic
tends is low. In the simulated cases it has positive probability to overestimate
the number of stochastic trends. This probability becomes larger, when
the number of the independent stochastic trends in the system gets larger.
Because we have only critical values for Johansen trace statistic up to g = 12,
the comparison with the Johansen procedure stops at g = 13. The uncentered
subsampling performs well when g are small. When g is larger than 10 the
uncentered subsampling is severely undercovered. The centered subsampling
performs very well. Even for the cases when the number of the independent
stochastic trend is close to the dimension of the system centered subsampling
has still correct size and higher power.

In the last section we have discussed two asymptotically equivalent criteria,
one is based in the eigenvalues of T Π̂T , the other is based on the T times
the canonical correlation coefficient between ∆yt and yt−1. In the following
table we records the simulation results of these two tests using the same sets
of data.
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N g0 T b CSS RE CSS CC

20 1 200 90 0.96 0.90
20 3 200 90 2.96 2.90
20 5 200 90 4.90 4.63
20 7 200 90 6.96 6.70.
20 9 200 90 8.94 8.83
20 11 200 90 11 10.57
20 13 200 90 13 12.40
20 15 200 90 15 14.12
20 17 200 90 17 16.57
20 19 200 90 18.96 18.60

30 1 200 90 0.95 0.89
30 4 200 90 4.00 3.76
30 7 200 90 7.00 6.74
30 10 200 90 9.98 9.66
30 13 200 90 12.96 12.6
30 16 200 90 15.95 15.56
30 19 200 90 18.90 18.68
30 22 200 90 21.85 21.64
30 25 200 90 24.84 24.41
30 28 200 90 27.93 27.74

40 1 200 70 0.9 0.70
40 4 200 70 4 3.30
40 7 200 70 6.97 6.92
40 10 200 70 9.95 9.39
40 13 200 70 12.90 12.60
40 16 200 70 15.83 15.65
40 19 200 70 18.80 18.87
40 22 200 70 21.73 21.53
40 25 200 70 24.57 24.45
40 28 200 70 27.74 27.54
40 31 200 70 30.75 30.25
40 34 200 70 33.56 33.48
40 37 200 70 36.74 36.45

Table 3: The estimated number of independent stochastic trends averaged
over 100 simulations based on the subsampling tests. N is the dimension
of the system. g0 is the number of the independent stochastic trends of the
DGP. T is the total sample size. b is the subsample size. ρ1 = ρ2 = ρ3 =
ρ4 = 0, ρe1 = ρe2 = ρe3 = ρe4 = 0. ut and uet are i.i.d draws from standard
normal distribution. The matrix C are filled with random numbers drawn
from normal distribution with variance 4. CSS RE indicates the centered
subsampling based on T Π̂, CSS CC indicates the centered subsampling based
on the canonical correlation coefficients.
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Obviously, both two tests give good results for the simulated benchmark
cases. Within finite sample size, the test based on the eigenvalue of T Π̂ per-
forms slightly better than that based on the canonical correlation coefficients.

For empirical application of the subsampling procedure, one critical issue
is the autocorrelation in the disturbance ut. Although the asymptotically
theory on the subsampling tests will hold for autocorrelated disturbances, the
finite sample property of the test procedure may change if the autocorrelation
in the disturbance term is very high. It is well known that a unit root process
and a highly positively autocorrelated stationary process are observationally
indistinguishable with finite data. Therefore, subsampling will not be able to
identify the number of independent stochastic trends if the autocorrelation
in the disturbances are too high. To see how subsampling performs when
the autocorrelation in the disturbance are moderate, we have run following
simulations.

N g0 T b CSS RE CSS CC
30 1 200 90 0.95 0.86
30 4 200 90 3.89 3.59
30 7 200 90 6.91 6.54
30 10 200 90 9.91 9.42
30 13 200 90 12.92 12.41
30 16 200 90 15.90 15.46
30 19 200 90 18.83 18.56
30 22 200 90 21.79 21.43
30 25 200 90 24.81 24.40
30 28 200 90 27.83 27.51

Table 4: The estimated number of independent stochastic trends averaged
over 100 simulations based on the subsampling tests. N is the dimension
of the system. g0 is the number of the independent stochastic trends of the
DGP. T is the total sample size. b is the subsample size. ρ1 = ρ2 = ρ3 =
ρ4 = 0, ρe1 = 0.4, ρe2 = −0.2, ρe3 = 0.2, ρe4 = 0.1. ut and uet are i.i.d draws
from standard normal distribution. The matrix C are filled with random
numbers drawn from normal distribution with variance 4. CSS Re indicates
the centered subsampling based on the eigenvalues of T Π̂, CSS CC indicates
the centered subsampling based on the canonical correlation coefficient.

