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Abstract

This paper presents a 2-regime SETAR model where the process
under examination is governed by a long-memory process in the first
regime and a short-memory process in the second regime. Persistence
properties are studied and methods for locating the threshold param-
eter are proposed. Such a process presents a useful application to fi-
nancial data and is applied to stock indices and individual asset prices.
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1 Introduction

The last twenty years have experienced an explosion of papers reporting two
key properties of the financial time series, namely the long-memory and non-
linear properties. Both are important and serve for purpose of forecastability
when the markets are not efficient. The long-memory approach enables the
study of the length of time it takes for a new information to be fully re-
flected in the prices of financial assets. Nonlinear analysis has proven to be
useful in providing new statistical tools when pockets of predictability do
exist. Recently, the potential of exploring these properties simultaneously
has emerged in papers that try to bring the two aspects together. Empirical
works have been done along two lines of research.

A first line of papers enhances a skeptic view. The long-memory property
uncovered in the financial data would reflect strong biases in presence of ne-
glected nonlinearities. Authors sharing this view argue that neglected switch-
ing dynamics or regime shifts imply spurious long-memory structures. Papers
that highlight such a confusion include Hidalgo and Robinson (1996), Lobato
and Savin (1997), Bos, Franses and Ooms (1999), Granger and Hyung (1999),
Diebold and Inoue (2001). Diebold and Inoue (2001) provide some Monte
Carlo results suggesting that spurious long-memory characterize many non-
linear models currently applied to economic data, among which the Markov
switching models. A consequence of this pessimistic view is that nonlinearity
and long-memory should be held jointly if one wants to be able to evaluate
their relative importance.

Accordingly, a second strand of the literature has recently proposed ”non-
linear long-memory” models. For instance, some authors provide a joint
evidence of mean reversion over long horizons and nonlinear dynamics on
exchange rate markets, by generalizing to the nonlinear framework the Bev-
eridge Nelson decomposition (see, Clarida and Taylor (2001), Sarno and
Taylor (2001)). Others propose new classes of long-memory models. For
instance, Franses and Paap (2002), Franses, Van der Leij and Paap (2002)
introduce CLEAR and Switching CLEAR processes, which show autocorre-
lation at high lags with an ACF that decays at a faster rate in the beginning
in comparison to the ACF of an ARFIMA model. Guégan (2000, 2003) in-
troduces the GIGARCH model which allies at the same time long-memory,
seasonality and heteroscedasticity effects, with application to inflation rates.
Fractionally integrated threshold models have also been proposed, that of-
fers another potential application to financial data (see van Dick, Franses
and Paap (2002)).



In this paper, we propose a 2-regime SETAR model with the following char-
acteristics: in the first regime, the dynamics is that of a long-memory process
(a fractional white noise) and in the second regime a white noise. One way
to motivate the use of such a model from the point of view of the financial
economics literature is as follows. As is known, the efficient market hypoth-
esis implies that unexpected price changes behave as independent random
draws. Doubts about the validity of the efficient market hypothesis are well
documented and the arguments against the efficiency are numerous. Au-
thors usually evoke some anomalies (such as week-end, January or firm size
effects), the presence of noise traders, the presence of heterogenous agents,
etc. Another attention-receiving factor of inefficiency is the imperfection of
financial markets, with the presence of transaction costs. Typically, in pres-
ence of market frictions, the arbitrage behaviors imply some asymmetries.
New information that induce mispricing errors are not arbitrated unless the
deviations of the returns from their fundamental value are large enough.
The presence of transaction costs implies infrequent tradings and prices are
driven back to their equilibrium value more or less rapidly depending upon
the magnitude of the deviations. It is today documented in the literature
that in such a context mispricing errors exhibit stepwise adjustments, since
they have to be large enough to offset the transaction costs. Such kind of
adjustments are well described by threshold models (see Martens, Kofman
and Vorst (1998), Dufrénot and Mignon (2002) and Dufrénot, Mignon and
Péguin-Feissolle (2003)). This suggests a complex picture of the markets
where situations of efficiency and inefficiency can alternate according to the
magnitude of the prices variations. Inefficiency implies that the mispricing
errors are not arbitrated. There thereby exists opportunities for positive
profits, which are reflect by the presence of significant correlation in prices
differentials. Here, we assume that strong correlations exist, that are a sign
of a long-memory dynamics. Conversely, efficiency implies that prices differ-
entials follow random draws (or, less strictly, a dynamics with a very short
memory).

