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Summary Duration dependent Markov-switching VAR (DDMS-VAR) models are
time series models with data generating process consisting in a mixture of two VAR
processes, which switches according to a two-state Markov chain with transition prob-
abilities depending on how long the process has been in a state. In the present paper I
propose a MCMC-based methodology to carry out inference on the model’s parameters
and introduce DDMSVAR for Ox, a software written by the author for the analysis of
time series by means of DDMS-VAR models. An application of the methodology to the
U.S. business cycle concludes the article.
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1. INTRODUCTION AND MOTIVATION

Since the path-opening paper of Hamilton (1989), many applications of the Markov
switching autoregressive model (MS-AR) to the analysis of business cycle have demon-
strated its usefulness particularly in dating the cycle in an “objective” way. The basic
MS-AR model has, nevertheless, some limitations: (i) it is univariate, (ii) the probability
of transition from one state to the other (or to the other ones) is constant. Since busi-
ness cycles are fluctuations of the aggregate economic activity, which express themselves
through the comovements of many macroeconomic variables, point (i) is not a negligible
weakness. The multivariate generalization of the MS model was carried out by Krolzig
(1997), in his excellent work on the MS-VAR model. As far as point (ii) is concerned, it
is reasonable to believe that the probability of exiting a contraction is not the same at
the very beginning of this phase as after several months. Some authors, such as Diebold
and Rudebusch (1990), Diebold et al. (1993) and Watson (1994) have found evidence of
duration dependence in the U.S. business cycles, and therefore, as Diebold et al. (1993)
point out, the standard MS model results miss-specified. In order to face the latter limita-
tion, Durland and McCurdy (1994) introduced the duration-dependent Markov switching
autoregression, designing an alternative filter for the unobservable state variable. In the
present article the duration-dependent switching model is generalized in a multivariate
manner, and it is shown how the standard tools of MS-AR model, such as Hamilton’s
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filter and Kim’s smoother can be used to model also duration dependence. While Dur-
land and McCurdy (1994) carry out their inference on the model by exploiting maximum
likelihood estimation, here a multi-move Gibbs sampler is implemented to allow Bayesian
(but also finite sample likelihood) inference. The advantages of this technique are that
(a) it does not relay on asymptotics1, and in latent variable models, where the unknowns
are many, asymptopia can be very far to reach, (b) inference on the latent variables is
not conditional on the estimated parameters, but incorporates also the uncertainty on
the parameters’ values.

The work is organized as follows: the duration-dependent Markov switching VAR model
(DDMS-VAR) is defined in section 2, while the MCMC-based inference is explained in
section 3; section 4 briefly illustrates the features of DDMSVAR for Ox, and an applica-
tion of the model and of the software to the U.S. business cycle is carried out in section
5.

2. THE MODEL

The duration-dependent MS-VAR model2 is defined by

yt = µ0 + µ1St + A1(yt−1 − µ0 − µ1St−1) + . . .

+Ap(yt−p − µ0 − µ1St−p) + εt (2.1)

where yt is a vector of observable variables, St is a binary (0-1) unobservable random
variable following a Markov chain with varying transition probabilities, A1, . . . , Ap are
coefficient matrices of a stable VAR process, and εt is a gaussian (vector) white noise
with covariance matrix Σ.

In order to achieve duration dependence for St, the pair (St, Dt) is considered, where
Dt is the duration variable defined by

Dt =





1 if St 6= St−1

Dt−1 + 1 if St = St−1 and Dt−1 < τ
Dt−1 if St = St−1 and Dt−1 = τ

. (2.2)

It easy to see that (St, Dt) is also a Markov chain, since conditioning on (St−1, Dt−1)
makes (St, Dt) independent of (St−k, Dt−k) with k = 2, 3, . . . An example of a possible
sample path of (St, Dt) is shown in table 1. The value τ is the maximum that the duration

t 1 2 3 4 5 6 7 8 9 10 11 12
St 1 1 1 1 0 0 0 1 0 0 0 0
Dt 3 4 5 6 1 2 3 1 1 2 3 4

Table 1. A possible realization of the process (St, Dt).

variable Dt can reach and must be fixed so that the Markov chain (St, Dt) is defined on

1Actually MCMC techniques do relay on asymptotic results, but the size of the sample is under control
of the researcher and some diagnostics on convergence are available, although this is a field still under
development. Here it is meant that the reliability of the inference does not depend on the sample size of
the real-world data.
2Using Krolzig’s terminology, we are defining a duration dependent MSM(2)-VAR, that is, Markov-