The simulation results show that when the autocorrelation are moderate,
subsampling test procedure will still perform satisfactory. Also here, the test
based on the eigenvalues of T Π̂ performs slightly better than the test based
on the canonical correlation coefficients.
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6 An Application Example

After we investigate the performance of subsampling testing procedure, we
turn to an example of application of this testing procedure, namely the test
of purchasing power parity(PPP).

Purchasing power parity is a benchmark model for nominal exchange rate
determination. Over last decades a vast amount of empirical works have
been conducted to assess the evidence of PPP in the real world. While
most literature in 80s found evidence against PPP: the real exchange rate
were found to follow a random walk, see for example Frankel (1981), and
Enders (1988); the works in 90s deliver some results favor PPP in a long run
cointegration relation, see for example Johansen and Juselius (1992), Kim
(1990) and Abuaf and Jorion (1990). Resent panel studies do not provide
a clear picture of PPP. For example Choi (2001), Oh (1996) found evidence
favor PPP, while Fleissig and Strauss (2000) did not find evidence favor PPP.

The economical reasoning behind PPP is the goods arbitrage, i.e. the domes-
tic price for products should equal to the foreign price for the same foreign
products converted by the exchange rate:

Pd = SdfPf , (6.29)

where Pd is the domestic price, Pf is the foreign price, and Sdf is the price
of foreign currency - the exchange rate.

Taking the logarithm we get :

pd = sdf + pf , (6.30)

where the small case letters denote the corresponding logs. Because pd, pf
and sdf are I(1) variables the exact PPP relation (6.30) is then tested in the
form that the real exchange rate srdf is a stationary I(0) variable:

srdf := sdf − pd + pf . (6.31)

This implies at same time that the variable pd, pf and sdf are cointegrated
with a particular cointegration vector (1,−1, 1)′. A large number of empirical
studies were conducted in 90s to explore this specific cointegration relation
among nominal exchange rates and price indices between different countries.
Also in the panel studies, this cointegration relation is the object under
test. Bilateral PPP implies many cointegration relations in a multi-country
system.

In the following we are going to characterize PPP for a system of N countries.
In the case of three countries, we may haver pair wise PPP:

−p0 + s01 + p1 ∼ I(0), (6.32)
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−p0 + s02 + p2 ∼ I(0), (6.33)

and
−p1 + s12 + p2 ∼ I(0). (6.34)

In fact (6.34) is the difference between (6.33) and (6.32). Therefore PPP im-
plies two linear independent particular cointegration relations among three
countries. This simple example can be generalized to the case of N countries.
In fact bilateral PPP relations with respect to one country implies bilateral
PPP relations among other countries. PPP implies N − 1 independent coin-
tegration relations among a system of N countries with 2N − 1 variables.
Choose arbitrarily a country as the base country, we may order the relevant
variables of the system in the following way:

yt =




p0

s01

p1
...

s0(N−1)

pN−1



. (6.35)

Then PPP implies that this 2N − 1 system is a cointegrated system with
N − 1 cointegration relations like follows:




−1 1 1 0 0 . . . 0

−1 0 0 1 1 0
...

...
... 0 0 0

. . . . . . 0
−1 0 . . . 0 1 1


 . (6.36)

Taking advantage of these particular cointegration relations, many empirical
works were conducted in panel setting to increase the power of test.

In this paper we conduct a direct test of these N − 1 cointegration relations
in the 2N − 1 dimensional system. Here we investigate the relation among
exchange rates and price levels among the most important 10 currencies
in the world economy: US Dollars, Canadian Dollars, Euro, Japan Yen,
Swiss Francs, British Pounds, Korea Wan, Australian Dollars, New Zealand
Dollars, Mexican Pesos18. We look at a system of 9 exchange rates and 10
price indices. The data are daily from 2000:01:01 to 2002:10:02. The main
summary statistics of the data are in the following table.

