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1 Introduction

Dickey and Fuller (1979) [DF] tests are now a basic tool in the tool-kit box of most time series

researchers (see also Said and Dickey (1984)). Following the recommendation of Ghysels

(1990) and Ghysels and Perron (1993), for variables sampled at infra-annual frequencies

DF tests should be applied to seasonally unadjusted (raw) data. Otherwise, their power

can be even lower than usual. Although in this case the simple procedure proposed by

Hylleberg et al. (1990) [HEGY] is also able to deliver evidence for the presence (absence) of

seasonal unit roots, many researchers prefer using (A)DF tests, the purpose of their analysis

being concentrated only on the long-run (zero frequency) properties of the data. Moreover,

as in some circumstances the HEGY test for the zero frequency unit root may have less

power than the DF test, Franses (1996, p. 73) recommends that the latter should be used

to complement the former: “... in practice, therefore, one may consider an additional step

where there are no seasonal unit roots, i.e. a standard ADF test in a regression that includes

seasonal dummies” (the italics is ours). Therefore, investigating the properties of DF tests

for seasonally unadjusted data is a major concern.

On this regard, previous research – and particularly Ghysels et al. (1994) [GLN],

Rodrigues and Osborn (1999) and Rodrigues (2000) – has focused exclusively on the effects

of neglecting non-stationary stochastic seasonality. The major outcome of this work is that

even when the data generation process (DGP) contains seasonal unit roots ADF tests can

be validly used, provided that the test regression is sufficiently augmented with lags of

the dependent variable to account for the presence of such non-stationary components.

Otherwise, serious over-rejections of the unit root null arise. However, as the consequences

of neglecting the presence of deterministic seasonality have not been addressed yet, the main

purpose of this paper is precisely to fill that gap.

From a somewhat different perspective this paper addresses the issue of similarity of DF

tests with respect to the parameters of the seasonal cycle. Clearly, the framework of the

HEGY tests is more adequate for this purpose, the need to include the seasonal dummy

variables in the test regression arising from the (seasonal) initial values. Contrasting with

this approach, the presence of deterministic seasonality is hidden when the analysis relies

on a first-order difference equation: the similarity problem seems to be present with regard

only to the initial value and the value of the drift parameter. To illustrate this problem,

the analysis is confined to the quarterly data case. However, it extends straightforwardly to
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other frequencies (e.g., monthly, weekly, etc.).

Actually, the motivation for this research arose from the observation that some practi-

tioners do not include the usual set of seasonal intercepts when conducting ADF tests over

seasonally observed time series. Although we acknowledge that possibly this is not the most

current practice, there does not seem to exist any research that has addressed this issue.

On the other hand, it is well known that the selection of the lag truncation parame-

ter may affect inferences on the presence of unit roots, sometimes even dramatically [for a

recent example see Murray and Nelson (2000)]. Thus, this paper also aims to investigate

the finite sample behaviour of DF tests when the most popular procedure for lag selection

is used jointly with a non-similar test regression. Anticipating the conclusions, some re-

sults might seem somewhat surprising, implying that as yet there is no universal, clear-cut

recommendation for empirical research, yielding satisfactory size and power performance.

The remainder of this paper is organized as follows. The next section discusses the

issue of (non-)similarity of DF tests when the data contain deterministic seasonality. As

the approach is mainly analytical, a very simple DGP is used, i.e., a set of seasonal dummy

variables superimposed on a random walk. In section 3 the analysis is further complicated

through the consideration of more realistic DGP’s and test regressions. The results of an

extensive Monte Carlo study are presented to study the small sample behaviour of ADF tests

when the t-sig general-to-specific procedure is used to select the lag truncation parameter.

Section 4 presents the results of an empirical illustration where some tentative results are

obtained only after a simple but somewhat detailed univariate analysis. The final section

draws the most important conclusions and briefly discusses some routes for future research.

A separate Appendix contains critical values that may be useful for empirical research.

2 The (Non-) Similarity of DF Tests for Seasonal Time Series

More than 15 years ago, in an illuminating paper, Dickey et al. (1986) provided a straight-

forward answer to the question: Does the removal of seasonal means affect the limiting

distribution of the DF test statistic(s)? As is well known, their answer was clear: No! It

does not. However, their result come up to be misinterpreted by many practitioners, who

considered it as an indifference statement as to whether to include or not the set of seasonal

dummy regressors in the test regression. Hence, this section begins formulating a simpler

question: Does the non-removal of seasonal means affect the distribution of DF test statis-

tics when the data contain deterministic seasonality? The answer is: Yes! It obviously does,

as the test regression must at least account for all the deterministic components present in
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the DGP, and as follows straightforwardly from the work of Kiviet and Phillips (1992), inter

alia. Hence, a further question must be posed: In what way?

Through this paper attention will be frequently focused on time series generated by the

general model

xt = ∆ yt = µ+
4X

i=1

γiDit + ut, (1)

where yt typically denotes a logged transformed series, µ is a drift parameter,
P4

i=1 γi = 0,

Dit (i = 1, 2, 3, 4) represent the usual set of seasonal dummy variables and {ut} is a weakly
stationary and invertible ARMA(p, q) process in the innovation sequence { t} ∼ iid(0, σ2),
i.e., φ(L)ut = θ(L) t, all the roots of φ(L) and θ(L) lying outside the unit circle. Notice

that ut may contain stochastic seasonality which we initially assume to be stationary.