Switching in Mean VAR with two states.
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Duration Dependent Markov-Switching Vector Autoregressions 3

the finite state space

{(0, 1), (1, 1), (0, 2), (1, 2), . . . , (0, τ), (1, τ)},
with finite dimensional transition matrix3

P=




0 p0|1(1) 0 p0|1(2) 0 p0|1(3) . . . 0 p0|1(τ)
p1|0(1) 0 p1|0(2) 0 p1|0(3) 0 . . . p1|0(τ) 0
p0|0(1) 0 0 0 0 0 . . . 0 0

0 p1|1(1) 0 0 0 0 . . . 0 0
0 0 p0|0(2) 0 0 0 . . . 0 0
0 0 0 p1|1(2) 0 0 . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 . . . p0|0(τ) 0
0 0 0 0 0 0 . . . 0 p1|1(τ)




where pi|j(d) = Pr(St = i|St−1 = j, Dt−1 = d).
When Dt = τ , only four events are given non-zero probabilities:

(St = i,Dt = τ)|(St−1 = i,Dt−1 = τ) i = 0, 1
(St = i,Dt = 1)|(St−1 = j, Dt−1 = τ) i 6= j, i, j = 0, 1 ,

with the interpretation that, when the economy has been in state i at least τ times,
the additional periods in which the state remains i influence no more the probability of
transition.

As pointed out by Hamilton (1994, section 22.4), it is always possible to write the
likelihood function of yt, depending only on the state variable at time t, even though in
the model a p-order autoregression is present; this can be done using the extended state
variable S∗t = (Dt, St, St−1, . . . , St−p), which comprehends all the possible combinations
of the states of the economy in the last p periods. In table 2 the state space of non-
negligible states4 S∗t , with p = 4 and τ = 5, is shown. If τ ≥ p the maximum number of
non-negligible states is given by u =

∑p
i=1 2i +2(τ − p). The transition matrix P ∗ of the

Markov chain S∗t is a (u×u) matrix, although rather sparse, having a maximum number
2τ of independent non-zero elements.

In order to reduce the number (2τ) of elements in P ∗ to be estimated, a more parsi-
monious probit specification is used. Consider the linear model

S•t = [β1 + β2Dt−1]St−1 + [β3 + β4Dt−1](1− St−1) + εt (2.3)

with εt ∼ N (0, 1), and S•t latent variable defined by

Pr(S•t ≥ 0|St−1, Dt−1) = Pr(St = 1|St−1, Dt−1) (2.4)
Pr(S•t < 0|St−1, Dt−1) = Pr(St = 0|St−1, Dt−1). (2.5)

3The transition matrix is here designed so that the elements of each column, and not of each row, sum
to one.
4“Negligible states” stands here for ‘states always associated with zero probability’. For example the

state (Dt = 5, St = 1, St−1 = 0, St−2 = s2, St−3 = s3, St−4 = s4), where s2, s3 and s4 can be either
0 or 1, is negligible as it is not possible for St to have been 5 periods in the same state, if the state at
time t− 1 is different from the state at time t.

c© Royal Economic Society 2004
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Dt St St−1 St−2 St−3 St−4 Dt St St−1 St−2 St−3 St−4

1 1 0 1 0 0 0 17 2 0 0 1 0 0
2 1 0 1 0 0 1 18 2 0 0 1 0 1
3 1 0 1 0 1 0 19 2 0 0 1 1 0
4 1 0 1 0 1 1 20 2 0 0 1 1 1
5 1 0 1 1 0 0 21 2 1 1 0 0 0
6 1 0 1 1 0 1 22 2 1 1 0 0 1
7 1 0 1 1 1 0 23 2 1 1 0 1 0
8 1 0 1 1 1 1 24 2 1 1 0 1 1
9 1 1 0 0 0 0 25 3 0 0 0 1 0
10 1 1 0 0 0 1 26 3 0 0 0 1 1
11 1 1 0 0 1 0 27 3 1 1 1 0 0
12 1 1 0 0 1 1 28 3 1 1 1 0 1
13 1 1 0 1 0 0 29 4 0 0 0 0 1
14 1 1 0 1 0 1 30 4 1 1 1 1 0
15 1 1 0 1 1 0 31 5 0 0 0 0 0
16 1 1 0 1 1 1 32 5 1 1 1 1 1

Table 2. State space of S∗t = (Dt, St, St−1, . . . , St−p) for p = 4, τ = 5.

