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Abstract

In this paper we analyze the asymptotic properties of the popular dis-
tribution tail index estimator by B. Hill (1975) for possibly heavy-tailed,
heterogenous, dependent processes. We prove the Hill estimator is weakly
consistent for processes with extremes that form mixingale sequences, and
asymptotically normal for processes with extremes that are near-epoch-
dependent on the extremes of a mixing process. Our limit theory covers
in…nitely many ARFIMA and FIGARCH processes, stochastic recurrence
equations, and simple bilinear processes. Moreover, we develop a simple
non-parametric kernel estimator of the asymptotic variance of the Hill
estimator, and prove consistency for extremal-NED processes.

1. INTRODUCTION
This paper develops an asymptotic theory for the popular distribution tail index
estimator due to B. Hill (1975) under general conditions. Denote by fg =
f: ¡1 1g a stochastic process on some probability measure space
(=), = = [2Z=, =¡1 ½ =́ ( : · ). We assume has for each
a common marginal distribution , and without loss of generality assume 
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has support on (01). A fundamental assumption is the tail probability ¹()
´ () is regularly varying at 1: there exists some 0 such that for
all 0

(1) ¹()¹() ! ¡

as ! 1, where denotes the index of regular variation. Equivalently,

(2) ¹() = ¡()0

where () is slowly varying. The class of distributions satisfying (1) includes
the domain of attraction of the stable laws, coincides with the maximum domain
of attraction of the extreme value distributions expf¡¡g, and characterizes
the tails of many stochastic recurrence equations, including GARCH processes.
See de Haan (1970), Feller (1971), Ibragimov and Linnik (1971), Leadbetter et
al (1983), Bingham et al (1987), Resnick (1987), and Basrak et al (2002a,b).

Denote by () 0 the order statistic of the sample path f1g:
(1) ¸ (2) ¸. Let  be a sequence of integers satisfying ! 1 as ! 1,
and = (). A popular estimator for the inverted tail index ¡1, due to B.
Hill (1975), is simply

̂¡1
 ´ 1



X

=1

¡
ln(+1)

¢
+ =

1


X

=1
ln()(+1)

where ()+ = maxf0g. See Hsing (1991: eq. 1.5) for an intuitive characteriza-
tion of ̂¡1

 as a method of moments estimator. See, also, Haeusler and Teugels
(1985).

The so-called Hill estimator has been used pervasively in the applied …nance,
economics, statistics and telecommunications literatures. Consider Akgiray and
Booth (1988), Cheng and Rachev (1995), Loretan and Phillips (1994), Resnick
and Rootzén (2000), Rachev (2003), Chan et al (2005), and Hill (2005), to name
a few. For alternative techniques for estimating , consult Pickands (1975),
Smith (1987), Rootzén et al (1990), Smith and Weissman (1994), Drees et al
(2004), and Beirlant et al (1996, 2005).

We are interested in the asymptotic properties of ̂¡1
 under minimal con-

ditions. Asymptotic normality was proved for iid and strong mixing processes;
and consistency was shown speci…cally for in…nite order moving averages, sim-
ple bilinear and ARCH(1) processes; and in general for stochastic recurrence
equations (e.g. GARCH), and processes approximable by a …nite-dependent
process. See Mason (1982), Hall (1982), Davis and Resnick (1984), Hall and
Welsh (1984), Haeusler and Teugels (1985), Rootzén et al (1990), Hsing (1991),
Resnick and St¼aric¼a (1995, 1998), and de Haan and Resnick (1998).

Hsing (1991), in a seminal paper, develops an asymptotic theory under re-
markably general su¢cient conditions, and exempli…es the theory by proving
asymptotic normality for strong mixing processes. The su¢cient conditions in-
clude the existence of probability and distribution limits for nonlinear tail arrays
f¤

g based on fg (see Section 3), and for () to be restricted in the
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manner of Smith (1982) and Goldie and Smith (1987). It is not obvious when
the law of large numbers or central limit theorem for f¤

g will hold out-
side the strong mixing case, and in general concrete cases for the slowly varying
component () will ultimately have to be considered (see, e.g., Haeusler and
Teugels, 1985).

Mixing assumptions are not practical for every …nancial and macroeconomics
context because they either do not hold, or a mixing condition holds only under
hash conditions. Examples include linear distributed lags (Andrews, 1984),
long memory processes (Guegan and Ladoucette, 2001), and general nonlinear
GARCH processes (e.g. Carrasco and Chen, 2002).

Moreover, there are no details in the literature on how to characterize the
asymptotic variance of ̂¡1

 in general, without specifying a parametric model
or exploiting a mixing property (e.g. Hsing, 1991).

Our starting point is the fact that the Hill estimator only utilizes sample in-
formation from the extreme tail of the distribution. Using a generalization of the
-mixing property in Leadbetter et al (1983), we de…ne an "extremal" mixing
base. We then re-de…ne the mixingale and near-epoch-dependence properties to
hold exclusively in the extreme support of the distribution.