This equation corresponds to one of the basic models typically considered in the literature

on seasonality and it represents the standard model from which Miron and his co-authors1

have derived their stylized facts about the seasonal cycle. And although the importance

of deterministic seasonality seems to have been overstated by Miron, it appears that this

model provides a good approximation to the behaviour of many macroeconomic time series,

particularly for those corresponding to quantity variables. Furthermore, even when {ut} is
seasonally non-stationary, with φ(L) containing factors such as (1 + L) and/or (1 + L2),

deterministic seasonality is also usually present at some extent [see Abeysinghe (1994) and

Lopes (1999), inter alia].

To answer the previous question while keeping the analysis as simple as possible a sim-

plified version of equation (1) was utilized for the DGP, namely

∆yt =
4X

i=1

(−1)iδ Dit + εt, εt ∼ iid(0, 1), t = 1, 2, ..., T, (2)

where the seasonal cycle depends on a single parameter (δ) and, without loss of generality,

T corresponds to a complete number of years and σε = 1 (as shown below, the relevant

magnitude is the standardized seasonal, Ks = δ/σε). Obviously, although providing a

similar test with respect to the initial value (y0), the DFc(nd) or τc(nd) test statistic obtained

from the OLS regression yt = α+ ρyt−1 + vt, or

∆yt = α+ φ yt−1 + vt, (3)

1See, e.g., Barski and Miron (1989) and Miron (1994, 1996). See also Hylleberg (1994), Franses et al.

(1995) and Lopes (1999) for a critical appraisal of this work. Actually, Miron usually adopts the parametriza-

tion xt = ∆ yt =
P4

i=1 αiDit+ut, placing no restriction on the αi parameters. The parametrization adopted

here is more convenient, as it allows separating the parameters of the seasonal cycle from the overall drift

(mean); cf. Ghysels and Osborn (2001, pp. 20-24).
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where DFc(nd) = φ̂/σ̂φ̂, φ = ρ − 1, cannot provide a test for H0 : ρ = 1 (φ = 0) which is

similar with regard to the nuisance parameter(s) reflecting the seasonal cycle. In order to

achieve similarity, both exact and asymptotic, one must add the seasonal dummy regressors

to (3) and estimate the regression

∆yt =
4X

i=1

αiDit + ψ yt−1 + ωt. (4)

Then, the corresponding DFsd(≡ τsd = ψ̂/σ̂ψ̂) test statistic is also invariant to the value

of y0 because the unity vector lies in the space spanned by the columns of the exogenous

regressors.2 That is, this is a case where invariance of the unit root tests dispenses the

addition of a redundant regressor. However, when µ 6= 0 is added to (2), invariance clearly
requires including the usual linear trend term in (4).

The asymptotic answer to the previous question is provided through the following result.

Proposition Assume that the data generation process is given by equation (2), with

y0 = 0, but that inference on the existence of a unit root is based on equation (3) with

the intercept term omitted. Then, as T →∞,

τ(nd) ⇒ [1 +K2
s ]
−1/2[

R 1
0 W (r)dW (r)

(
R 1
0 W

2(r)dr)1/2
− (K2

s/2)(

Z 1

0
W 2(r)dr)−1/2)],

where ⇒ denotes weak convergence in distribution, Ks = δ/σε and W (r) represents a

standard Wiener process defined on [0, 1].

This result follows straightforwardly from the proposition presented and demonstrated

in Franses and Haldrup (1994) [FH], where the distribution of DF tests for time series

contaminated by additive outliers (AO’s) is analyzed. In fact, the relation between equations

(2) and (3) is that the former implies the presence of peaks and troughs in all observations

of the differenced series, which can be viewed as AO’s using the perspective given by the

latter. Notice also that using FH’s framework, equation (2) is equivalent to yt = δ δt+zt, zt =

zt−1 + t, with δt = 1 when t is even and δt = 0 otherwise
3.

As these “AO’s” occur with “probability” (π =)1/2, the result stated above is a very

simple corollary of the theorem proved by FH. Similarly, the limiting distribution of T φ̂ is

also easily obtained from the proposition proved in FH.

2That is, using the obvious matrix notation ∆y = X α+ψy−1+ω for equation (4), it is clear thatMx y−1,

where Mx = I −X0(XX)−1X, does not depend on the α parameters; cf. Kiviet and Phillips (1992).
3I am most grateful to Uwe Hassler for drawing my attention to this point. In words, an outlier in a unit

root process implies the presence of two adjacent outliers, of the same magnitude but with opposite signs,

in the differenced series.
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Obviously, the comparison between the (deterministic) seasonal cycle and the AO model

is not formally correct as this last one is stochastic in nature. Actually, it is only a simple

but useful analogy 4. Moreover, this poses no problem for the proof of the proposition.