It’s easy to show that it holds

p1|1(d) = Pr(St = 1|St−1 = 1, Dt−1 = d) = (2.6)
= 1− Φ(−β1 − β2d)

p0|0(d) = Pr(St = 0|St−1 = 0, Dt−1 = d) = Φ(−β3 − β4d) (2.7)

where d = 1, . . . , τ , and Φ(.) is the standard normal cumulative distribution function.
Now four parameters completely define the transition matrix P ∗.

3. BAYESIAN INFERENCE ON THE MODEL’S UNKNOWNS

In this section it is shown how Bayesian inference on the model’s unknowns

θ = (µ, A,Σ,β, {(St, Dt)}T
t=1),

where µ = (µ′0,µ
′
1)
′ and A = (A1, . . . , Ap), can be carried out using MCMC methods.

3.1. Priors

In order to exploit conditional conjugacy, the prior joint distribution used is

p(µ,A,Σ, β, (S0, D0)) = p(µ)p(A)p(Σ)p(β)p(S0, D0),

p(.) denoting the generic density or probability function, where

µ ∼ N (m0,M0), (3.8)
vec(A) ∼ N (a0,A0), (3.9)

p(Σ) ∝ |Σ|− 1
2 (rank(Σ)+1), (3.10)

β ∼ N (b0, B0), (3.11)
(3.12)

and p(S0, D0) is a probability function that assigns a prior probability to every element
of the state-space of (S0, D0). Alternatively it is possible to let p(S0, D0) be the ergodic
probability function of the Markov chain {(St, Dt)}.

c© Royal Economic Society 2004
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3.2. Gibbs sampling in short

Let θi, i = 1, . . . , I, be a partition of the set θ containing all the unknowns of the
model, and θ−i represent the set θ without the elements in θi. In order to implement a
Gibbs sampler to sample from the joint posterior distribution of all the unknowns of the
model, it is sufficient to find the full conditional posterior distribution p(θi|θ−i, Y ), with
Y = (y1, . . . , yT ) and i = 1, . . . , I. A Gibbs sampler step is the generation of a random
variate from p(θi|θ−i,Y ), i = 1, . . . , I, where the elements of θ−i are substituted with the
newest values previously generated. Since, under mild regularity conditions, the Markov
chain defined for θ(i), where θ(i) is the value of θ generated at the ith iteration of the
Gibbs sampler, converges to its stationary distribution, and this stationary distribution is
the “true” posterior distribution p(θ|Y ), it is sufficient to fix an initial burn-in period of
M iterations, such that the Markov chain virtually “forgets” the arbitrary starting values
θ(0), to sample form (an approximation of) the joint posterior distribution. The values
obtained for each element of θ are samples from the marginal posterior distribution of
each parameters.

3.3. Gibbs sampling steps

Step 1. Generation of {S∗t }T
t=1 It is used an implementation of the multi-move Gibbs

sampler originally proposed by Carter and Kohn (1994), which, suppressing the condi-
tioning on the other parameters from the notation, exploits the identity

p(S∗1 , . . . , S∗T |YT ) = p(S∗T |YT )
T−1∏
t=1

p(S∗t |S∗t+1, Yt), (3.13)

with Yt = (y1, . . . , yt).
Let ξ̂t|r be the vector containing the probabilities of S∗t being in each state (the first

element is the probability of being in state 1, the second element is the probability of
being in state 2, and so on) given Yr and the model’s parameters. Let ηt be the vector
containing the likelihood of each state given Yt and the model’s parameters, whose generic
element is

(2π)−n/2|Σ|−1/2 exp
{
−1

2
(yt − ŷt)′Σ−1(yt − ŷt)

}
,

where

ŷt = µ0 + µ1St + A1(yt−1 − µ0 − µ1St−1) + . . . + Ap(yt−p − µ0 − µ1St−p)

changes value according to the state of S∗t .
The filtered probabilities of the states can be calculated using Hamilton’s filter