We prove the Hill estimator is consistent for processes with extremes that
form mixingale sequences, and asymptotically normal for processes with ex-
tremes that are near-epoch-dependent on the extremes of a mixing base. The
extremal-mixingale property implies the extremal-NED property, which charac-
terizes the memory of in…nitely many -NED processes satisfying (1), 0,
hence strong mixing, ARFIMA, FIGARCH, and bilinear processes, and many
stochastic recurrence equations. See Section 3.4, and see Basrak et al (2002a,b),
Davidson (2004) and Hill (2006a). The generality a¤orded by the extremal-NED
property is important if we wish to analyze fg itself, rather than a pre-…ltered
series based on a possibly mis-speci…ed model, or a …lter that erodes information
re‡ecting tail shape1.

We then prove a non-parametric kernel estimator of the asymptotic vari-
ance of ̂¡1

 is consistent for extremal-NED processes. Therefore an under-
lying structure (e.g. GARCH) that may a¤ect the parametric form of the
limiting variance need not be speci…ed. See Hill (2006b) for a broad simula-
tion study that demonstrates the exceptional merits of the kernel estimator
for ARMA(11), GARCH(11), IGARCH and Davidson’s (2004) long-memory
Hyperbolic-GARCH processes. See, also, Smith and Weissman (1994), Poon et
al (2002), and the citations therein for alternative data cluster techniques to
improve standard error estimation.

A useful consequence of our results is a complete limit theory for the inter-
mediate tail quantile estimator (+1)and tail array sums ¡1 P

=1(ln¡
())+ and ¡1 P

=1(())+ for some increasing threshold () !
1 as ! 1. Limit theory for such tail array sums and a general tail empirical

1 For example, GARCH processes are known to have regular ly varying tails: see Basrak
et al (2002a ,b). The scaled residuals f̂̂g of a GARCH time series = however,
may have subtantial ly thinner tails than the original series itself, and need not have regularly
varying tails (e.g. » (01)) .
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quantile process has been developed for iid, mixing, and -dependent processes
in Leadbetter et al (1983), Hsing (1991,1993) and Drees (2002).

Criteria for selecting the sample tail fractile  is considered in Hall (1982),
Resnisk (1996), Resnick and St¼aric¼a (1997), Danielsson et al (1998), and Drees et
al (2000). Consult McLeish (1975), Hall and Heyde (1980), Gallant and White
(1988) and Davidson (1994) for details on population dependence properties.
For dependence theory associated with univariate and multivariate extremes,
see, for example, Loynes (1964), de Haan and Resnick (1977), Leadbetter et al
(1983), and Ledford and Tawn (1996).

In Section 2 we de…ne extremal dependence properties. Section 3 contains
assumptions, the main results, and examples of processes that are covered by
our theory. Appendix 1 contains proofs of the main results and Appendix 2
contains preliminary lemmas.

Through ! denotes convergence in probability and ) denotes convergence
in distribution. Let [] denote the smallest integer larger than ..

2. EXTREMAL DEPENDENCE
Let fg be a stochastic process on some probability measure space (¥¥),
with -algebra = [. Denote by fg=1 a sequence of thresholds  !
1 as ! 1 for each , and de…ne the -sub-algebra associated with extremes
of :

z
´ (   : 1 ···· )

De…ne the following coe¢cients, where 1 · :

´ sup1··sup2z
12z

+
j(\ ) ¡()()j

´ sup1··sup2z
12z

+
j(j) ¡()j

E-Mixing If sup()= (¡¡) we say fg is Extremal-Strong Mix-
ing with size ¡0, for some tiny 0. If sup()= (¡¡)
we say fg is Extremal-uniform mixing with size ¡.

Remark : The E-strong mixing property is only a slight generalization of
Leadbetter et al’s (1983) -mixing property. Because z2  it is easy to
show a mixing process is E-mixing. Similarly, well known inequalities easily
apply. Cf. Ibragimov (1962) and Ser‡ing (1968).

Now let  : R ! R+ be a sequence of functions satisfying () ! 1 as
! 1 for arbitrary 2 R. Consider extremal versions of the mixingale and
near-epoch-dependence concepts.

-E-MIX The sequence fzg is an -Extremal-Mixingale with size ¡
if () is chosen such that

k(()) ¡(()jz¡)k· ~¤
()~¤

°°(()j=+
¡) ¡(()jz+)

°°


· ~¤
()~¤

+1
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where ~¤: R ! R+ is Lebesgue measurable, sup~¤
() = (()1)

for each 2 R, and lim sup~¤
= (¡¡) for some tiny 0.

-E-NED fg is -Extremal-NED on fzg with size ¡ if () is
chosen such that

°°(()j=+
¡) ¡(()jz+

¡)
°°
· ~¤

()~
¤


where ~¤
: R ! R+ is Lebesgue measurable, sup~¤

() = (()1)
for each 2 R, and lim sup()1¡1~

¤
= (¡¡) for some ̧

.

Remark 1: The combined (()1) rate is based on a simple upper
bound by observing(())1=(()1), where () is de…ned
by (3). We split the E-NED rate ~¤

() £ ~
¤
= (()1) into the two

parts in order to simplify proofs. This split is always possible given ̧ and
! 0, hence we will not comment on it further.

Remark 2: In…nitely many -NED processes fg that satisfy (1) are
2-E-NED. See Lemma B.1 of Hill (2006a)

Remark 3: The E-NED property is remotely related to Resnick and
St¼aric¼a’s (1998) approximability condition (2.14). We assume the extremal-
event (()) is approximable by the …nite-lag process(()jz+

¡),
where () ! 1 as ! 1. They assume lim!1()(j¡ ()

 j )
! 0 as ! 1 for all , where ()

 is a stationary, -dependent process. Thus,
they do not restrict dependence to the extremes, per se. Moreover, they only
prove consistency for the Hill estimator.