Instead, the opposite emerges: for instance, provided T corresponds to a complete number

of years, in c) and d) of FH’s Lemma (op. cit., p. 477) it is not even necessary to take the

limits of the sample moments, the equalities holding exactly. Besides simplifying the proof,

this analogy tries to mimic the surprise of an investigator unwary of the regular pattern of

the seasonal cycle. It should also be noted that, following a different route, Demetrescu and

Hassler (2004) generalize this result in several ways.

Further, when the test regression (3) contains the intercept term (and whether y0 = 0

or not) the standard Wiener process is replaced by a demeaned (standard) Wiener process.

In the case that the linear trend term is also included in (3), a (demeaned and) detrended

Brownian motion process arises.

Hence, it is clear that:

i) when δ = 0 the limiting distribution is obviously the usual DF distribution;

ii) when δ 6= 0 the limiting distribution contains the nuisance parameters reflecting the
seasonal cycle and it is shifted to the left;

iii) moreover, this shift depends only on the standardized seasonal, Ks = δ/σε.

To gauge the adherence of this result to small samples, a Monte Carlo study was

performed using TSP 4.5 [Hall and Cummins (1999)]. Table 1 reports some fractiles for

the distributions of DFc(nd) and DFsd when the data are generated by equation (2) (with

t ∼ nid(0, 1)), and regressions (3) and (4) are used to test for a unit root. The following
features clearly emerge:

a) the numerical evidence closely agrees with the analytical based expectations, the shift

of the distribution to the left being perceptible even when Ks = 0.1 and T = 80 only,

and becoming rather dramatic as Ks grows;

b) using T = 800 to approximate the asymptotic distribution, except for the 0.01 and

0.99 fractiles, our results for DFsd coincide with those of Fuller (1996, table 10.A.2,

p. 642); however, in small samples the (adequate) inclusion of the seasonal intercepts

produces also a clear shift of the distribution to the right. While the reason why

4A possibly better analogy could resort to the temporary change (TC) outlier model (see FH and the

references contained therein). However, the AO model is much more widely known.
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this effect occurs is obvious,5 it is also clear that currently used small samples critical

values are not strictly correct when one includes the seasonal dummies in the set of

the deterministic regressors. For this very reason, in a separate appendix we provide

the adequate critical values for the case where the trend term is added to equation (4)

(see table A.1).

Table 1. Fractiles of the distribution of Dickey-Fuller test statistics based on 50 000

Monte Carlo replications. The DGP is ∆yt =
P4

i=1(−1)iδ Dit + t, t ∼ nid(0, 1).

δ T 0.01 0.05 0.10 0.50 0.90 0.95 0.99

DFc(nd)

0.0 80 −3.52 −2.90 −2.59 −1.56 −0.42 −0.05 0.64

160 −3.47 −2.88 −2.57 −1.56 −0.43 −0.07 0.62

800 −3.46 −2.86 −2.58 −1.57 −0.45 −0.09 0.56

0.1 80 −3.53 −2.91 −2.60 −1.57 −0.43 −0.06 0.63

160 −3.49 −2.89 −2.58 −1.56 −0.44 −0.08 0.60

800 −3.47 −2.87 −2.59 −1.58 −0.45 −0.10 0.55

1.0 80 −4.76 −3.88 −3.43 −2.12 −0.99 −0.68 −0.11
160 −4.66 −3.83 −3.40 −2.12 −1.01 −0.70 −0.13
800 −4.57 −3.79 −3.39 −2.13 −1.03 −0.72 −0.17

5.0 80 −17.05 −13.80 −12.18 −7.43 −4.31 −3.72 −2.90
160 −16.68 −13.59 −12.05 −7.40 −4.32 −3.72 −2.86
800 −16.26 −13.40 −11.97 −7.41 −4.34 −3.76 −2.95

10.0 80 −33.62 −27.17 −23.97 −14.65 −8.51 −7.34 −5.79
160 −32.86 −26.79 −23.74 −14.58 −8.53 −7.36 −5.74
800 −32.07 −26.43 −23.61 −14.62 −8.55 −7.42 −5.83

DFsd

any 80 −3.42 −2.82 −2.51 −1.51 −0.38 −0.02 0.67

160 −3.43 −2.84 −2.53 −1.53 −0.41 −0.05 0.64

800 −3.45 −2.86 −2.57 −1.57 −0.44 −0.08 0.56

Note: whereas DFc(nd) is obtained from regression (3), DFsd results from regression (4).

Additionally, using unreported numerical results (available from the author), it is also

5Intuitively, including the seasonal dummies is equivalent to reducing the sample size, as they can be

viewed as impulse dummies.
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legitimate to conclude that:

c) the asymptotic prediction is remarkably accurate even for samples as small as T = 80.

In fact, for example, all the fractiles of the distribution of DFc(nd) for the cases when

(δ, σε) is (1/2, 1/2) and (1, 0.2) are identical to those presented in Table 1 for δ = 1

and 5 respectively.

d) As Ks grows, besides shifting to the left, the distribution of DFc(nd) becomes also

flatter (see also figure 1 in FH).

e) All these features are also present when the trend term is added to equations (3) and

(4), the only effect being a slower rate of convergence of DFsd,t to the asymptotic

distribution. However, for DFct(nd) the small sample distributions still match very

closely the asymptotically based predictions; for example, all the fractiles still coincide

exactly for the cases mentioned in c) even when T is only 80.