The SETAR process (p:): that we consider is written as follows:

(2) (1)

(1 - B)lAp;,_, = egl), if Ap;; <c: regime 1
Apy_r =7, if Ap;_; > c: regime 2,

where d € (0,1/2) is a fractional difference parameter, agi),z’ = 1,2 are white
noises with finite variances, B is the backward shift operator, [ is an integer

that captures the delays needed before the agents react to price changes. 7
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is a lag integer. p; is an asset or index price at time ¢ and c is a threshold
parameter. When studying the memory properties of such a process, three
interesting questions are enhanced. Firstly, which memory - short or long
- is captured by the autocorrelation function and the spectrum? Secondly,
supposing that the threshold variable is known (here Ap;_;), how can we
estimate the threshold parameter ¢ that delimitates the two regimes in terms
of memory properties? Thirdly, how well is this SETAR model suited for the
modeling of individual assets and stock indices?

The objective of this paper is twofold: it is firstly to investigate the statis-
tical properties of the model (1), and secondly to provide some illustrative
applications on real data.

The plan of the paper is as follows. Section 2 briefly presents the memory
properties of the SETAR model including a long-memory regime. Monte
Carlo simulations are provided to confirm the theoretical arguments. In sec-
tion 3, we propose some methods for the location of the unknown parameter
c. Section 4 contains some empirical applications to financial data. Section
5 concludes the paper.

2 The model and its memory properties

We consider a process (X;); that satisfies the following scheme: V¢,

{ (1- B)X, = egl), if X;_1<c: regimel @)

X, = 5,52), if X; 1 >c: regime 2.

We make the following assumptions :

(Hp): the process (sgi))t,z’ = 1,2 is a sequence of i.i.d. random N (0, 1) vari-
ables.

(Hy): the long memory parameter d is such that 0 < d < 1/2. So, in regime
1, the process is invertible and stationary.

Now, we define the following indicator function:

1, X <c
(X1 <o) = { 0, otherwise. (3)
The SET AR process (X;); defined in (2) can be rewritten as: V¢,
X, =(1-B) %" L(X, 1 <)+ P [1 - L(X,1 <c)]. (4)

We have the following two lemmas (the proofs are straightforward):
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Lemma 1 Under the assumptions (Hy) and (Hy), the process (Xi): defined
by equation (4) is locally second-order stationary (within each regime) and
thus globally stationary. Its autocovariance function is :

(1 -2d)C(h+d)
) = T A= AT+ =)

It(Xt,1 S C) —+ [1 — It(Xt,1 S C)] s (5)

where T'(a) = [~ 2 ‘e "dz, a > 0.
Lemma 2 Under the assumptions (Hy) and (Hy), the process (Xi): defined
by equation (4) has a spectral density function given by

fx(w) = % |1 — e_i“’|_2d Li(Xi1 <c)+ % [1 — L(X; < C)] ) (6)

where w € [0, 7.

As it is seen from the above expressions, the autocovariance function and
the spectrum density depend upon the regime-shift variable. The ”mixture”
of a white noise process and of a fractional white noise process produces a
memory structure that is function of the distribution function of the variable
X;_1 across the two regimes at different dates. If regime 2 is more frequently
visited by the observations than regime 1, then this will imply some difficul-
ties to find a long-memory dynamics. In that case, the autocovariance and
spectrum will exhibit a shape resembling to that of a short-memory process.
In the opposite case, the autocovariance function and the spectrum exhibit
the usual properties of long-memory processes : a slow decay and high values
at frequencies near zero. The key parameter here is the threshold ¢, that de-
termines the distribution function of the observations across the two regimes.
Figure 1 shows different cases illustrating the memory properties of (2) for
different values of the parameter d and different partitions of observations
between the two regimes.

Asymptotically, the long-memory behavior dominates: the spectrum be-
comes infinite at the zero frequency and the autocovariance is not summable.
We therefore have the following lemma:

Lemma 3 Under the assumptions (Hy) and (Hy), the asymptotic expres-
sions of the autocovariance function and the spectral density function are
respectively:

vx(h) = %h%l +O0(1), as h— +x (7)



and
fx(w)=Cw™ 4+ 0(1), as w—0, (8)
where C' is a positive constant.

Although our concept of long-memory refers only to zero frequency, the above
approach could be extended to generalized long-memory processes.

A simulation study is carried out in order to explore the memory properties
of series that are generated according to equation (2). We examine the sam-
ple autocorrelation function and the periodogram. The simulation is set as
follows.

1. In a first step, two series (Xt(l))t and (Xt@))t are generated using the
following equations:

XV =(1-B)", XP =g, a@~NO21), t=1,..T. (9

For purpose of illustration, we report below the results for the two sam-
ple sizes T = 2000 and T = 10000. We choose different values of d :
0.05,0.1,0.2,0.3,0.4,0.49.