3. MAIN RESULTS

Assumption A details the required tail and memory properties. Consult
Section 3.4 for examples of processes that satisfy the following restrictions.

Assumption A The common marginal distribution  satis…es (1) with sup-
port on (01). Moreover, one of the following holds:
1. The sequence fzg is 2-E-MIX of size ¡12. Let ~¤() =
(()12) be square integrable with respect to Lebesgue measure on
R+: in particular (s1

0 ~¤
()2)12 = (()12).

2. fg is 2-E-NED on fg of size ¡12. Let ~¤
() =(()1)

be square integrable with respect to Lebesgue measure on R+: in partic-
ular (s1

0
~¤
()2) = (()1). The base fg is E-uniform mixing

with size ¡[2(¡ 1)], ̧ 2; or E-strong mixing with size ¡(¡ 2),
2.

3.1 Consistency
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Assume there exists a sequence of positive numbers f()ģ 1 satisfying

(3) ()(()) ! 1

See Leadbetter et al (1983: Theorem 1.7.13). De…ne the following centered
threshold processes:

fg ´
©
(ln ¡ ln ())+ ¡[(ln¡ ln())+]

ª
(4)

©
¤
()

ª
´ f(()) ¡[(())]g

for any 2 R and any in an arbitrary neighborhood of one. Throughout we
write f¤

g = f¤
()g.

Our …rst result presents laws of large numbers for the tail array sums¡1 P
=1

and ¡1 P
=1

¤
and the intermediate tail quantile estimator (+1). A

proof that the Hill estimator is consistent in the extremal-mixingale case will
then easily follow.

LEMMA 1 Let fg satisfy Assumptions A.1, let be in an arbitrary neigh-
borhood of 1 and let 2 R be arbitrary. Then for any sequence satisfying
 » , 2 (01),

¡1
X

=1
! 0, ¡1

X

=1
¤
! 0,

¯̄
ln([]) ¡ ln()

¯̄
! 0

THEOREM 2 Under the conditions of Lemma 1, ̂¡1
 ! ¡1.

Remark : -mixingale sequences and2-E-NED, -NED, E-strong mix-
ing and strong mixing processes are all special cases of 2-E-MIX sequences.

Proof of Theorem 2. The limit ̂¡1
 ! ¡1 is an immediate consequence of

Lemma 1 and Hsing’s (1991) Theorem 2.2.

3.2 Asymptotic Normality

Let = (), consider fg from (4), and now write

f¤
g = f¤

(
p
)g ´ f(()

p
)¡[(()

p
)]g

Hsing (1991: Theorem 2.4) proves that if the joint process f¤
g satis…es

¡12
³X

=1
¡1

X

=1
¤


´
) (12)

in distribution for some random vector (12), ()() ! 1 as ! 1 fast
enough and j ln([]) ¡ ln()j ! 0, then the Hill estimator satis…es

(5)
p
(̂¡1

 ¡¡1) ) 1 ¡2
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In Lemma 4 we completely characterize the joint distribution of (12) assum-
ing fg is E-NED on an E-mixing base. We then restrict the rate ()()
! 1 in Assumption B and derive a Gaussian limit law for ̂¡1

 in Theorem 5.
The proof of Lemma 4 uses a standard big-block/little-block argument pio-

neered by Bernstein (1927). De…ne the sequences ,  and  as follows: 
! 1 as ! 1 such that

! 0= (14)), = [](6)
1 ··¡ 1 · ¡ 1! 0

The restriction  = (14)) is always possible and merely expedites several
proofs.

Now de…ne the asymptotic variance: for any 2 R2 , 6= 0,

(7) 2
() ´

³
¡12

X

=1

£
1+2¡1¤


¤´2



Because 2 R2 we variously write 2
() ´ 2

(12). For example

2
(1¡1) ´ (¡12

X

=1
[¡¡1¤

])

De…ne

= (
p
) ´¡12 [1+2¡1¤

(
p
)]()(8)

́
X

=(¡1)++1


Lemma 4 e¤ectively proves
P

=1) (01) for E-NED processes fg by
exploiting a result due to de Jong (1997), and shows the remaining term is(1).
Consult Hall and Heyde (1980), Hsing (1991), Davidson (1994), and Rootzén et
al (1998) for similar arguments.

The subsequent assumption rules out asymptotic degeneracy.

Assumption B Let inf̧ 12
() ¸  for some …nite 0 for every 6= 0.

LEMMA 3 Let Assumptions A.2 and B hold. For each 2 R2,  6= 0, the
sequence f(

p
)zg is an 2-mixingale with size ¡12 and

constants = (¡12). Moreover,
P

=1
2
! 1.

LEMMA 4 If fg satis…es Assumptions A.2 and B, then for any sequence
satisfying = ()

X

=1
(

p
) ) (01)

point-wise in 2 R2 and 2 RMoreover
p
(ln(+1) ¡ ln())·

) (01)where ·2
´(

p
(ln(+1) ¡ ln()))2 and j·2

¡2
(01)j

! 0.
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Remark : Lemma 3 states (
p
) is an 2-mixingale with size

¡12 and constants = (¡12). We deduce 2
() = (

P
=12) =

(1) from a well-known bound for 2-mixingales due to McLeish (1975). Hence
·2
= (1) due to j·2

¡ 2
(01)j ! 0

In order to characterize the limiting distribution of ̂¡1
 we must restrict

the tail form of . This is handled by appealing to conditions characterized in
Goldie and Smith (1987). See Smith (1982), Haeusler and Teugels (1985) and
Hsing (1991).