ξ̂t|t =
ξ̂t|t−1 ¯ ηt

ξ̂′t|t−1ηt

ξ̂t+1|t = P ∗ξ̂t|t
with the symbol ¯ indicating element by element multiplication. The filter is completed
with the prior probabilities vector ξ̂1|0, that, as already noticed, can be set equal to the
vector of ergodic probabilities of the Markov chain {S∗t }.
c© Royal Economic Society 2004
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To sample from the distribution of {S∗t }T
1 given the full information set YT , it can be

used the result

Pr(S∗t = j|S∗t+1 = i, Yt) =
Pr(S∗t+1 = i|S∗t = j) Pr(S∗t = j|Yt)∑m

j=1 Pr(S∗t+1 = i|S∗t = j) Pr(S∗t = j|Yt)

=
pi|j ξ̂

(j)
t|t∑m

j=1 pi|j ξ̂
(j)
t|t

,

where pi|j is the transition probability of moving to state i from state j (element (i, j) of
the transition matrix P ∗) and ξ

(j)
t|t is the j-th element of vector ξt|t. In matrix notation

the same can be written as

ξ̂t|(S∗t+1=i,YT ) =
pi. ¯ ξ̂t|t
p′i. ξ̂t|t

(3.14)

where p′i. denotes the i-th row of the transition matrix P ∗.
Now all the probability functions in equation (3.13) have been given a form, and the

states can, thus, be generated starting from the filtered probability ξ̂T |T and proceeding
backward (T − 1, . . . , 1), using equation (3.14) where i is to be substituted with the last
generated value s∗t+1.

Once a set of sampled {S∗t }T
t=1 has been generated, it is automatically available a

sample for {St}T
t=1 and {Dt}T

t=1.
The advantage of using the described multi-move Gibbs sampler, compared to the sin-

gle move Gibbs sampler that can be implemented as in Carlin et al. (1992), or using the
software BUGS, is that the whole vector of states is sampled at once, improving signifi-
cantly the speed of convergence of the Gibbs samper’s chain to its ergodic distribution.
Kim and Nelson (1999, section 10.3), in their outstanding monograph on state-space
models with regime switching, use a single-move Gibbs sampler (12000 sample points)
to achieve (almost) the same goal as in this paper, but my experience with the slow con-
vergence properties of the single-move sampler does not convince me on the reliability of
their estimates.

Step 2. Generation of (A,Σ) Conditionally on {St}T
t=1 and µ equation (2.1) is just

a multivariate normal (auto-)regression model for the variable y∗t = yt − µ0 − µ1St,
whose parameters, given the discussed prior distribution, have the following posterior
distributions, known in literature. Let X be the matrix, whose tth column is

x.t =




y∗t
y∗t−1

...
y∗t−p


 ,

for t = 1, . . . , T , and let Y ∗ = (y∗1 , . . . , y∗T ).
The posterior for (vec(A),Σ) is, suppressing the conditioning on the other parameters,

the normal–inverse Wishart distribution

p(vec(A),Σ|Y ,X) = p(vec(A)|Σ,Y ,X)p(Σ|Y , X)
p(Σ|Y , X) density of a IWk(V , n−m)
p(vec(A)|Σ,Y ,X) density of a N (a1, A1),

c© Royal Economic Society 2004
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with

V = Y ∗Y ∗′ − Y ∗X ′(XX ′)−1XY ∗′

A1 = (A−1
0 + XX ′Σ−1)−1

a1 = A1[A−1
0 a0 + (X ⊗Σ−1)vec(Y )].

Step 3. Generation of µ Conditionally on A and Σ, by multiplying both sides of equa-
tion (2) times

A(L) = (I −A1L− . . .−ApLp),
where L is the lag operator, we obtain

A(L)yt = µ0A(1) + µ1A(L)St + εt,

which is a multivariate normal linear regression model with known variance Σ, and can
be treated as shown in step 2., with respect to the specified prior for µ.

Step 4. Generation of β Conditionally on {S∗t }T
t=1, consider the probit model described

in section 2. Albert and Chib (1993) have proposed a method based on a data augmenta-
tion algorithm to draw from the posterior of the parameters of a probit model. Given the
parameter vector β of last iteration of the Gibbs sampler, generate the latent variables
{S•t } from the respective truncated normal densities

S•t |(St = 0,xt, β) ∼ N (x′tβ, 1)I(−∞,0)

S•t |(St = 1,xt, β) ∼ N (x′tβ, 1)I[0,∞)

with

β = (β1, β2, β3, β4)′

xt = (St−1, Dt−1, (1− St−1), (1− St−1)Dt−1)′ (3.15)

and I{.} indicator function used to denote truncation.
With the generated S•t ’s the probit regression equation (2.3) becomes, again, a normal

linear model with known variance.