3 Implications for Empirical Research

Having observed that neglecting deterministic seasonality has the same effect that unac-

counted additive outliers occurring in all observations of the differenced series, the implica-

tions that follow for the properties of DF tests are obvious: spurious rejections of the unit

root null will arise and the problem may become rather dramatic when the standardized

seasonal is large. Intuitively, this is also simple to understand, as the unaccounted seasonal

cycle produces the wrong impression that in every observation there exists a “shock” which

has a purely transitory effect. When these “shocks” are large relatively to the standard

deviation of the real shocks spurious evidence for stationarity will emerge very often.

In graphical terms it is also easy to imagine a practitioner unwary of the seasonal cycle

plotting the differenced series and observing what appears to be a strong pattern of negative

first order autocorrelation, suggesting overdifferencing.

3.1 The random walk case

Let us consider that the data are generated by equation (2) and equation (3) is used to

test for the unit root. Then, using common nominal 5% critical values6 for the case when

T = 80: a) when Ks = 0.1 the estimated real size of the DFc(nd) test statistic, based on 10

6Except when explicitly mentioned, all over this paper we have used the critical values derived from the

response surface analysis of MacKinnon (1991) as these seem to be the most popular among practitioners.

8



000 replications, is 5.12%; b) however, when Ks = 1, the unit root null will be rejected in

about 20.45% of the times; c) for the case of strong seasonal patterns as those corresponding

to Ks = 5 the estimated real size is 99.13%.

As another example, we have considered the case when the seasonal cycle is given by

−δ1 = δ4 = 1 and δ2 = −δ3 = 0.5. When T = 160 the estimated actual size of DFc(nd) is

13.6%. Since, on the other hand, when δ = 0.75 in (2) the estimated actual size is 12.76%,

the simple DGP adopted here seems to provide a good approximation to more heterogeneous

seasonal patterns provided that δ is close to
P4

i=1 |δi|/4.
Finally, for the random walk with drift case (µ 6= 0), when T = 80 the estimated actual

sizes for the cases Ks = 0.1, 1 and 5 are 5.07%, 32.15% and 100%, respectively. That is, for

most macroeconomic time series the over-rejection problem is even more serious than for

those cases where the concern is on (non-)stationary around a constant level.

3.2 More realistic settings I: size

Fortunately, DGP’s such as the one of equation (2) are considered only in very special

circumstances, implying also that testing for an autoregressive unit root is rarely based on

equations (3) and (4). That is, a more realistic setting is the one provided by

ψ(L)∆yt = µ+
4X

i=1

(−1)i δ Dit + θ(L)εt, (5)

where ψ(L) may contain some root(s) on the unit circle but not equal to unity (i.e., only

seasonal unit roots are allowed).

To cope with the nuisance parameters governing the additional autocorrelation, the

“never-mind-deterministic-seasonality-practitioner” is assumed to base inferences on the

regression

∆yt = α+ β t+ φyt−1 +
kX

j=1

λj∆yt−j + nd,t, (6)

where k represents the lag truncation parameter, which we assume to be estimated using

the general-to-specific (GS) t-sig modelling strategy, based on 5% (asymptotic) level tests,

recursively performed on the λj parameters. Other lag length selection procedures could

have been considered but, following the recommendations in Campbell and Perron (1991),

Hall (1994) and Ng and Perron (1995), the t-sig procedure seems to be the most popular in

empirical research. The corresponding τct(nd) statistic (φ̂/σ̂φ̂) is denoted with ADFct(nd).
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On the other hand, the investigation on the finite sample size performance uses as

benchmark case the statistic ADFsd,t (τsd,t = ψ̂/σ̂ψ̂) produced by the (correct) regression

∆yt =
4X

i=1

αiDit + β∗t+ ψ yt−1 +
kX

j=1

γj∆yt−j + sd,t, (7)

where, using a somewhat loose notation, we also denote with k the lag truncation parameter.

However, it should be clear that while this parameter is also selected using the GS, t-sig

5% procedure, there is no presumption that it equals the k of equation (6). Actually, the

results of Taylor (2000) suggest that the k estimated using equation (6) will tend to exceed

the one resulting from equation (7).

In both cases, it is also assumed that the researcher uses a “seasonally modified” de-

terministic rule procedure for setting the upper bound for k, kmax. Namely, kmax = 4, 8

and 12 were employed for T = 48, 80 and 160 respectively.7 Following an almost universally

adopted practice kmin is always set to zero.

The DGP’s that we have considered for investigating the small sample size properties

are the following:

DGP1: ∆yt = µ+
P4

i=1(−1)iδ Dit + εt − θ1εt−1, (8)

DGP2: ∆yt = µ+
P4

i=1(−1)iδ Dit + εt − θ4εt−4, (9)

DGP3: yt = µ+ yt−4 +
P4

i=1(−1)iδ Dit + εt, (10)

DGP4: (1 + 0.9L)(1 + 0.4L2)∆yt = µ+
P4

i=1(−1)iδ Dit + εt. (11)

Given the seminal work of Schwert (1989) and the research that followed, equation (8)

dispenses detailed comments 8. Model (9) is the “seasonal twin” of DGP1. Besides the

nonseasonal unit root, DGP3 contains all the seasonal unit roots and therefore reflects

the concerns of GLN, Franses (1996), Rodrigues and Osborn (1999) and Rodrigues (2000).