Assumption C For some positive measurable function on (01) such that

(SR1) ()() ¡ 1 =(()) as ! 1

Moreover, has bounded increase: there exists 0 01 such
that ()() · some for ¸ 1̧ 0. Speci…cally, assume ·
0 and

p
(()) ! 0.

Condition (SR1) implies both ¹(())¹(()) = ¡(1 + (()))
and

p
(

P
=1(ln¡ ln())+¡¡1) = (1). Both of these properties

are indispensable to Hsing’s (1991: Theorem 2.4) generic proof of distribution
convergence (5), which we exploit below. Other means to restrict ()()
! 1 are certainly available. See, e.g., condition (SR2) in Goldie and Smith
(1982), and see Haeusler and Teugels (1985) and Hsing (1991) for use of (SR2)
to derive uncentered limits laws for ̂¡1

 . We restrict attention to (SR1) for the
sake of brevity2.

THEOREM 5 Let  = (). If fg satis…es Assumptions A.2, B, and C,
then

p


¡
̂¡1
 ¡¡1¢

) (01)

where 2
´ (

p
(̂¡1

 ¡ ¡1))2 and j2
¡ 2

(1¡1)j ! 0.

Remark 1: From remark 1 of Lemma 4 we similarly deduce 2
= (1).

Remark 2: The limit
p
(̂ ¡ )~ ) (01)~2

= 42
 follows

easily. If fg is iid then lim!12
= ¡2 and lim!1 ~2

= 4 lim!12


= 4¡2 = 2 . See Hall (1982).
Remark 3: The rate  = () will have to be made explicit depending

on how the tail probability ¹(), and therefore the slowly varying component
(), is speci…ed to satisfy (SR1). For example, if

¹() = ¡(1 +(¡))
2 Examples of tails sat isfying (SR1) include ¹() =¡(1 +(¡)) and ¹() =¡(1

+ ((ln)¡)) for some  0, 0 and  0. See Haeusler and Teugels (1985) for these
and other examples.
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cf. Hall(1982), then
p
(()) ! 0 holds only if  = (2(2+)). See

Haeusler and Teugels (1985). The above tail structure has been widely assumed
in the econometrics and statistics literatures. See Hall (1982), Cline (1983),
Chan and Tran (1989), Loretan and Phillips (1994), Caner (1998) and Hill
(2005) to name a very few.

Proof of Theorem 5. Recall 2
() de…ned in (7) and de…ne

2
1 ´ 2

(10) = 
³
¡12

X

=1


´2

2
2 ´ 2

(01) = 
³
¡12

X

=1
¡1¤

(
p
))

´2


Lemma 4 and a Crámer-Wold device su¢ce to prove

(9) ¡12
³X

=1
1, ¡1

X

=1
¤
(

p
)2

´
) (12)

for some random vector (12) with marginal distributions » (01)
Therefore, Lemma 4, (9) and the continuous mapping theorem together imply

¡12
X

=1
(¡¡1¤

(
p
))(1¡1)(10)

=
1

(1¡1)
1p


X

=1
1

¡ 2
(1¡1)

¡1 1p


X

=1
¤
(

p
)2

)
µ

lim
!1

1
(1¡1)

¶
1 ¡

µ
lim
!1

2
(1¡1)

¶
2 » (01)

Exploiting j ln([]) ¡ ln()j ! 0 for any in a neighborhood of 1,
cf. Theorem 2, and using Assumption C, (9) and (10), an argument identical
to Hsing’s (1991: p. 1553-1554)3 proves

p


¡
̂¡1
 ¡¡1¢

(1¡1)(11)

)
µ

lim
!1

1
(1¡1)

¶
1 ¡

µ
lim
!1

2
(1¡1)

¶
2 » (01)

Finally, given the de…nition 2
´ (

p
(̂¡1

 ¡¡1))2 and (11), j2
(1¡1)

¡ 2
j ! 0 by Crámer’s Theorem.

3.3 Variance Estimator
In general the parametric form of the variance of ̂¡1

 will depend upon an
underlying parametric structure (e.g. FIGARCH). Our next task is to derive
a kernel estimator that side-steps such parametric issues, at least for E-NED
processes.

3 See, especial ly, equations (2.3a) and (2.4)-(2.8) of Hsing (1991) . Assumption C implies
Hsing’s (2.3a) holds; Lemma 4 implies Hsing ’s (2.4) holds.
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De…ne a kernel estimator of the asymptotic variance

(12) ̂2
= ¡1

X

=1

X

=1
((¡))̂̂

where ̂´ [
¡
ln(+1)

¢
+ ¡ ()̂¡1

 ], and ((¡ )) denotes a stan-
dard kernel function with bandwidth ! 1 as ! 1, (0) = 1 and ()
= (¡). The estimator satis…es ̂2

  0 almost surely for kernels de…ned
by Assumption 1 of de Jong and Davidson (2000), including Barlett, Parzen,
Quadratic Spectral and Tukey-Hanning kernels. See, also, Newey and West
(1987), Gallant and White (1988), Andrews (1991) and Hansen (1992).