2. In a second step, we define a method to partition the observations
across the two regimes. An ideal way to proceed would be to derive the ana-
lytical expressions of the quantiles of the conditional distribution of a process
such as (2) and use it to separate the two regimes. However, such a derivation
is not immediate. Thus, we use the following alternatlve procedure Define
X%, X8, as the highest values of the series Xt ,t=1,2 and Xmm, eri)n
as their lowest values. Further, consider the interval

[a1, as] = [max {X(l-) x® }, min {XmaX,ergx}} :

min’ min

The values of ¢ are defined as percentages of the spread of this interval, that
is ¢ = (a1 —ag) k + ag, k = 10%, 20%, ...95%. When k& = 50%, we ap-
proximately have half of the observations within each regime. When k is
increased, the number of observations in regime 1 decreases. For instance, if
k = 90%, ¢ = 0.9a; + 0.1as; therefore, ¢, will be relatively low and a few
observations will belong to regime 1, following (2).

3. For a given ¢, we create a vector X; in which the observatlons are
stored as follows. The first observation X; is chosen randomly from X, M) and

6



X1(2). The second observation is defined as X, = Xél), if X; < ¢, and as
Xo = X2(2), if X7 > ¢;. The next observations of X; are defined similarly.

4. We estimate the values of the long-memory parameter for the processes
(X¢)es (Xt(l))t, (Xt@))t using the Geweke and Porter-Hudak (1983) estimator,
the Robinson (1994) Gaussian semiparametric estimator and the Lobato and
Robinson (1996) average periodogram estimator.

5. The above steps are repeated S times (S = 100, 500, 1000) and we
draw the empirical distribution of the different estimators using an Epachenikov
kernel. Finally, we report the value of the long-memory parameter corre-
sponding to the mode of the distribution.

In tables 1 and 2 (to avoid too many tables, we report a selection of our
results; other results are available upon request), we give the results of the
estimations obtained for d. In these tables, we distinguish the results with
respect to the percentage of the points inside the first regime. In table 1, the
results are obtained using a sample size of 7" = 10000 and S = 500 replica-
tions, and in table 2, we use T' = 2000 and S = 100.

The values of the estimated parameter d given in the tables are very sugges-
tive. The mixture of the two regimes implies that, very often, the parameter
d estimated using the whole process (X;); is lower than the parameter used
to simulate the data in the first regime. For a given d, the fractional white
noise regime is detected, only if they are ”enough” data in the first regime
(here for instance this regime is more easily detected when k = 0.75 than
when k& = 0.25). So, the important point is the percentage of observations in
one regime in comparison to the other. Also, it is seen that the smaller the
value of the long-memory parameter, the more predominant the white noise
regime.

3 Locating the threshold parameter

3.1 General methodology

In practice, the parameter ¢ is unknown. This parameter plays a crucial
role in determining the way the observations are distributed across the two
regimes. Different approaches are used in this paper. One is nonparametric
and based on the properties of the spectral density function. The others are
parametric and based on the minimization of the sum of squared residuals or



on the t—statistics of the estimation of d. We use Monte Carlo procedures
to examine the location problem of the parameter c. In the sequel, we shall
assume that the threshold variable is known.

Consider a time series (X;); and assume that X; ; is the threshold variable.
Denote ()Z't)t the arranged time series according to the decreasing values of
X;_1. Finding the threshold parameter ¢ on the process (Xt)t rather than
on the process (X;); allows us to consider the SET AR model as a change-
point problem. The beginning observations of the process ()?t)t are in the
white noise regime, while the last observations are in the fractional white
noise regime because the values of X; ; are ranked in a decreasing order.
The unknown parameter ¢ delimitates the two regimes, somewhere in the
'middle’ - not necessarily the half - of the vector (X;);. All the methods
described in the next section rely upon procedures that amount to study a
succession of ”local” - short and long - memory structures. One begins with a
window of observations with a given length, that controls the initial number
of observations. The latter are used to compute different indicators of long-
memory (these can be estimates for the parameter d, test ratios using the
spectral estimates, the Hurst statistic, ...). A fixed number of observations
is then added to the initial vector and the indicators are recomputed, and so
on. Since the initial observations in (X;); are in the white noise regime and
the last observations are in the fractional white noise regime, one expects to
detect a modification in the degree of persistence of the time series where
new observations are added to the series. Ideally, we would expect to find a
breakpoint indicating the threshold value at which the persistence structure
in the memory changes. In practice, we face two problems. The first one is
classical to all SET AR processes, in the sense that the transition from one
regime to another is continuous. A standard approach to overcome this diffi-
culty is to argue that the threshold that is detected is solely an indication of
a region where a partition occurs. One accordingly needs to try several val-
ues and compare the estimated models using different criteria (for instance,
some information criteria, tests based on forecasts,...). The second problem
is more specific to the type of SET AR process considered here and will be
discussed in more detail. Indeed, in regard to the results of the simulation in
section 2, the finding of a long-memory structure in a vector of observations
that consists of observations that are a mixture of - short and long - memory
processes, requires that the long-memory regime contains enough observa-
tions. The implication here is that the number of observations for which a
threshold is detected, necessarily overestimates the number of observations
corresponding to the true - but unknown - threshold parameter. Clearly,



such an overestimate implies a bias in the value of ¢, which can be either
positive or negative. The sign of the bias can be determined via Monte Carlo
experiments (see the next sections).