Preliminary numerical evidence on this case has been reported in Lopes (2003). On the

other hand, DGP4 corresponds to a near-semiannual unit root case, while the complex

7These seem what we might call as resulting from a “consensual” or “popular” ls procedure, where the l

procedures presented by Schwert (1989) are adapted to the quarterly case. Two features must be noticed: a)

the length of the autoregressions is not really a multiple of four, as they are equal to 5, 9 and 13, respectively;

b) for the T = 48 and 80 cases the upper bounds for the augmenting lag lengths do not satisfy Said and

Dickey (1984) condition that kmax/T
1/3 → 0 as T → ∞. However, these features have a negligible impact

on the numerical evidence.
8However, see also Pantula (1991). Interestingly enough, it should be pointed out that the three time

series that Schwert (1989) refers as motivating examples are monthly time series not seasonally adjusted.
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roots are distant from the unit circle. The motivation for considering this case arose from

the observation that the seasonal unit root most commonly reported in empirical research is

the root −1. Moreover, as Ghysels and Osborn (2001, p. 92) point out, a changing seasonal
pattern is more likely to involve adjacent quarters then, say, reverting the roles of summer

and winter. That is, the root −1 is a priori more plausible than the complex roots.
Several other ARIMA models were also considered as DGP’s but the evidence that we

got adds little to the one which is presented. Therefore it is omitted. The same argument

applies to the zero drift DGP/no trend in regression case. Moreover, though we have

considered Ks = δ = 0, 0.1, 1, 5 and 10, only the cases Ks = δ = 0, 1 and 5 are reported, the

remaining cases also adding little evidence to the analysis. Thus, table 2 contains only the

most important numerical evidence. As the main purpose is the evaluation of commonly

used procedures, the 5% nominal critical values were again taken from MacKinnon (1991),

both for the ADFct(nd) and ADFsd,t statistics.

The main question seeking an answer is now the following: Does the GS, t-sig (5%

level) method robustifies unit root inferences based on a non-similar test regression? Before

observing table 2, where the answer is provided, one must take into consideration that:

i) the conjecture is that adding lags of the dependent variable to the test regression, while

possibly leaving the asymptotic distribution unchanged, might alleviate the spurious

stationary evidence problem in small samples as those regressors might approximate

the effect of the omitted seasonal intercepts;

ii) recent research by Taylor (2000) has highlighted the shortcomings of the most common

lag selection methods – and particularly of the GS t-sig procedure – when the test

regression contains deterministic regressors, even when their presence is necessary to

render the tests similar. That is, the inclusion of such regressors produces a systematic

finite sample bias towards zero in the estimators of the autoregressive augmenting

parameters, thereby leading to lag structures which are too much parsimonious [see

also Ng and Perron (2001)]. In turn, the effect of this under-fitting is well known for

the DGP’s that we have considered: poor size properties in small samples.

Then, the most salient features concerning the small sample size behaviour emerging

from table 2 are the following:

a) except for the seasonal unit roots case (DGP3), a clear and strong picture of serious

size distortions immediately arises. However, it should be also clear that the reasons

which lie behind this behaviour are very different for the two statistics.
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Table 2. Size estimates of ADFct(nd) and ADFsd,t at the nominal 5% level using the GS

t-sig 5% strategy(based on 10 000 replications)

T (kmax) 48(4) 80(8) 160(12)

δ θ1 θ4 ADFct(nd) ADFsd,t ADFct(nd) ADFsd,t ADFct(nd) ADFsd,t

DGP1: ∆yt = µ+
P4

i=1(−1)iδ Dit + εt − θ1εt−1

0 0.4 – 0.383 0.312 0.244 0.222 0.131 0.122

0.8 – 0.882 0.860 0.707 0.683 0.465 0.446

1 0.4 – 0.146 0.312 0.102 0.222 0.076 0.122

0.8 – 0.692 0.860 0.456 0.683 0.210 0.446

5 0.4 – 0.138 0.312 0.096 0.222 0.075 0.122

0.8 – 0.501 0.860 0.280 0.683 0.151 0.446

DGP2: ∆yt = µ+
P4

i=1(−1)iδ Dit + εt − θ4εt−4

0 – 0.4 0.215 0.181 0.180 0.152 0.116 0.101

– 0.8 0.323 0.300 0.261 0.240 0.274 0.257

1 – 0.4 0.356 0.181 0.187 0.152 0.104 0.101

– 0.8 0.614 0.300 0.456 0.240 0.474 0.257

5 – 0.4 0.406 0.181 0.164 0.152 0.101 0.101

– 0.8 0.676 0.300 0.455 0.240 0.469 0.257

DGP3: yt = µ+ yt−4 +
P4

i=1(−1)iδ Dit + εt

0 – – 0.045 0.076 0.061 0.057 0.064 0.061

1 – – 0.053 0.041 0.078 0.055 0.072 0.061

5 – – 0.011 0.040 0.075 0.056 0.060 0.060

– – DGP4: (1 + 0.9L)(1 + 0.4L2)∆yt = µ+
P4

i=1(−1)iδ Dit + εt

0 – – 0.264 0.289 0.145 0.171 0.070 0.074

1 – – 0.164 0.284 0.089 0.167 0.067 0.075

5 – – 0.182 0.204 0.094 0.141 0.068 0.069
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b) As expected, the inflated rejection frequencies tend to decrease as T grows. This is a

reflection of the consistency of the GS t-sig method, which provides little comfort for

most practitioners.