The former Gibbs samper’s steps were numbered from 1 to 4, but any ordering of the
steps would eventually bring to the same ergodic distribution.

4. THE SOFTWARE

DDMSVAR for Ox5 is a software for time series modeling with DDMS-VAR processes
that can be used in three different ways: (i) as a menu driven package6, (ii) as an Ox object
class, (iii) as a software library for Ox. The DDMSVAR software is freely available7 at the
author’s internet site www.statistica.unimib.it/utenti/p matteo/. In this section I
give a brief description of the software and in next section I illustrate its use with a
real-world application.

5Ox (Doornik, 2001) is an object-oriented matrix programming language freely available for the aca-
demic community in its console version.
6If run with the commercial version of Ox (OxProfessional).
7The software is freely available and usable (at your own risk): the only condition is that the present

article should be cited in any work in which the DDMSVAR software is used.

c© Royal Economic Society 2004
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4.1. OxPack version

The easiest way to use DDMSVAR is adding the package8 to OxPack giving DDMSVAR
as class name. The following steps must be followed to load the data, specify the model
and estimate it.

Formulate
Open a database, choose the time series to model and give them the Y variable status.

If you wish to specify an initial series of state variables, this series has to be included in
the database and, once selected in the model variables’ list, give it the State variable init
status; otherwise DDMSVAR assigns the state variable’s initial values automatically.

Model settings
Chose the order of the VAR model (p), the maximal duration (tau), which must be

at least9 2, and write a comma separated list of percentiles of the marginal posterior
distributions, that you want to read in the output (default is 2.5,50,97.5).

Estimate/Options
At the moment only the illustrated Gibbs sampler is implemented, but EM algorithm

based maximum-likelihood estimation is in the to-do list for the next versions of the
software. So choose the sample of data to model and press Options.... The options window
is divided in three areas.

iterations
Here you choose the number of iteration of the Gibbs sampler, and the number of burn
in iteration, that is, the amounts of start iterations that will not be used for estimation,
because too much influenced by the arbitrary starting values. Of course the latter must
be smaller than the former.

priors & initial values
If you want to specify prior means and variances of the parameters to estimate, do it in a
.in7 or .xls database following these rules: prior means and variances for the vectorization
of the autoregressive matrix A = [A1,A2, . . . , Ap] must be in fields with names mean a
and var a; prior means and variances for the mean vectors µ0 and µ1 must be in fields
with names mean mu0, var mu0, mean mu1 and var mu1; the fields for the vector β are
to be named mean beta and var beta. The file name is to be specified with extension. If
you don’t specify the file, DDMSVAR uses priors that are vague for typical applications.

The file containing the initial values for the Gibbs sampler needs also to be a database
in .in7 or .xls format, with fields a for vec(A), mu0 for µ0, mu1 for µ1, sigma for vech(Σ)
and beta for β. If no file is specified, DDMSVAR assigns initial values automatically.

saving options
In order to save the Gibbs sample generated by DDMSVAR, specify a file name (you

8At the moment the DDMSVAR03.oxo file.
9If you wish to estimate a classical MS-VAR model, choose tau = 2 and use priors for the parameters

β2 and β4 that put an enormous mass of probability around 0. This will prevent the duration variable
from having influence in the probit regression. The maximal usable value for tau depends only on the
power of your computer, but have care that the dimensions of the transition matrix u × u don’t grow
too much, or the waiting time may become unbearable.

c© Royal Economic Society 2004



Duration Dependent Markov-Switching Vector Autoregressions 9

don’t need to write the extension, at the moment the only format available is .in7) and
check Save also state series if the specified file should contain also the samples of the state
variables. Check Probabilities of state 0 in filename.ext to save the smoothed probabilities
{Pr(St = 0|YT )}T

t=1 in the database from which the time series are taken.

Program’s Output
Since Gibbs sampling may take a long time, after five iterations the program prints an

estimate of the waiting time. The user is informed of the progress of the process every
100 iterations.

At the end of the iteration process, the estimated means, standard deviations (in the
output named standard errors), percentiles of the marginal posterior distributions are
given.