3.2 An approach based on spectral estimates

When the observations are in regime 1, the spectral density tends to infinity
for frequencies near 0, while this is not the case for the white noise regime.
We can use this property as an indication of the degree of memory in the
data. The procedures works as follows.

1.- Choose an initial number of points ¢; in ()}t)t and a finite number
of frequencies near 0, denoted wy, - -+ ,w,, where n is a small integer (in our
case n = 10). Evaluate the sample version of the spectral density function
at these frequencies and compute their mean

Fulw) = 3 () (10)

2.- Repeat step 1, by augmenting the number of initial observations, while
fixing the number of frequencies to n. One obtains a sequence f;, (w), fi,(w),

3.- Draw a scatterplot of this sequence versus ty, ts, .... The presence
of a SET AR model likewise equation (2) must be indicated by an inverse
L curve, with a graph which is flat while the observations are in the white
noise regime and a seemingly vertical line when one enters in the fractional
white noise regime.

4. To locate the set of observations for which a changing dynamics - in
terms of persistence - exists, one needs to implement a test. Here, we apply
the Lobato and Robinson (1998)’s procedure using the n spectral densities
estimated at step 2. For a given t;, the statistic used is

Z?:l v; 1 (wj)

LR = =S )

, where v;=logj—n"" Zj; (11)
j=1

I(wj) is an estimation of the periodogram associated to the process (X,):.
This statistic is distributed as N(0,1) variate. One thus has a sequence of
statistics LR;,, LRy,, ....



5. Select the observation of the vector X, that corresponds to the first
statistic - in the sequence LR;,, LR;,, ... - with a significance level less than
a given nominal size (generally 5% or 10%). Note that ¢, the threshold value,
is a biased estimate of the true value ¢, due to the number of ”excess” ob-
servations needed to detect the long-memory regime.

To obtain an estimate of the excess number of observations, one need to draw
simulations. This is done by repeating steps 1-5, .S times (S = 100, 500, 1000).
Here, we show the results for S = 100. Using one thousand replications in-
stead of one hundred yields similar results, but it is computationally more
time consuming in the second case.

Figure 2 shows an example of the scatterplot of the sequence of the mean
spectrum computed as indicated in steps 1- 2. The vector containing a mix-
ture of the two regimes is constructed in a similar way as indicated in section
2. We consider different values of the parameter d to simulate the process
(Xt)gl) which contains the fractional white noise observations. The inverse L
curve is very suggestive on the graph.

In table 3, the column labeled (7) indicates the values of the overestimate of
the true number of observations in the white noise regime and the implication
on the bias of ¢. The numbers in the table are the modes of the empirical
distribution over 100 replications. The results suggest that, in general, the
presence of a long-memory regime is detected when there are twice more
observations than the number of effective observations in regime 2. And it
is seen that this induces a negative bias on c. Consequently, in empirical
applications, the location of a threshold point ¢ can serve as a benchmark
below which the true value ¢ has to be searched. In practice, one first locates a
value ¢, then estimates different models with ¢ < ¢ and finally retains the best
model according to different criteria : RMSFE, forecasting performance,...
The choice of the different values for ¢ approximately corresponds to regions
where the arranged vector of observations contains half less observations than
the number of observations corresponding to the located value ¢.

3.3 A grid search method

Let [¢, €] be the interval of plausible threshold values and consider ()?t)t the
time series of ordered observations defined above. Define the set of threshold
candidates as

{c, c@y - ews - rem ) Cled,
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with c(x41) — ¢y = A. The choice of A\ depends upon the trade-off between
computation time and expected precision. In practice, the candidates are
chosen as the percentiles of the distribution function associated to the pro-
cess (X¢);. The grid search approach consists of the following steps.

1.- Partition the observations in (Xt)t according to ¢(y), in order to obtain
two series (Xt(l))t and (Xt(2))t.

2.- Estimate d) and d® the long-memory parameters of the two series
and compute the sum of squares residuals SSR(;) of the model: V,

(1— B)‘i(l))?t(l) =z regime 1
i2 @) A2 : (12)
(1-B)*"X,” =%, regime 2.
3.- Repeat steps 1-2 using cp), c@3), -+, cm). Let SSR), SSRs3),

..., SS R, the corresponding sum of the squares residuals.