18There are still two important currencies: the Hongkong Dollars and the Chinese Yuan.
Because they were institutionally under pegging system, we do not consider these two
currencies.
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Series Obs Mean Std Error Minimum Maximum
CAD_USD 717 1.50130098 0.07950400 1.29240000 1.61320000
DEUR_USD 717 1.03754449 0.10297501 0.79386000 1.20871000
JPY_USD 717 117.61344491 7.68910553 102.65000000 134.79000000
GBP_USD 717 0.65868662 0.03765339 0.56031000 0.72563000
CHF_USD 717 1.57014533 0.15506100 1.23780000 1.82140000
AUD_USD 717 1.76061144 0.17266568 1.32810000 2.06980000
NZD_USD 717 2.11555411 0.27333018 1.52620000 2.54700000
KRW_USD 717 1214.26457462 68.86227937 1105.20000000 1368.30000000
MXN_USD 717 9.81171116 0.65366391 9.00230000 11.40970000
PCANADA 717 1.11234310 0.02287517 1.07000000 1.16000000
PEURO 717 1.12616457 0.02159016 1.09000000 1.16000000
PJAPAN 717 1.00903766 0.00834286 0.99000000 1.02000000
PUK 717 1.15896792 0.01697173 1.12000000 1.19000000
PSWISS 717 1.04523013 0.00857818 1.03000000 1.06000000
PAUS 717 1.13938633 0.03681317 1.07000000 1.19000000
PNZ 717 1.10020921 0.02380873 1.06000000 1.14000000
PKOREA 717 1.25447699 0.03443740 1.20000000 1.31000000
PMEXIKO 717 2.52722455 0.11249691 2.32000000 2.72000000
PUS 717 1.15408647 0.02211974 1.11000000 1.19000000
___________________________________________________________________________
Source : Federal Reserve Bank of St. Louis
http://research.stlouisfed.org/fred2/categories/15\\
OECD: main economic indicator

All 19 series are graphed in the following graph panel. All series show strong
stochastic trends. Except Japan all price indices have upward trend. Some
exchange rates such as EURO/USD, BRP/USD, CHF/USD,AUD/USD and
NZD/USD show well pronounced similar trend movement, which may suggest
some cointegration relations among them.
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Figure 3: The fundamental data of the model.

The discussion in the last section shows that if the number of independent
stochastic trends are small, we can use uncentered subsampling; if we ex-
pect large number of stochastic trends we should use centered subsampling.
Hence we will start with uncentered subsampling test. If we then get any
evidence that the stochastic trends are underestimated, we can run centered
subsampling to get correct number of stochastic trends. If we can not find
any cointegration relation based on the uncentered subsampling, this will be
a more strong evidence against cointegration.

Our test starts therefore with uncentered subsampling. Contrary to the opti-
cal impression, the test shows that there is no cointegration relations among
these 19 variables. In Figure 4 we can see clearly the even the smallest eigen-
value(in absolute value the largest) has the same order of the corresponding
confidence bounds (see the last graph in the fourth column): it lies in fact
within the subsampling confidence interval. This mean that there is no coin-
tegration relations within 19 variables. This result implies that we can not
find empirical evidence for PPP hypothesis with daily data within a short
period of 3 years. This empirical result confirms the findings in the literature



6 AN APPLICATION EXAMPLE 30

that there is no evidence for PPP for short run period.
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Figure 4: Subsampling confidence interval for block size: b ∈ (100, 300).

Now we turn to the long run PPP relation. We investigate in fact the same
system in the post-Bretton Woods period from 1973 to 2002. Due to data
availability Korea and Mexico have to be excluded from the system. The
data are monthly from 1973:1 to 2001:12. The main summary statistics of
the data are in the following table.