The output consists also in a number of graphs:

1 probabilities of St being in state 0 and 1,
2 mean and percentiles of the transition probabilities distributions with respect to

the duration,
3 autocorrelation function of every sampled parameter (the faster it dies out, the

higher the speed of the Gibbs sampler in exploring the posterior distribution’s sup-
port, and the smaller the number of iteration needed to achieve the same estimate’s
precision),

4 kernel density estimates of the marginal posterior distributions,
5 Gibbs sample graphs (to check if the burn in period is long enough to ensure that

the initial values have been “forgot”),
6 running means, to visually check the convergence of the Gibbs sample means.

4.2. The DDMSVAR() object class

The second simplest way to use the software is creating an instance of the object
DDMSVAR and using its member functions. The best way to illustrate the most relevant
member functions of the class DDMSVAR is showing a sample program and commenting
it.

#include "DDMSVAR.ox"
main() {

decl dd = new DDMSVAR();

dd->LoadIn7("USA4.in7");
dd->Select(Y_VAR, {"DLIP", 0, 0, "DLEMP", 0, 0,

"DLTRADE", 0, 0, "DLINCOME",0 ,0});
dd->Select(S_VAR,{"NBER", 0, 0});
dd->SetSelSample(1960, 1, 2001, 8);

dd->SetVAROrder(0);
dd->SetMaxDuration(60);
dd->SetIteration(21000);
dd->SetBurnIn(1000);
dd->SetPosteriorPercentiles(<0.05,50,99.5>);

c© Royal Economic Society 2004
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dd->SetPriorFileName("prior.in7");
dd->SetInitFileName("init.in7");
dd->SetSampleFileName("prova.in7",TRUE);

dd->Estimate();

dd->StatesGraph("states.eps");
dd->DurationGraph("duration.eps");
dd->Correlograms("acf.eps", 100);
dd->Densities("density.eps");
dd->SampleGraphs("sample.eps");
dd->RunningMeans("means.eps");

}

dd is declared as instance of the object DDMSVAR. The first four member functions
are an inheritance of the class Database and will not be commented here10. Notice only
that the variable selected in the S VAR group must contain the initial values for the state
variable time series. Nevertheless, if no series is selected as S VAR, DDMSVAR calculates
initial values for the state variables automatically.

SetVAROrder(const iP) sets the order of the VAR model to the integer value iP.

SetMaxDuration(const iTau) sets the maximal duration to the integer value iTau.

SetIteration(const iIter) sets the number of Gibbs sampling iterations to the inte-
ger value iIter.

SetBurnIn(const iBurn) sets the number of burn in iterations to the integer value
iBurn.

SetPosteriorPercentiles(const vPerc) sets the percentiles of the posterior distri-
butions that have to be printed in the output. vPerc is a row vector containing the
percentiles (in %).

SetPriorFileName(const sFileName),
SetInitFileName(const sFileName) are optional; they are used to specify respectively
the file containing the prior means and variances of the parameters and the file with
the initial values for the Gibbs sampler (see the previous subsection for the format that
the two files need to have). If they are not used, priors are vague and initial values are
automatically calculated.

SetSampleFileName(const sFileName, const bSaveS) is optional; if used it sets the
file name for saving the Gibbs sample and if bSaveS is FALSE the state variables are not
saved, otherwise they are saved in the same file sFileName. sFileName does not need
the extension, since the only available format is .in7.

10See Doornik (2001).
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Estimate() carries out the iteration process and generates the textual output (if run
within GiveWin-OxRun it does also the graphs). After 5 iteration the user is informed of
the expected waiting time and every 100 iterations also about the progress of the Gibbs
sampler.

StatesGraph(const sFileName),
DurationGraph(const sFileName),
Correlograms(const sFileName, const iMaxLag),
Densities(const sFileName),
SampleGraphs(const sFileName),
RunningMeans(const sFileName) are optional and used to save the graphs described in
the last subsection. sFileName is a string containing the file name with extension (.emf,
.wmf, .gwg, .eps, .ps) and iMaxLag is the maximum lag for which the autocorrelation
funtcion should be calculated.