4.- Finally, retain the lowest sum of squares residuals. Denote ¢ the value
of ¢ corresponding to this sum.

Similarly to the approach based on spectral estimates, one may try to eval-
uate the performance of the grid method by drawing the distribution of the
bias via Monte Carlo simulations. Figures (3a) to (3d) show the distribution
of the bias (¢—c¢) for a sample length 7" = 500 and S = 100 replications of the
method. The initial vector of observations (X;); is generated using different
values of d. For purpose of illustration, we have selected here two cases cor-
responding to d = 0.49 and d = 0.10. We use two estimators : the GPH and
the Robinson semiparametric estimators. As it is seen, the distributions are
bimodal, thereby showing both positive and negative biases of the parameter
c. The simulations showed that a positive bias was a consequence of an un-
derestimate of the number of observations in regime 2, while a negative bias
was induced by an overestimate. However, a positive bias indicates a spu-
rious changing memory structure. Indeed, detecting a threshold value when
the number of observations in regime 2 is less than the true number of ob-
servations, would mean that one finds a long-memory structure in the white
noise regime! Consequently, the bias must necessarily be negative. The de-
tection of a spurious changing memory structure can be explained as follows.
In the white noise regime (regime 2), we occasionally found estimates of the
long-memory parameter that were negative and statistically significant. As
one knows, it is an open problem as whether the distinction between a white
noise process and a long-memory process with anti-persistence property is
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possible. Sample estimates of their density functions exhibit a similar shape.
In our case, when the parameter d® is negative, this increases the squares

2
residuals > <€§1)> and it is possible to find values of the sum of squares

residuals that are minimized at some threshold point ¢ > c.

Using the sum of squares residuals as a criterion for selecting the threshold
values from the grid search method is thus inadequate and this is also true
for criteria such as AIC, BIC or the variance.

3.4 Locating change-points in the t-ratios

We consider the time series ()?t)t of arranged observations according to the
decreasing values of X;_;. The change-point problem using the t-ratio of the
long-memory parameter is formulated as follows.

1. One considers a set of s; initial observations of ()Aft)t and estimates
the long-memory parameter and the corresponding ¢ — ratio, ts,.

2. The vector (X}); is incremented in such a way to contain ss, s3, ..., Sy
observations and new t — ratios are computed: tg,, ts,,... , ts,-

3. Consider the set of estimated t-ratios {ts,,ts,,tss, .-, ts, }. One tests
the presence of a structural break ¢ in the view of finding a sequence of t-
ratios such that, for ¢, < t, the estimated long-memory parameters are not
statistically significant, while, for ¢;, > t, they are significant.

A simple way to implement step 3 is to use a standard Chow test. The series
of t-ratios is regressed on a linear time trend, using incremented dummy
variables: for k =1,2,... ,n

ts,, = (a+0Dy) + (c+ dDy)t + uy, (13)

with u; ~ iid and

p /1L ift<t
P71 0, otherwise

and we test the null hypothesis Hy : b = d = 0 against H; : b # 0 or d # 0.

The constant term is omitted if we want to test changes only in the slope.
The test is implemented by considering different values of ¢ and retaining
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finally the value yielding the lowest p-value.

To evaluate the adequacy of such a method for the delimitation of the two
regimes, we conduct Monte Carlo simulations on series of length 7" = 500
with S = 100 replications. The original series (X}); is generated according
to equation (2) for different values of the parameter d. We show, in table
3, a selection of results (other results are available upon request to authors).
More precisely, we distinguish between three cases:

(i) a # 0 and b # 0, i.e. we consider (13) and Hy : b = d = 0 against
Hy:b#0ord#0;

(ii) a # 0 and b = 0, i.e.
ts,, = a+ (c+dDy)t + uy (14)

and Hy : d = 0 against H; : d # 0;
(iii) a =0 and b = 0, i.e.

ts = (C + th)t -+ Uy (15)

kt

and Hy : d = 0 against H; : d # 0.

Table 3 reports the mode of the empirical distribution of this difference over
100 replications of the tests, along with the percentage of excess observations
needed in regime 2 to detect a changing dynamic in the memory behavior of
the time series (see the columns labeled (1)-(2)-(3)). The result are similar
to those of the spectral approach, in the sense that an overestimate of the
number of observations in regime 2 induces a negative bias on the estimate
of the parameter c¢. Consequently, similar recommendations concerning the
empirical applications apply here. A difference is, however, that the overes-
timate of the true number of observations is less important in comparison to
the approach based on spectral estimation. Figures (4a) to (4f) show exam-
ples of the distribution of the difference (¢ — ¢) for d = 0.40.