c) The (non-)similarity of the (ADFct(nd)) ADFsd,t test statistic(s) is also clear but for

the latter this is a two-edged-knife, particularly in the cases of DGP’s 1 and 4. In other

words, though performing better than the ADFct(nd) statistic in about 52% of the cases

of table 2, the ADFsd,t statistic is obviously less robust to the problem mentioned in ii)

above and, as the sample size grows, the under-fitting problem vanishes more slowly

than for the former 9.

d) Although alleviating somewhat the size distortion problem, the t-sig method is a poor

remedy for the non-similarity of ADF tests neglecting deterministic seasonality. Ac-

tually, except for the case of DGP4, even when there is no such behaviour in the

data, the ADFsd,t statistic is not so badly oversized as ADFct(nd). Furthermore, for

the (unreported) case of the random walk (e.g., DGP1 with θ1 = 0), size distortions

are very small for the latter but they are relatively large for the ADFct(nd) statistic,

particularly when T = 48 and 80.

The exception mentioned in a) deserves some attention, the t− sig method performing

remarkably well in the case of DGP3. Following Rodrigues (2000), equation (10) can be

written as

∆yt = µ+ ϕyt−1 + φ1∆yt−1 + φ2∆yt−2 + φ3∆yt−3 +
4X

i=1

(−1)iδ + εt,

where ϕ = 0 and φ1 = φ2 = φ3 = −1 and the corresponding regressors are non-stationary.
Hence, their t-statistics, and particularly the one of φ3, do not follow a standard distribution.

This implies that using the critical values taken from the standard normal distribution leads

to a test of H0 : φ3 = 0 whose power converges very quickly to one as T grows. So quickly,

indeed, that even in relatively small samples that null is always rejected. That is, initiating

the t-sig procedure with kmax ≥ 3 invariably leads one to stop at least when k = 3, allowing
to capture the presence of the non-stationary regressors and thereby ensuring the good size

behaviour of the tests.

9To further substantiate this argument, additional (unreported) numerical evidence is available concerning

DGP4: average estimated lag lengths and estimated coefficients and power estimates for the t-test on the

third augmenting lag coefficient for the regression with k = 3.
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3.3 More realistic settings II: power

Obviously, a study of the power performance of both statistics is also helpful for applied

researchers. The question is now the following: Is the poor remedy provided by comple-

menting the non-similar test regression with the GS t-sig method cheap, as it should be?

The answer is: No, clearly not!, as the numerical evidence presented below shows.

Before proceeding, one explanation must be provided. While it is quite obvious that

power must be adjusted for size in the case of ADFct(nd), it is not so clear that the same

correction should be applied over ADFsd,t. However, Taylor (2000) has already pointed

out this problem. That is, though Hall (1994) and Ng and Perron (1995) showed that

most lag selection data based methods do not asymptotically affect the distribution of ADF

statistics, the case changes completely for finite samples. As Taylor (2000) emphasizes,

published critical values assume that k is fixed and do not take into account neither the

values of kmax and kmin nor the significance level used in the GS t-sig method. Therefore,

we have generated the finite sample critical values for some cases and, since these might be

useful for empirical research, we report them in the Appendix (table A.2 10).

For the power performance analysis the following DGP’s were considered:

DGP5: yt =
P4

i=1(−1)iδ Dit + 0.01 t+ ρ yt−1 + εt, (12)

DGP6: yt =
P4

i=1(−1)iδ Dit + 0.01 t+ φ4 yt−4 + εt, (13)

DGP7: (1− φ1L)(1 + 0.9L)(1 + 0.4L
2)yt =

P4
i=1(−1)iδ Dit + 0.01 t+ εt. (14)

While DGP5 and DGP6 are “classical”, DGP7 seems to be the most empirically relevant

for our purposes. That is, there is again a near-semiannual unit root (−1) but the complex
(annual) roots lie far from the non-stationary region.