4.3. DDMSVAR software library

The last and most complicated (but also flexible) way to use the software is as library of
functions. The DDMS-VAR library consists in 25 functions, but the user need to know
only the following 10. Throughout the function list, it is used the notation below.

p scalar order of vector autoregression (VAR(p))
tau scalar maximal duration (τ)
k scalar number of time series in the model
T scalar number of observations of the k time series
u scalar dimension of the state space of {S∗t }

(u =
∑p

i=1 2i + 2(τ − p))
Y (k × T ) matrix of observation vectors (YT )
s (T × 1) vector of current state variable (St)
mu0 (k × 1) vector of means when the state is 0 (µ0)
mu1 (k × 1) vector of mean-increments when the state is 1 (µ1)
A (k × pk) VAR matrices side by side ([A1, . . . , Ap])
Sig (k × k) covariance matrix of VAR error (Σ)
SS (u× p+2) state space of the complete Markov chain {S∗} (tab. 2)
pd (tau× 4) matrix of the probabilities [p00(d), p01(d), p10(d), p11(d)]
P (u× u) transition matrix relative to SS (P ∗)
xi flt (u× T−p) filtered probabilities ([ξ̂t|t])
eta (u× T−p) matrix of likelihoods ([ηt])

ddss(p,tau)
Returns the state space SS (see table 2).

A sampler(Y,s,mu0,mu1,p,a0,pA0)
Carry out step 2. of the Gibbs sampler, returning a sample point from the posterior of
vec(A) with a0 and pA0 being respectively the prior mean vector and the prior precision
matrix (inverse of covariance matrix) of vec(A).
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mu sampler(Y,s,p,A,Sig,m0,pM0)
Carry out step 3. of the Gibbs sampler, returning a sample point from the posterior of
[µ′0, µ

′
1]
′ with m0 and pM0 being respectively the prior mean vector and the prior precision

matrix (inverse of covariance matrix) of [µ′0, µ
′
1]
′.

probitdur(beta,tau)
Returns the matrix pd containing the transition probabilities for every duration d =
1, 2, . . . , τ .

pd =




p0|0(1) p0|1(1) p1|0(1) p1|1(1)
p0|0(2) p0|1(2) p1|0(2) p1|1(2)
...

...
...

...
p0|0(τ) p0|1(τ) p1|0(τ) p1|1(τ)


 .

ddtm(SS,pd)
Puts the transition probabilities pd into the transition matrix relative to the chain with
state space SS.

ergodic(P)
Returns the vector xi0 of ergodic probabilities of the chain with transition matrix P.

msvarlik(Y,mu0,mu1,Sig,A,SS)
Returns eta, matrix of T columns of likelihood contributions for every possible state in
SS.

ham flt(xi0,P,eta)
Returns xi flt, matrix of T columns of filtered probabilities of being in each state in
SS.

state sampler(xi flt,P)
Carry out step 1. of the Gibbs sampler. It returns a sample time series of values drawn
from the chain with state space SS, transition matrix P and filtered probabilities xi flt.

new beta(s,X,lastbeta,diffuse,b,B0)
Carry out step 4. of the Gibbs sampler. It returns a new sample point from the posterior
of the vector β, given the dependent variables in X, where the generic row is given by
(3.15). If diffuse6= 0, a diffuse prior is used.

5. DURATION DEPENDENCE IN THE U.S. BUSINESS CYCLE

The model and the software illustrated in the previous sections have been applied to 100
times the difference of the logarithm of the four time series, on which the NBER relays
to date the U.S. business cycle, dating from January 1960 to August 2001: i) industrial
production (IP), ii) total nonfarm-employment (EMP), iii) total manufacturing and trade
sales in million of 1996$ (TRADE), iv) personal income less transfer payments in billions
of 1996$ (INCOME).

The model, with p = 2 did not work too well, while the results in absence of the
VAR part (p = 0) and maximal duration τ = 120 (10yrs) are rather encouraging: this is

c© Royal Economic Society 2004



Duration Dependent Markov-Switching Vector Autoregressions 13

Figure 1. (Smoothed) probability of recession (line) and NBER dating (gray shade)
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probably due to the fact that the duration dependent MS model is a stationary process,
which, therefore, can be arbitrarily well approximated by an autoregressive process. As
a result the duration dependent switching part and the VAR part of the model try to
“explain” almost the same features (autocorrelation) of the series, and the model is not
too well identified.