Instead of using the Chow test, one can also compute the sum of squares
residuals corresponding to equations (13), (14) or (15), and select the ¢-ratio
(and thus the threshold value) yielding the lowest sum. We consider the same
three cases as before; the results are shown in table 3, in the columns labeled
(4), (5) and (6). Clearly, the true value is again underestimate, but it is seen
that in some cases (in particular in the case (iii): a = b = 0) the bias is very
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low. Figure (5a) to (5f) shows an example of the sample distribution of the
bias for d = 0.49.

4 Empirical applications

We consider different asset prices and five stock indices. The data are daily
and run from 1997 to 2003. The names of the companies and indices are
listed in table 4.

It is a well documented stylized fact that there is little serial correlation in
the levels of returns, when the latter are computed by considering changes
between two consecutive prices. Also, a recent result by Granger (2002),
that contradicts many conclusions obtained henceforth in the literature, sug-
gests that absolute returns and squared returns cannot have long-memory
properties of the ARFIM A type. Consequently, it seems difficult to apply
our SETAR model to measures of returns and volatility that are usually
considered in the literature. For both the standard logarithmic returns and
volatility measures (absolute or squared returns), the presence of regime 1 is
excluded. Other measures of returns are, however, capable of producing the
dynamics inherent to equation (2). Remembering the arguments concerning
the implications of the presence of transaction costs on financial markets (see
the introduction), the horizons of intervention on the markets are likely not
to be daily. Rather, we can imagine, for instance, that the positions are
periodically revised at the end of a trading week. We accordingly consider
the following measure of the returns:

log(p) — 'log(ptfj)

Riyj = ;

, 0<j<t, (16)

where p, is the stock price or index at time ¢t and 7 = 1,2,3,.... On daily
prices quotes, [?;;_; is the logarithmic return between days ¢ and ¢ — j. The
longer the period separating two prices, the more likely the no-arbitrage con-
dition not to hold (because prices changes at time ¢ implies delayed reactions
from the agents) and the higher the likelihood to find a long-memory struc-
ture in the data.

In table 5, we report the estimated values of d for different j for all the se-
ries presented in table 4. Clearly, for j = 1, the long-memory hypothesis is
rejected, while it is generally accepted for 7 > 1. The degree of persistence
increases with the value of j. For 7 > 4, the estimated values of d were higher
than 0.5, thereby signaling a nonstationary dynamics in the returns. Instead
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of considering all the values of j to apply our SETAR model, we stick to one
case (j = 3) chosen for purpose of illustration.

Table 6 contains the estimates of the parameters d; and dy corresponding to
regimes 1 and 2, using the procedures exposed in the preceding section. A
long memory behavior in one regime is found for a majority of series. We ob-
serve that the nonparametric approach yields estimates of the long-memory
parameter d; that are close to those of the parametric methods for half of
the series. When the results are different, the spectral approach often yields
values of d; that are higher. This can indicate an overestimate of the true
parameter (although we tried more than 50 models by considering different
values of the threshold below the ”breakpoint” indicated on the graph of the
mean spectrum). Differences in the estimations between the parametric and
nonparametric approaches come from the number of observations detected
within each regime.

For purpose of comparison, we use in-sample observations to compare the
forecastability performance of the different models. In this view, we use
a battery of tests based on loss functions: the asymptotic test, the sign
tests, then Wilcoxon’s test, the Naive benchmark test, The Morgan-Granger-
Newbold test and the Meese Rogoff test (all these tests are summarized in
Diebold and Mariano (1995)). We compare the model based on the spec-
tral approach and the model based on the parametric method (the model
with the lowest RMSE). The p-values in table 7 clearly indicate that the
null hypothesis of equal accuracy of both models is strongly rejected. The
last column gives the number of times the model based on the parametric
approach outperforms the model estimated using the spectral approach. For
some series the parametric model is more performing, while for other series
the spectral based approach dominates.

5 Conclusion

This paper has proposed a new model to investigate the long-memory dy-
namics of time series that contains a mixture of long-memory and white noise
structures. An important question concerns the global behavior of a model
such as (2). We want to use it to detect existence of long memory behavior
and its shift between the two regimes. We observe, by simulations, that the
shift from global short memory behavior to global long memory behavior for
such a model depends strongly upon the threshold ¢ or from the percent-
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age of observed points inside one regime or another. It will be interesting
to understand deeper this phenomena which is probably the key for a good
identification of these models. This will do in another paper. To pick up the
part of the long-memory in the data, we suggest both nonparametric and
parametric methods in order to locate the threshold parameter. We show
that the methods fit the data well, when the returns are computed by con-
sidering the presence of a delay between price changes.