The picture that emerges from table 3 is that the remedy, although poor, is indeed very

expensive: the estimated power of ADFct(nd) is higher than the one of ADFsd,t in only 11.1%

of the cases and in most of these the gain is insignificant. As expected, almost all of these

cases occur when Ks = δ = 0. Contrasting with this, the estimated gains in power resulting

from accounting for deterministic seasonality are not only much more pervasive but, above

all, they are much more significant. For example, for the case of DGP7 with Ks = δ = 1

the power gains are, in relative terms, always above 100% and, in two cases where power

is more difficult to obtain, above 150%. That is, accounting for the “seasonal AO’s” really

pays in power terms. Obviously, the reverse side of the coin of the previous subsection bears

10As can be observed, these critical values are much different from those obtained from MacKinnon (1991)

and differ also from those in Cheung and Lai (1995), both of which assuming a fixed k.
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Table 3. Size-adjusted and estimated power (for 5% level tests) of ADFct(nd) and ADFsd,t

using the GS t-sig (5%) lag selection method (based on 10 000 replications)

[T ](kmax) ρ(φ4)[φ1]

δ ADFct(nd) ADFsd,t ADFct(nd) ADFsd,t ADFct(nd) ADFsd,t

DGP5: yt =
P4

i=1(−1)iδ Dit + 0.01 t+ ρ yt−1 + εt

0.95 0.90 0.85

[80](8)

0 0.069 0.073 0.123 0.124 0.211 0.209

1 0.070 0.072 0.108 0.123 0.161 0.209

5 0.067 0.071 0.104 0.123 0.149 0.210

[160](12)

0 0.124 0.122 0.344 0.339 0.615 0.607

1 0.105 0.123 0.215 0.339 0.332 0.608

5 0.102 0.124 0.208 0.341 0.321 0.608

DGP6: yt =
P4

i=1(−1)iδ Dit + 0.01 t+ φ4 yt−4 + εt

0.90 0.80 0.70

[80](8)

0 0.041 0.048 0.055 0.064 0.080 0.094

1 0.035 0.048 0.043 0.064 0.063 0.093

5 0.045 0.047 0.067 0.062 0.068 0.089

[160](12)

0 0.061 0.068 0.124 0.134 0.246 0.261

1 0.056 0.066 0.115 0.133 0.223 0.262

5 0.056 0.067 0.143 0.134 0.238 0.259

DGP7: (1− φ1L)(1 + 0.9L)(1 + 0.4L
2)yt =

P4
i=1(−1)iδ Dit + 0.01 t+ εt

0.95 0.90 0.85

[80](8)

0 0.146 0.198 0.239 0.320 0.360 0.464

1 0.071 0.197 0.118 0.317 0.193 0.461

5 0.077 0.164 0.133 0.262 0.218 0.396

[160](12)

0 0.117 0.137 0.314 0.341 0.585 0.604

1 0.102 0.137 0.274 0.340 0.509 0.604

5 0.104 0.131 0.283 0.334 0.540 0.602

15



the liability for this: the non-removal of the “AO’s” through the seasonal intercepts tends

to produce more liberal lag lengths which, in turn, have the usual implication in terms of

power performance. Again, the analogy with the AO model seems useful: it is well known

that unaccounted AO’s induce a “MA-like” component in the error term which the t-sig

procedure tries to capture through long autoregressions (besides FH, see also Vogelsang

(1999) and Perron and Rodŕıguez (2002), inter alia).

4 Empirical Illustration

To illustrate empirically the previous analysis a simple example is provided concerning some

Portuguese economic time series (see Table 4) 11. Since the only purpose is to illustrate that

analysis, we neglect the possibilities of double unit roots, outliers (besides the “seasonal”

ones), structural breaks (including seasonal mean shifts), heterocedasticity, non-stationary

stochastic seasonality and non-linearities. The logic is also very simple: a) when the two

estimated lag truncation parameters are close we prefer using the p-value computed for the

ADFsd,t statistic; b) otherwise, when the k’s are somewhat dissimilar, a more thoughtful

but simple investigation is performed using ARIMA modelling.

While for most of the series the evidence for a unit root is about the same, whether or

not one considers deterministic seasonality, for three of them interesting divergencies occur.

Moreover, the discrepancies could be even larger if asymptotic p-values, that do not take

into consideration the presence of data based lag augmentation, were used.

The series for private and public consumption, GFCF, exports, imports and inflation

are in the first group. However, a tendency for the correct procedure to produce evidence

more supportive of the unit root hypothesis is observed. It is also interesting to observe the

difference in the estimated lag lengths for the case of the inflation series. The remaining

three series seem to illustrate the analysis of subsection 3.2., i.e., it appears that they provide

examples of the spurious rejection situation.

Since the selected lag length is the same, the case of the production index for the elec-

tricity industry is the most straightforward: a dramatic decision reversal occurs when the

practitioner is stuck in the popular 5% level rule.

In a certain sense, the other two cases are even much stronger: neglecting deterministic

seasonality in the GDP and IPI—total series drastically reduces the amount of evidence

supporting the presence of a unit root and a closer inspection reveals that in both cases the

11All the series were collected using the publications from I.N.E. (Instituto Nacional de Estat́ıstica). They

are obviously available from the author on request.
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Table 4. Empirical results for some Portuguese economic time series

sample kmax ADFsd[t] (k) [p] ADFc[t](nd) (k) [p]