THEOREM 6 Let = () and 12 ! 1. Let ´ ((¡ ))
satisfy Assumption 1 of de Jong and Davidson (2000) with bandwidth 
! 1 as ! 1, = (), 2 (01). In particular = (¡12)
and

P
=1 jj = (). Under the conditions of Theorem 5, ĵ2

¡
2
j ! 0.

Remark 1: Subsequent to Remark 1 of Theorem 1, the kernel variance
estimator for ̂ is b~2

= ̂4
̂2

.
Remark 2: The number of tail observations must increase su¢ciently

fast relative to both the bandwidth and sample size to ensure consistency.
For example, the largest bandwidth is » 12¡for some in…nitessimal 
0 because we then require  » 1¡ for some in…nitessimal 0 to ensure
 = (¡12). The restriction 12 ! 1 implies some tail structures
characterized by (SR1) are not covered here. For example, the tail shape ¹()
= ¡(1 + ((ln)¡)) is excluded because = ((ln)2) is required: see
Haeusler and Teugels (1985).

3.4 Examples

We brie‡y discuss processes that have regularly varying tails (1) and the
2-E-NED properties of Assumption A.2. In this cases the Hill estimator is
consistent and asymptotically normal, provided Assumptions B and C hold.

3.4.1 Linear and Power-ARCH Processes Consider a linear
process =

P1
=0¡, or power-ARCH(1) process =  =

P1
=0j¡j,  0, 

» (1). In both cases may decay geometrically
("short" memory) or hyperbolically ("long" memory), covering ARFIMA, FI-
GARCH and Davidson’s (2004) long-memory Hyperbolic-GARCH processes.
Cline (1983) shows

P1
=0¡ satis…es (1) with index . The ARCH(1)

process = satis…es (1) with index , and under mild restrictions both
distributed lag processes satisfy the 2-E-NED Assumption A.2. See Lemmas
B.4-B.6 of Hill (2006a).

3.4.1 Simple Bilinear Processes Consider themodel =¡1¡1

+ , 
» (1), (0) = 1, and 0 satis…es 2[2

 ] 1. Davis
and Resnick (1996: Corollary 2.4) prove fg has regularly tails (1) with index
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= 2, and Resnick and St¼aric¼a (1998) prove ̂¡1
 is consistent for 2. By

Lemma B.7 of Hill (2006a), fg satis…es Assumption A.2.

APPENDIX 1: PROOFS OF MAIN RESULTS

Proof of Lemma 1. Under the maintained assumptions fzg and
f¤

()zg are 2-mixingales with size ¡12 and constants

f¤
g =

(µZ 1

0
~¤
()2

¶12

~¤()

)
= (()12)

See Lemma A.1. Recall » , 2 (01), de…ne

´(1+)2()12

and notice = (1+)2()12 = 212 ». Thus, for some …nite 
0 each 2 f¤

g satis…es
X1

=1
()2 ·

X1

=1
¡(1+) 1

Thus
P

=1! 0 and
P

=1
¤
! 0 by Corollary 20.16 of

Davidson (1994) and  ! 1. The limit j ln([]) ¡ ln()j ! 0 now
follows from an argument in Hsing (1991: p. 1551).

Proof of Lemma 3. Recall f(
p
)g in (8):

f(
p
)g ´ ¡12(1+2¡1¤

(
p
))()

We show fzg = f(
p
)zg is for each 2 R2 and 2 R

an 2-mixingale.
The limit

P
=1

2
! 1 then follows from Lemmas A.3 andA.4 in Appendix

2 by mimicking arguments in de Jong (1997: A.39-A.41).

By Assumption A.2 and Lemma A.1, f¤
g are 2-NED with coe¢-

cients ~
¤
and constants

f¤
g =

(µZ 1

0

~¤
()2

¶12

~¤
()

)
=(()1)

Theorems 17.5 and 17.8 of Davidson (1994) then imply fg is an 2-
mixingale with size ¡12. If the base fg is E-strong mixing, Ibragimov’s
(1962) inequality implies for some 2

k¡[jz¡]k2

· max
n

kk¡12¡1
 () £ 2 £ maxfj1 jj2 j¡1¤

g
o

£ max
n

612¡1
 ~

¤


o
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From Lemma A.2 jjjj= (¡12()1). Hence, for some …nite 
0

k¡[jz¡]k2

· ¡12 £ maxf[()]12¡1()12¡1~
¤
g =

where = (¡12), and sup= (¡12¡) for some small  0 by
the E-mixing and E-NED coe¢cient properties.

Analogous arguments su¢ce to show jj¡[jz+]jj2 ·+1
(e.g. Davidson, 1994: eq. 17.19), and to handle the E-uniform mixing case.

Proof of Lemma 4. By Lemma 3 f(
p
)zg is an 2-mixingale

with coe¢cients of size ¡12 and constants = (¡12).