Other further research topics are the following. Firstly, one can conjecture
that the model suggested here, can be extended to the case where regime 1 is
described by an ARF'I M A model and regime 2 by a stationary ARM A model
or by a mixing process. Such a question is interesting since an ARFIMA pro-
cess is not mixing (see Guégan and Ladoucette (2001)). Secondly, the model
can be applied to time series other than returns. Variables based on technical
trading rules can be suggested (for instance, a variable constructed from a
short-run moving average and a long-run moving average) in order to cap-
ture asymmetric dynamics in the memory structure. Thirdly, the SET AR
model with long-memory behavior can be studied under the assumption of
heteroskedastic errors in order to incorporate the influence of volatility of the
long-memory structure. Finally, the identification and forecasting problems
are not examined here, but it would be interesting to compare this model to
others producing persistent dynamics, such as switching processes and the
class of all long-memory models.
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Table 1: Estimation of the long memory parameter d using three
methods, with 7" = 10000, .S = 500, with respect to the percentage of
points in regime 1, for the process (4) (T-ratios in parentheses)

value of d % obs. integ. 1 | % obs. inreg. 1 | % obs. in reg. 1
5% 50% 25%
GPH d | 0.0628 (0.91) 0.0431 (0.65) | -0.0088 (-0.13)
0.05 dy | 0.0480 (0.67) 0.0244 (0.29) 0.0586 (0.32)
dy | 0.0467 (0.26) | -0.0065 (0.07) | 0.0118 (0.16)
d | 0.3062 (4.57) 0.2551 (3.83) 0.0149 (0.22)
0.30 dy | 0.2818 (4.04) 0.3125 (3.88) 0.1915 (1.10)
dy | 0.0182 (0.11) | -0.0055 (-0.00) | 0.0078 (0.10)
Semiparametric d | 0.0452 (3.60) 0.0152 (1.21) 0.0048 (0.38)
0.05 diy | 0.0452 (3.53) 0.0354 (2.18) 0.0192 (0.54)
dy | 0.0040 (0.07) | -0.0046 (-0.25) | 0.0040 (0.35)
d | 0.2849 (22.68) | 0.1956 (15.57) | 0.0054 (0.43)
0.30 dy | 0.2853 (22.30) | 0.2746 (16.61) | 0.1755 (3.16)
dy | -0.0094 (-0.27) | 0.0043 (0.29) 0.0040 (0.33)
average periodogram d | 0.0515 (0.03) 0.0366 (0.02) 0.0227 (0.00)
0.05 dy | 0.0473 (0.01) 0.0087 (0.00) | -0.0059 (-0.08)
dy | 0.0448 (0.06) 0.0178 (0.03) 0.0082 (0.01)
d | 0.2791 (1.03) 0.2353 (0.23) 0.0094 (0.00)
0.30 dy | 0.2779 (1.01) 0.2683 (0.20) 0.1862 (0.08)
dy | 0.0559 (0.06) 0.0247 (0.03) | -0.0056 (-0.02)
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Table 2: Estimation of the long memory parameter d using three
methods, with 7" = 2000, .5 = 100, with respect to the percentage of
points in regime 1, for the process (4) (T-ratios in parentheses)

value of d % obs. integ. 1 | % obs. inreg. 1 | % obs. in reg. 1
5% 50% 25%

GPH d | 0.0405 (1.26) 0.0210 (0.65) 0.0027 (0.08)

0.05 di | 0.0491 (1.48) 0.0155 (0.36) | -0.0002 (-0.00)

d> | 0.0035 (0.02) 0.0012 (0.02) | -0.0048 (-0.14)

d | 0.1825 (5.75) 0.1152 (3.65) 0.0306 (0.96)

0.20 | dy | 0.1851 (5.58) | 0.1427 (3.35) | 0.1226 (1.01)

dy | -0.0098 (-0.09) | -0.0010 (-0.02) | 0.0079 (0.24)

d | 0.3538 (11.05) | 0.3032 (9.50) 0.0758 (2.37)

0.40 di | 0.3859 (11.50) | 0.3452 (8.40) 0.3308 (3.01)

dy | 0.0118 (0.12) 0.0121 (0.27) 0.0096 (0.29)

d | 0.4547 (14.19) | 0.4097 (12.92) | 0.1238 (3.97)

0.49 di | 0.4557 (13.71) | 0.4595 (11.34) | 0.4391 (5.15)

dy | 0.0150 (0.16) | -0.0058 (-0.13) | 0.0050 (0.15)

Semiparametric d | 0.0449 (1.88) 0.0245 (1.02) | -0.0010 (-0.04)

0.05 dy | 0.0345 (1.41) 0.0207 (0.80) 0.0072 (0.13)

dy | -0.0138 (-0.02) | -0.0015 (-0.08) | -0.0008 (-0.05)

d | 0.1853 (7.74) 0.1150 (4.80) 0.0215 (0.89)