The inference on the model unknowns is based on a Gibbs sample of 21000 points, the
first 1000 of which were discarded. In appendix the correlograms and the kernel density
estimates for each parameter are reported. All the correlograms die out before the 100th

lag, thus the choice of a burn-in sample of 1000 points seems quite reasonable11.
An earlier experiment with τ = 60 (5yrs) was carried out, but it is not reported here:

the results were quite similar to the ones reported below and the conclusions the same.
Summaries of the marginal posterior distributions are shown in table 3, while figure

1 compares the probability of the U.S. economy being in recession resulting from the
estimated model with the official NBER dating: the signal “probability of being in re-
cession” extracted by the model here presented matches the official dating rather well,
and is less noisy than the signal extracted by Hamilton (1989), based on the IP series
only. The NBER dating seems to be best matched if, every time the model’s probability
of being in recession exceeds 0.5, the peak date is set equal the time the line crosses a
low probability level (say 0.1) from below and the trough date is set equal the time the
probability line crosses a high probability level (say 0.9) from above. NBER trough dates
seem to be matched more frequently by the model than the peaks.

Figure 2 shows how the duration of a state (recession or expansion) influences the tran-
sition probabilities: while the probability of moving from a recession into an expansion
seems to be influenced by the duration of the recession, the probability of falling into a
recession appears to be independent of the length of the expansion.

11The Gibbs sample is available for further inspections, by sanding an e-mail to the author.
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Table 3. Description of the prior and posterior distributions of the model’s parameters.

Prior Posterior
Parameter mean var mean s.d. 2.5% 50% 97.5%
µ0 IP 0.000 4.000 0.4292 0.04221 0.3519 0.4271 0.5187
µ0 EMP 0.000 4.000 0.2425 0.01257 0.2213 0.2415 0.2698
µ0 TRADE 0.000 4.000 0.3888 0.05460 0.2849 0.3875 0.4978
µ0 INCOME 0.000 4.000 0.3422 0.02273 0.3024 0.3406 0.3926
µ1 IP 0.000 4.000 -1.0056 0.1520 -1.2907 -1.0080 -0.6914
µ1 EMP 0.000 4.000 -0.3962 0.0457 -0.4725 -0.4013 -0.2844
µ1 TRADE 0.000 4.000 -0.7360 0.1453 -1.0193 -0.7366 -0.4500
µ1 INCOME 0.000 4.000 -0.4087 0.0578 -0.5233 -0.4081 -0.2967
β1 0.000 5.000 1.6526 0.4490 0.8584 1.6239 2.6200
β2 0.000 5.000 -0.0511 0.0552 -0.1794 -0.0443 0.0350
β3 0.000 5.000 -2.6732 0.4208 -3.6189 -2.6341 -1.9601
β4 0.000 5.000 0.0165 0.0120 0.0002 0.0135 0.0466

6. CONCLUSIONS

The model proved to have a good capability of discerning recessions and expansions,
as the probabilities of recession tend to assume very low or very high values and, the
resulting dating of the U.S. business cycle is very close to the official one.

As far as duration-dependence is concerned, my results are similar to those of Diebold
and Rudebusch (1990), Diebold et al. (1993), Sichel (1991) and Durland and McCurdy
(1994): U.S. recessions are duration dependent, while expansions seem to be not duration
dependent. This could be simply due to the fact that governments are interested in exiting

Figure 2. Mean (solid), median (dash) and 95% credible interval (dots) of the posterior
distribution of the probability of moving a) from a recession into an expansion after d
months of recession b) from an expansion to a recession after d months of expansion
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contractions, while the opposite is not true, and the policies they put in practice in order
to achieve this goal seem effective.

The DDMSVAR software has demonstrated to work fine, even though I must recognize
that it is far from being fully optimized: there is too much looping in the code for an
interpreted, although very efficient, language as Ox. Future versions will be more efficient.

The Gibbs sampling approach has many advantages but also a big disadvantage: the
former are that (i) it allows prior information to be exploited, (ii) it avoids the computa-
tional problems pointed out by Hamilton (1994) that can arise with maximum likelihood
estimation, (iii) it does not relay on asymptotic inference (read note 1.), (iv) the infer-
ence on the state variables is not conditional on the set of estimated parameters. The big
disadvantage is a long computation time: the 21000 Gibbs sampler iterations generated
for last section’s results took more than 13 hours12.
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APPENDIX

Figure 3. Kernel density estimates and correlograms of µ0.
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Figure 4. Kernel density estimates and correlograms of µ1.
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Figure 5. Kernel density estimates and correlograms of β.
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Figure 6. Kernel density estimates and correlograms of Σ.
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