GDP 77:1—98:4 8 −2.02 (1) [0.59] −3.29 (6) [0.06]
Priv. Cons. 77:1—98:4 8 −2.49 (4) [0.35] −2.67 (4) [0.25]
Pub. Cons. 77:1—98:4 8 −2.20 (5) [0.50] −2.22 (5) [0.51]
GFCF 77:1—98:4 8 −2.16 (8) [0.52] −2.23 (8) [0.48]
Exports 60:1—98:4 12 −2.92 (7) [0.18] −2.92 (7) [0.15]
Imports 60:1—98:4 12 −2.89 (12) [0.19] −2.94 (12) [0.13]
Inflation 74:2—00:4 12 −1.79 (3) [0.38] −1.87 (12) [0.37]
IPI—Total 74:1—95:4 8 −2.36 (4) [0.41] −3.09 (8) [0.10]
IPI—Electr. 68:1—98:4 12 −3.44 (12) [0.07] −3.47 (12) [0.04]

Notes: 1) IPI means industrial production index; 2) with the exception of the inflation rate, all the

series were previously logarithmized; 3) the p-values for the ADFsd[t] statistics were estimated using

Monte Carlo simulations based on 50 000 replications; 4) the p-values for the ADFc[t](nd) statistics

were estimated using a routine built in TSP 4.5 based on Cheun and Lai(1995).

ADFct(nd) statistics are (presumably) producing spurious evidence for trend stationarity.

Actually, provided deterministic terms are properly considered, Box-Jenkins analysis clearly

supports the shorter autoregressions associated with the ADFsd,t statistics. Simply allowing

that longer autoregressions cope with the similarity problem is not enough in these cases.

5 Concluding Remarks

The answer to the title question is now clear: We certainly should care! The reasons are also

obvious. We should not neglect deterministic seasonality because: a) otherwise tests will

not be invariant to the parameters of the seasonal cycle; b) as a consequence, in the case of

the simplest I(1) process, i.e., the random walk, the implications for the size properties of

the tests may be disastrous, and the general-to-specific t-sig lag selection method is a poor

remedy for the problem in this case and in more empirically relevant settings; c) moreover,

although the remedy is poor, it is very expensive too because size-adjusted power may be

much lower than in the benchmark case of the similar test.

Therefore, the main recommendation for empirical work is a straightforward extension

of the one provided by Ghysels, Lee and Noh (1994, p. 432) concerning tests for seasonal

unit roots: the inclusion of the seasonal dummies in the test regressions “... appears to
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be a prudent decision in empirical applications in order to perform tests for” both the

nonseasonal and the “seasonal unit roots”. This is because the common perception that

deterministic seasonality has nothing to do with testing for the long-run properties of the

data is incorrect. Not accounting for its presence leads to non-similar Dickey-Fuller test

statistics, plagued with problems of spurious evidence for stationarity and a rather poor

power behaviour.

This paper has also left some routes open for further research. In particular, concerning

lag selection methods, our numerical evidence simply confirms and extends the one presented

by Taylor (2000) on the size properties of Dickey-Fuller tests: in small samples and when

deterministic regressors are required for similarity, the GS t−sig method may perform very
poorly. The following alternative methods seem to deserve attention:

a) the two-stage procedure suggested by Taylor (2000), where in the first stage the test

regression is estimated omitting the deterministic regressors and selecting the lag trun-

cation order using a data-based procedure. In the second stage the estimated k is

imposed on the similar test regression.

b) Adapting the ADFGLS tests proposed by Elliot, Rothenberg and Stock (1996) to the

case of seasonally observed variables, possibly using the modified information criteria

suggested by Ng and Perron (2001) to select the lag truncation parameter.

Concerning a), preliminary numerical evidence where we have omitted only the seasonal

intercepts indicates that although alleviating the size distortion problem in some cases, in

many other situations, and particularly when T = 48 and 80 only, significant over-rejections

still subsist, and the procedure may behave worse than the ADFsd,t statistics. Moreover,

exact similarity with respect to the parameters of the seasonal cycle is not strictly achieved.

Suggestion b) seems to be more promising, both in terms of power and size performance.

However, the values of the parameters for the local-to-unity GLS detrending need to be

determined for the case of seasonally observed data.
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6 Appendix

Table A.1. Fractiles of the distribution of Dickey-Fuller test statistic

τsd,t (DFsd,t) based on 50 000 Monte Carlo replications

T 0.01 0.05 0.10 0.50 0.90 0.95 0.99

48 −3.94 −3.32 −3.02 −2.04 −1.11 −0.80 −0.19
100 −3.94 −3.36 −3.07 −2.11 −1.17 −0.87 −0.25
160 −3.94 −3.37 −3.10 −2.14 −1.19 −0.89 −0.27
400 −3.95 −3.39 −3.11 −2.16 −1.24 −0.93 −0.31
800 −3.95 −3.40 −3.12 −2.17 −1.24 −0.92 −0.29
2000 −3.99 −3.42 −3.13 −2.18 −1.25 −0.94 −0.30

Table A.2. Finite sample critical values for the ADFsd and ADFsd,t statistics using the

GS t-sig, 5% level method (based on 50 000 replications)

T (kmax; kmin) 48 (4;0) 80 (8;0) 160 (12;0)

ADFsd ADFsd,t ADFsd ADFsd,t ADFsd ADFsd,t

1% −3.64 −4.32 −3.60 −4.32 −3.57 −4.19
5% −2.93 −3.60 −2.96 −3.61 −2.92 −3.55
10% −2.59 −3.24 −2.63 −3.26 −2.61 −3.24

Note: T denotes the available sample size (and not the regression length).
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