Series Obs Mean Std Error Minimum Maximum
CAD_USD 348 1.25128994 0.15740167 0.96230000 1.59220000
JPY_USD 348 181.40913793 68.00074320 83.69000000 305.67000000
GBP_USD 348 0.58802093 0.09610155 0.38816862 0.91482938
CHF_USD 348 1.83921638 0.52598882 1.13840000 3.72930000
DEM_USD 348 2.05346236 0.43630573 1.38120000 3.30250000
AUD_USD 348 1.21006869 0.31927103 0.67317402 1.99362041
NZD_USD 348 1.50079774 0.44567899 0.67276642 2.50626566
CAN445241K 348 0.74470489 0.26868023 0.25810000 1.12750000
GEM125241K 348 0.80161207 0.18652050 0.45510000 1.10210000
JAP465241K 348 0.84753764 0.17127051 0.37260000 1.03340000
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SWZ685241K 348 0.78951437 0.18556799 0.44870000 1.05450000
USA425241K 348 0.74622989 0.26400929 0.28000000 1.17000000
GRB265241K 348 0.69524195 0.31238563 0.15190000 1.17140000
NZL595241K 348 0.65978621 0.33980043 0.12400000 1.11270000
AUS545241K 348 0.68831379 0.30557015 0.17560000 1.15970000

___________________________________________________________________________
Source : Federal Reserve Bank of St. Louis
http://research.stlouisfed.org/fred2/categories/15\\
OECD: main economic indicator
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Figure 5: The fundamental data of the model.

On the graphs above there are well pronounced comovement among many
series. We would expect some cointegration relation among them. Contrary
to the optical impression, the test shows that there is no cointegration rela-
tions among these 15 variables. The subsampling test results are depicted in
the following Figure 6.
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Figure 6: Subsampling confidence interval for block size: b ∈ (70, 160).

In the graphs above we can not see any hint of diverging property of the
eigenvalues. Even the smallest eigenvalue has the same order as the the
subsample bounds. Therefore we conclude that the system does not contain
any cointegration relations. This means that PPP hypothesis is rejected in
this set of data.

7 Concluding Remarks

In this paper we develop a procedure to explore the cointegration relations
among large numbers of variables and thus contribute to the econometric
literature on multivariate cointegration analysis in large systems. The non-
parametric subsampling test procedure is shown to be consistent and has
asymptotically power 1. We show that uncenterd subsampling performs well
with moderate sample size for small number of stochastic trends. We also
show that the uncentered subsampling severely under estimates the number
of stochastic trends, if the number is large. Centered subsampling procedure
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is proposed to overcome this problem. The centered subsampling is able to
identify the number independent stochastic trends even when the number of
stochastic trends are close to the dimension of the system.

However, subsampling test is only a asymptotically valid test. The perfor-
mance of the test in finite sample cases may depend on the parameter of
the testing procedure such as the block size and the parameters of the DGP.
Instead of searching for a optimal subsample size, we apply a range of rea-
sonable subsample sizes to conduct our conclusion based on the qualitative
difference between the divergence of the test statistics and the convergence
of the test statistics.

Simulation studies show that the subsampling procedure perform very well
for the cases of large systems with moderate requirement on data. The
subsampling procedure is robust against moderate autocorrelation in the
disturbance terms.

8 Appendix

Proof of Lemma 3.3.
Using the continuous mapping theorem we have

(
GiT

Tα
)−1 =

G−1
iT

T−α
⇒ G−1

i .

(i) is proved.

For (ii),
GiT

T αi
GjT

T αj
=
GiT ·Gj,T

T αi+αj
D

=⇒ Gi ·Gj.

The proof for (iii) is similar.
2

Lemma 8.1
(
A B
C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

Proof of Lemma 8.1 is done easily by matrix multiplication of the expression

above and

(
A B
C D

)
.

2

Proof of Lemma 3.4
First, we calculate

(
G1,T G2,T

G3,T G4,T

)−1

=:

(
G∗1,T G∗2,T
G∗3,T G∗4,T

)
.
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Using Lemma 8.1, the first block matrix is equal to

(G∗1,T )−1 = T
G1,T

T
− T G2,T

T
T−2(

G4,T

T 2
)−1T

G3,T

T

= T
G1,T

T︸ ︷︷ ︸
P−→g1

− G2,T

T
(
G4,T

T 2
)−1G3,T

T︸ ︷︷ ︸
D

=⇒G2G
−1
4 G3

.

The convergence of the second term in the last equation is guaranteed by the
continuous mapping theorem, see Hamiltion (1994) P.482. Then,

G∗1,T
T−1

P−→ lim
T→∞

(g1T −G2G
−1
4 G3)−1

T−1
= g−1

1 . (8.37)

Similarly, we have

G∗2,T
T−2

D
=⇒ −g−1

1 G2G
−1
4

G∗3,T
T−2

D
=⇒ −G−1

4 G3g
−1
1

G∗4,T
T−2

D
=⇒ G−1

4 .