Step 1: In order to prove
P

=1(
p
) ) (01) we will show

conditions (a)-(f) of the Lemma 1 central limit theorem of de Jong (1997) apply.
Recall the sequences, and and block=

P
=(¡1)++1(

p
)

de…ned in (6) and (8), and de…ne the -…eld

~́ (f¸  : ·g)

Condition (a): By Lemma A.2 and Minkowski’s inequality
°°°
X

=+1


°°°
2

· (¡)jjjj2 =(¡12()12) = (1)

Condition (b): Using a bound for 2-mixingales with size ¡12 (see McLeish,
1975),


µX

=1

X(¡1)+

=(¡1)+1


¶2

= 
µX

=1

X(¡1)+

=(¡1)+1
2

¶

= (¡1) = () =(1)

Condition (c): Analogous to de Jong (1997: A.7-A.12), it can be shown that
for some tiny 0


µX

=1

X

=(¡1)++1


h
j ~¡1

i¶2

= 
µX

=1

X

=(¡1)++1
2

2


¶

= (¡1¡
 ) = (¡ ) = (1)

Condition (d): The argument here mimics the veri…cation of condition (c).

Condition (e): Analogous to de Jong (1997: A.13-A.17), if
P

=12
! 1

12



then
°°°°
X

=1
2
¡

X

=1

³


h
j ~

i
¡

h
j ~¡1

i´2
°°°°

1

· 3
X

=1

°°°¡
³
[j ~] ¡[j ~¡1 ]

´°°°
2
kk2

= 

Ã
X

=1

µX

=(¡1)++1
2

2


¶12 µX

=(¡1)++1
2



¶12
!

= (
¡
¡1¡

¢12 ¡
¡1¢12) =(¡2 ) =(1)

The limit
P

=12
! 1 follows from Lemma 3.

Condition (f): De…ne ´ [j ~] ¡ [j ~¡1 ]. We require the
Lindeberg condition

P
=1[2

(jj )] ! 0 for any 0. Choose 
̧ 1 such that 1+ 1= 1. For all 0

max
£
2

(jj )
¤

· maxjjjj22jjjj
= 

³
2

¡1()1¡12()1́

= 
³
2
¡12

´
=(1)

The inequality follows from Hölder’s and Markov’s inequalities. The …rst equal-
ity follows from Minkowski’s and the conditional Jensen’s inequalities, and
Lemma A.2. The last line is due to = (14)) by (6).

Step 2: From Step 1 and the de…nition of f(
p
)g in (8), we

deduce

¡1¡1
X

=1
¤
(

p
)(01) )(01)

The limit
p
(ln(+1) ¡ ln())(01) ) (01) now follows from The-

orem 2.4 of Hsing (1991: eq. 2.5). From the de…nition ·2
´ (12(ln(+1)

¡ ln ()))2 we conclude j·2
¡ 2

(01)j = 1.

Proof of Theorem 6. Lemmas A.5 and A.6 together imply ĵ2
¡ 2

(1¡1)j
! 0and j2

(1¡1) ¡ 2
j ! 0 follows from the argument following (11). Thus

ĵ2
¡ 2

j ! 0.

APPENDIX 2: PRELIMINARY LEMMAS

For any in a neighborhood of 1, any 2 R, and any 2 R2 de…ne the
following processes:

13



¤
() ´ (ln¡ ln()) ¡[(ln¡ ln() )]

́ (ln ¡ ln())+ ¡(ln¡ ln())+
= (

p
) ´ ¡12 ¡

1+2¡1¤
(

p
)

¢
()

We write f¤
g = f¤

()g and ¤
() = ¤

(1).

LEMMA A.1
1. If fzg is an -E-MIX array with coe¢cients ~¤

of size ¡,
then fzg and f¤

zg are -mixingales with coe¢cients ~¤


and constants f¤
g = f(s 1

0 ~¤())1, ~¤()g provided ~¤
()

is -integrable with respect to Lebesgue measure on R+.

2. If fg is -E-NED on fzg with coe¢cients ~
¤
of size ¡, then

f¤
g is -NED on fzg with coe¢cients ~

¤
 and constants

f¤
g = f(s 1

0
~¤
())1, ~¤

()g provided ~¤
() is -integrable

with respect to Lebesgue measure on R+.

LEMMA A.2 The tail arrays fg and f¤
()g are -bounded for any

¸ 1Speci…cally, for every 2 R and any in a neighborhood of 1

lim!1()1
°°¤

()
°°
·()1

lim!1()1kk·1, ̧ 1

where the mapping  : R ! R+ is -integrable with respect to Lebesgue
measure on R+ for any  0..

LEMMA A.3 (de Jong, 1997: Lemma 4) If fzg is an 2-mixingale
with size ¡12 and constants sup=(¡12), then for the sequences
fg de…ned in (6),

lim
!1

¯̄
¯̄X

=1

X

=+1

X

=(¡1)++1

X

=(¡1)++1
[]

¯̄
¯̄ = 0

LEMMA A.4 Let Assumptions A.2 and B hold, and recall =
P

=(¡1)++1.
Then

P
=1(2

¡ [2
]) ! 0.

LEMMA A.5 Write ¤
= ¤

(
p
)), recall the kernel estimator ̂2

 in
(12) and de…ne

~2
 ´ ¡1

X

=1
(¡ () ln (+1))

£ (¡ () ln(+1))

where  ´ ((¡ )) is de…ned in Theorem 6. Under the as-
sumptions of Theorem 6, ĵ2

¡~2
j ! 0.
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LEMMA A.6 Write ¤
=¤

(
p
)) and recall 2

(1¡1) ´(¡12 P
=1(

¡ ¡1¤
))2. Under the assumptions of Theorem 6, j~2

¡ 2
(1¡1)j !