Now we calculate the limit of G7,T , G8,T . Due to the continuous mapping
theorem we are allowed to have the following ”calculation”

(
G1,T G2,T

G3,T G4,T

)−1(
G5,T

G6,T

)
∼

(
g−1

1 T−1 −g−1
1 G2G

−1
4 T−2

−G−1
4 G3g

−1
1 T−2 G−1

4 T−2

)(
g5T
G6T

)

∼
(

g−1
1 g5

(−g5G
−1
4 G2g1 +G6G4)T−1

)
(8.38)

2

Lemma 8.2 Let a, b, c, d be h × h, h × g, g × h, g × g given matrices. Let

B =

(
β11 β12

β21 β22

)
where β11, β12, β21, β22 are h × h, h × g, g × h, g × g given

matrices. Then, the eigenvalues of the matrix

B

(
Ta Tb
c d

)
(8.39)

are separated into two groups: one has the order T and the other one has the
order 1.

Note Lemma 8.2 will be applied later for T →∞.

Proof of the Lemma 8.2 The idea of the proof is that the eigenvalues of the
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matrix X are invariant under the transformation Ψ−1XΨ.

Search ΨT of the form

ΨT =

(
I e12,T

e21,T I

)

where e12,T and e21,T are h× g and g × h matrices respectively.

From straightforward calculation, we obtain

Ψ−1
T B

(
Ta Tb
c d

)
ΨT =

(
ÃT B̃T

C̃T D̃T

)

where

ÃT = (I − e12,T e21,T )−1
[

T (β11 − e12,Tβ21)(a+ be21,T ) (8.40)

+ (β12 + e12,Tβ22)(c+ de21,T )
]
,

B̃T = (I − e12,T e21,T )−1
[

T (β11 − e12,Tβ21)(ae12,T + b) (8.41)

+ (β12 + e12,Tβ22)(ce12,T + d)
]
,

C̃T = (I − e21,T e12,T )−1
[

T (−e21,Tβ11 + β21)(a+ be21,T ) (8.42)

+ (−e21,Tβ12 + β22)(c+ de21,T )
]
,

D̃T = (I − e21,T e12,T )−1
[

T (−e21,Tβ11 + β21)(ae12,T + b) (8.43)

+ (−e21,Tβ12 + β22)(ce12,T + d)
]
.

We choose e12,T and e21,T such that B̃T ∼ 0 and D̃T ∼ 0.

From the constraint B̃T ∼ 0, we choose e12,T with the expression

e12,T = −a−1b+
∆1,T

T
+O(T−2) (8.44)

where
∆1,T = a−1(β11 − ê12β21)−1(β12 + ê12β22)(cê12 + d)

with ê12 = a−1b. The expression (8.44) provides an approximation

ae12,T + b = O(T−1) . (8.45)

Similarly, under the setting C̃T ∼ 0, we choose e21,T with the expression

e21,T = β21β
−1
11 +

∆2,T

T
+O(T−2) (8.46)
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where
∆2,T = (−ê21β12 + β22)(c+ dê21)(a+ bê21)−1β−1

11

with ê21 = β21β
−1
11 . This expression provides an approximation

−e21,Tβ11 + β21 = O(T−1) . (8.47)

With the chosen e12,T and e21,T , the leading term in (8.40) is the first term.
Thus

lim
T→∞

ÃT
T

= (β11 − a−1bβ21)(a+ bβ21β11) =: A , (8.48)

so ÃT has order T . Let λ1,T , · · · , λh,T be the eigenvalues of ÃT and λ1, · · · , λh
be the eigenvalues of A in descending order in absolute value. Then due to
the continuity of the eigenvalues

lim
T→∞

λi,T
T

= λi, for i = 1, · · · , h.

Now, we calculate the eigenvalues of D̃T . The most tricky part of this prove
is that, by applying the approximations (8.45) and (8.47), the first term on
the RHS in Eq. (8.43) hat order 1

T
instead of T , therefore the leading term

of D̃T in Eq. (8.43) is the second term. Then,

lim
T→∞

D̃T = (−β21β
−1
11 β12 + β22)(ca−1b+ d) =: D. (8.49)

The eigenvalues of D̃T converges to the eigenvalues of D.
2

Proof of Theorem 3.5
Theorem 3.5 is the stochastic version of Lemma 8.2. In order to use Lemma

8.2, we correspond

(
Ta Tb
c d

)
Eq. in (8.39) to

(
TG7,T

TG8,T

)
in Eq. (3.10). Since

the correspondence of a, b, c, d are random variables and dependent on T , we
add the subindex T to a, b, c, d and define

aT = G7,T,1 bT = G7,T,2

cT = TG8,T,1 dT = TG8,T,2 .

From Lemma 3.4 we have the convergence

(
aT bT

) P−→ g7 =:
(
g7,1 g7,2

)
(
cT dT

) D
=⇒ G8 =:

(
G8,1 G8,2

)
.
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These convergence has a strong version of convergence almost surely, see
Föllmer (1981), that means the convergence

(
aT bT

) −→ g7 =:
(
g7,1 g7,2

)
(
cT dT

) −→ G8 =:
(
G8,1 G8,2

)

holds for almost all paths.

Applying Lemma 8.2 for all the path satisfying the convergence above, and
define

A := lim
T→∞

ÃT
T

= (β11 − g−1
7,1g7,2β21)(g7,1 + g7,2β21β11) (8.50)

D := lim
T→∞

D̃T = (−β21β
−1
11 β12 + β22)(G8,1g

−1
7,1g7,2 +G8,2). (8.51)

Then, A and D are well-defined for almost all paths (with probability one).

Then, the eigenvalues of ÃT
T

and D̃T converge to the eigenvalues of A and D
with probability one. The statements (3.11) and (3.13) in Theorem 3.5 are
proved.
2

Proof of Theorem 5.1

To proof the first part of the Theorem we look at Lemma 3.4 more closely.
Instead of (8.37) we use the more detailed expression:

G∗1,T
T−1

P−→ lim
T→∞

(β′((
√
T 1√

T

∑T−1
t=0 (utu

′
t − Eutu′t) + TE(utu

′
t))β −G2G

−1
4 G3)−1

T−1

= g−1
1 + T−

1
2 G̃1.

G̃1 is the random variable defined by CLT for β′ 1√
T

∑T−1
t=0 (utu

′
t − Eutu′t)β.

similarly, we have

G5,T

T

P−→ = g5 + T−
1
2 G̃5.

Inserting these two expressions into (8.38)

T Π̂ =

(
G1,T G2,T

G3,T G4,T

)−1(
G5,T

G6,T

)
∼

(
g−1

1 g5T + g−1
1 G̃5T

1
2

−g1G
−1
4 G2g5 +G6G4

)

Following Lemma 8.2, we know that the order of the eigenvalues is the same
as the order of the elements of the corresponding subblock of the matrix.
Hence we have for the ith eigenvalue of the matrix T Π̂ from the jth draw:19

19Actually beside the leading term gi,jT we have at least one term with rate of con-
vergency of

√
T as given in the formula. This is enough for our proof. For Simplicity of

presentation we assume the second order leading term is
√
TG̃i;j .
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λi,T ;j ∼ g̃i,jT + G̃i;j

√
T for j = 1,2,...,M; i = 1,2,...h, (8.52)

where ∼ reads ”has the same order as”. g̃i,jT is the leading term of order T .
Because The constant g̃i,j is identical for all j, the index j can be omitted.
We define λi,j,T as the average over m draws:

λi,T =
1

m

M∑
j=1

λi,T ;j. (8.53)

For m large enough we have
λi,T ∼ g̃iT (8.54)

because the second term in (8.52) has mean zero.

It follows then:

λi,T ;j − λi,T ∼ G̃i,j

√
T for i = 1,2,...h. (8.55)

This proofs the first part of Theorem 5.1. The proof of the second part is
straight foreword.

lim
T→∞,m→∞

(λi,T − λi,T )

= lim
T→∞

λi,T − lim
m→∞

1

m

m∑
j=1

lim
T→∞

λi,T ;j

= λi − lim
m→∞

1

m

m∑
j=1

λi;j

= λi − E(λi).

2
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