0.

Proof of Lemma A.1. We will prove the E-NED assertion: a proof of the
E-MIX claim is similar.

For any  0 let fg be -E-NED on fzg with size ¡. By the
de…nition of ¤

and the =+
¡-measurability of ,

°°¤
¡[¤

jz
+
¡]

°°
(13)

=
°°(()j=+

¡) ¡
¡
()jz+

¡
¢°°

· ~¤
()~

¤


We deduce from Liaponov’s inequality (e.g., Corollary 9.26 of Davidson,
1994), Fubini’s theorem, and (13)4

°°¡[jz+
¡]

°°


=
°°(ln¡ ln)+ ¡[(ln¡ ln)+ jz+

¡]
°°


=
°°°°
Z 1

0

£
() ¡

¡
jz+

¡
¢¤


°°°°


·
µZ 1

0


¯̄
() ¡

¡
jz+

¡
¢¯̄


¶1

·
µZ 1

0

~¤
()

¶1
~¤


provided ~¤
(¢) is -integrable with respect to Lebesgue measure on R+.

Proof of Lemma A.2. Exploiting (1), (2) and the construction of (¢) in
(3), for any 2 R, any in an arbitrary neighborhood of one, and any ̧ 1

lim
!1

()1jj¤
()jj

· 2 lim
!1

()1(())1

= 2 lim
!1

·
()(())

(())
(())

¸1

= 21¡´()1.

Trivially
R 1
0 ()= 2

R1
0 ¡1 for any  0. Similarly,

for any ̧ 1 equation (1.5) of Hsing (1991) implies

lim!1()1jjjj · 2 lim!1()1jj(ln¡ ln())+jj

= 2
µZ 1

0
¡1


¶1

´1

4 Note s10 ()= s10 (ln)= s (ln)+0 = (ln)+.
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Proof of Lemma A.4. The following arguments borrow heavily from de Jong
(1997: p. 365-366): consult that source for complete details.

For any ¸ 0 de…ne the function () and process { ~g:
() =(jj ·) +() ¡(¡)(14)
~́ ()

for some sequence of constant real numbers fg, ! 1 as ! 1, =
(122

). For any ̧ 1, 1+ 1= 1,
°°°
X

=1

³
2
¡ ~2



´°°°
1

· 2
X

=1

°°2
(jj )

°°
1

· 22
jjjj22jjjj

= 
³
¡1()1¡12()1́

= 
³
2

¡12
´

=(1)

The …rst inequality follows from (14), and the second from Hölder’s, Markov’s
and Minkowski’s inequalities and stationarity. The …rst equality follows from
Lemma A.2.

It now su¢ces to show

lim
!1

°°°
X

=1

³
~2
¡[ ~2

]
´°°°

2
= 0

From the line of proof of Lemma 3, fg is 2-NED with coe¢cients ~
¤


and constants 

~¤
=(()12¡1) £(¡12¡), = (¡12()1)

Moreover, f ~2
¡ [ ~2

]g is 2-NED on the -…eld f ~+
¡g de…ned by the

extremal events

~+
¡= (f : (¡¡ 1)++ 1 · · (+)g)

This follows from the NED property of fg and because z+
¡ µ ~+

¡:
°°° ~2

¡[ ~2
j ~

+
¡]

°°°
2

(15)

· 2
°°°() ¡([j ~+

¡])
°°°

2
£

= 
µ
¡1


X

=(¡1)++1

°°°¡[jz+
¡]

°°°
2

¶

= 
µ
¡1


X

=(¡1)++1
~

¤


¶

= 
³
¡1
 ¡12()1()12¡1¡12¡



´
£

³
¡12¡́

= 
³
¡1
 ¡12



´
£

³
¡12¡́ =

³
¡12


´
£

³
¡12¡́ 
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The last line follows by …xing = [1(1+2)
 ]which is always possible, and by

= [].
Furthermore, f ~2

, ~g is an 2-mixingale with size ¡12 and constants
= (¡12

 ), where ~´ (f : · g). If the base fg is
E-strong mixing then

°°°[ ~2
] ¡[ ~2

j ~¡2]
°°°
2

·
°°°[ ~2

] ¡[ ~2
j ~+

¡]
°°°
2

+
°°°

h³
[ ~2

j ~+
¡] ¡[ ~2

]
´

j ~¡2

i°°°
2

· 
³
¡12


´
£

³
¡12¡́ + 6

°°° ~2


°°°

12¡1


= 
³
¡12


´
£

³
¡12¡́ +

³
2


¡1()1()12¡1¡12¡


´
£

³
¡12¡́

= 
³
¡12


´
£

³
¡12¡́ +

³
¡12¡12



´
£

³
¡12¡́

= 
³
¡12


´
£

³
¡12¡́ 

The second inequality follows from (15), and Ibragimov’s (1962) inequality. The
…rst equality follows from stationarity, Lemma A.2 and the E-mixing de…nition:

jj ~2
jj · jjjj22 ·2

jjjj22=(2


¡1()1)

12¡1
 =

³
()12¡1¡12¡



´
£

³
¡12¡́ 

The last line follows from = [1(1+2)
 ], = [], and = (14).

A similar argument holds for jj¡[j ~+2]jj2 , and in the E-uniform
mixing case. See Davidson (1994).

Finally, apply McLeish’s (1975) bound for 2-mixingales with size ¡12:


³X

=1

³
~2
¡[ ~2

]
´´2

=
³X

=1
2

´
=(1)

Proof of Lemma A.5. Write = () and de…ne

´¡ () ln(+1)

Decompose ̂2
 into

̂2
= ~2

+
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where

~2
= ¡1

X

=1


=¡1
X

=1
+2


¡1

X

=1


+ 2¡1
X

=1
+ 2¡1

X

=1


+ 2¡1
X

=1


=
£
(ln (+1))+ ¡ (ln)+ + () ln(+1)

¤

= () £
£
()

¡
[(ln)+] ¡¡1¢ +

¡
̂¡1
 ¡¡1¢¤

We need only show kk1 = (1).
By cases it is easy to show jj · j ln(+1)j, and Hsing (1991: p.

1554) proves condition (SR1) of Assumption C implies

(16)
p


£
()[(ln)+] ¡¡1¤ =(1)

We deduce from Lemma 4 and Theorem 5

(17) kk2 ·
°°ln(+1)

°°
2 = (¡12) and kk2 = (12)

Similarly, Lemmas 4 and A.2 imply

(18) kk2 · kk2 + ()
°°ln(+1)

°°
2 =(()12)

Finally, the maintained assumptions imply 1
P

=1 jj = (12).
Together, the assumption 12 ! 1, Lemma A.2, Minkowski’s and the

Cauchy-Schwartz inequalities, and (16)-(18) give

kk1 = (12) £
n
(¡1) +(2) +(¡12) +(32) +(¡1)

o

= (12) +(32) +(1) +() +(¡12) =(1)

Proof of Lemma A.6. Write = () and de…ne

2
(1¡1) ´ 

³
1

p


X

=1

¡
¡¡1¤


¢´2

̂2
(1¡1) ´ ¡1

X

=1


¡
¡¡1¤


¢

£
¡
¡¡1¤


¢

´¡12 £
¡ () ln(+1)

¤

~2
´

X

=1


We …rst show fzg forms an 2-mixingale sequence with constants 
= (¡12). We then prove j~2

¡ 2
(1¡1)j ! 0.
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Step 1: fg is 2-NED on fzg: by Minkowski’s and Jensen’s inequal-
ities

°°¡(jz+
¡)

°°
2

· ¡12
°°¡(jz+

¡)
°°

2

+ (12)
°°ln(+1)¡

¡
ln(+1)jz+

¡
¢°°

2

· ¡12~
¤
+¡1(12)

°°°¡1
X

=1

¡
¤
¡

¡
¤
jz

+
¡

¢¢°°°
2

+ 2¡1
³°°°1

p


X

=1
¡1¤



°°°
2
+

°°p
 ln (+1)

°°
2

´

· ¡12
³
+¡1¡1

X

=1
¤


´
~

¤
+(1)

· ¡12()1£
h
()12¡1£¡12¡

i
=¤

£¤


say, for some …nite   0The second and third inequalities follow from the
E-NED property and Lemma A.1. Lemma 4 implies the (1)-rate.

The last inequality follows from the bound 1 ·and ~
¤
=(()12¡1)

£ (¡12¡), cf. Assumption A.2: 1· ¡12()1()12¡1¡12¡

for some tiny 0.
Moreover, fzg is an2-mixingale. If the base fg is E-strong mixing,

then Theorem 17.5 of Davidson (1994) implies for 2

k¡[jz¡]k2 · maxfkk
¤
g £maxf612¡1

 ¤
g

By Minkowski’s inequality

kk · ¡12
°°°¡¡1

X

=1
¡1¤



°°°


+¡1
°°°
p


X

=1
¡1¤

¡
p
 ln (+1)

°°°


The …rst term is(¡12()1) by Minkowski’s inequality and Lemma A.2.
The second termcan be shown to be (1) = (¡12()1) by exploiting
Theorem 2.4 of Hsing (1991), the continuous mapping theorem and the Helly-
Bray theorem. Therefore kk= (¡12()1).

Now use ¤
=(¡12()1) and ¤

=(()12¡1) £(¡12¡)
and repeat the remaining steps in the line of proof of Lemma 3 to get

k¡[jz¡]k2 ·£= (¡12) £(¡12¡)

Step 2 (j~2
¡ 2

(1¡1)j ! 0): We will …rst verify Assumptions 1-3 of de
Jong and Davidson (2000) to show

(19)
¯̄
¯̄~2

¡
³X

=1


´2
¯̄
¯̄ ! 0

Their Assumption 1 holds by the statement of the lemma.

19



By Step 1 fzg is an 2-mixingale with size ¡12 and constants 2
= (¡12). Thus Assumption 2 is satis…ed5.

Assumption 3 is satis…ed by max1··2= (¡(1¡)) = (1) given
= (), 2 [01). This proves (19).

Finally, Theorem 2.4 of Hsing (1991) and the continuous mapping theorem
can be used to show

(20)

¯̄
¯̄
¯

µ
1p


X

=1
¡ p

 ln
(+1)



¶2

¡
µ

1p


X

=1
¡ ¡1

p


X

=1
¤


¶2
¯̄
¯̄
¯

=
¯̄
¯̄

³X

=1


´2
¡2

(1¡1)
¯̄
¯̄ ! 0

Together, (19) and (20) imply j~2
¡ 2

(1¡1)j ! 0, as claimed.
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