0.20 di | 0.1849 (7.57) 0.1492 (4.86) 0.0420 (0.53)

dy | -0.0247 (-0.04) | -0.0043 (-0.02) | 0.0003 (0.00)

d | 0.3443 (14.39) | 0.3055 (12.77) | 0.0787 (3.29)

0.40 dy | 0.3795 (14.96) | 0.3461 (11.29) | 0.3121 (4.39)

dy | -0.0044 (-0.19) | 0.0092 (0.29) 0.0108 (0.43)

d | 0.4451 (18.61) | 0.4163 (17.40) | 0.1147 (4.79)

0.49 dy | 0.4642 (18.84) | 0.4496 (15.04) | 0.4225 (6.39)

dy | -0.0088 (-0.08) | 0.0077 (0.20) 0.0111 (0.44)

average periodogram d | 0.0426 (0.04) 0.0208 (0.01) 0.0105 (0.01)

0.05 di | 0.0446 (0.03) 0.0223 (0.01) 0.0527 (0.05)

dy | -0.0493 (-0.02) | 0.0049 (0.00) 0.0098 (0.00)

d | 0.1653 (0.22) 0.1224 (0.15) 0.0292 (0.02)

0.20 di | 0.1825 (0.27) 0.1309 (0.15) 0.0718 (0.06)

dy | 0.0104 (0.01) 0.0125 (0.01) 0.0124 (0.00)

d | 0.3257 (1.05) 0.2815 (0.75) 0.0751 (0.08)

0.40 dy | 0.3399 (1.09) 0.3209 (1.02) 0.2815 (0.19)

dy | -0.0345 (-0.00) | -0.0097 (-0.01) | 0.0002 (0.00)

d | 0.3872 (1.59) 0.3678 (1.20) 0.1433 (0.15)

0.49 di | 0.4036 (1.81) 0.3763 (1.56) 0.3327 (1.09)

dy | -0.0125 (-0.01) | 0.0217 (0.02) 0.0001 (0.00)
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Table 3: Percentage of excess observations in regime 2 for the
process (4) and estimated bias ¢ — ¢ (for the threshold) by GPH
method, when 7' = 500 and S = 100

d mode (1) (2) (3) 4 (50 (6) (7)
0.49 c—c -026 -0.18 -0.22 -0.10 -0.24 -0.16 -1.05
% excess 17 15 23 12 17 16 47

0.40 c—c -024 -010 -0.14 -0.11 -0.18 -0.18 -1.52
% excess 19 23 16 13 19 20 52

0.20 c—c 020 -0.14 -0.10 0.09 -0.03 0.02 -0.51

% excess 16 18 11 1 24 9 52
0.10 c—c -013 -023 011 019 -022 010 -0.2
% excess 12 16 5 -1 15 7 53
0.05 c—c¢ -0.03 -0.11 020 -0.14 -0.01 0.18 -0.15
% excess 10 15 13 14 12 5 48

Note: The different methods are:
* Locating change-points in the t-ratios by using Chow test on
(1) ts,, = (@ +bDy) + (¢ + dDy)t + uy
(2) ts,, = a+ (c+dDy)t +uy
(3) ts,, = (c+dDp)t +
* Locating change-points in the t-ratios by minimizing the sum of squared residuals:
(4) ts,, = (@ +bDy) + (¢ + dDy)t + uy
(5) ts,, = a+ (c+dDp)t +uy
(6) ts,, = (c+dDp)t +

* (7) Spectral estimation.
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Table 4: Names of companies and indices with the period of

estimation

N | Companies or indices |

period

© 00 N O U = W N

e e
w N = O

Bnp
Carrefour
Loreal

St Gobain
Total FinaElf
Vivendi
France Télécom
Lvmh

Ftse

Cac40

Sbf

Nasdaq 100

Dow Jones

02/01,/98-23/04/03
02/01,/98-23/04/03
02/01,/98-23/04/03
02/01,/98-23/04/03
02/01,/98-23/04/03
02/01,/98-23/04/03
20,/10/97-23/04/03
02/01,/98-23/04/03
02/01,/98-23/04/03
01,/05,/98-23/04/03
02/01,/98-23/04/03
02/01,/98-23/04/03
02/01,/98-23/04/03
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Table 5: Estimation of d for different ; using GPH estimator

(the t-ratios are in parentheses), for prices and stocks

FRANCETEL BNP LVMH
j=1 -0.0068 (-0.16) j=1 -0.0548 (-1.54) j=1 00210 (0.55)
j=2 00612 (1.61) j=2 00070 (0.19) j=2 01049 (2.52)
j=3 02073 (5.37) j=3 01495 (3.82) j=3 02349 (5.82)
j=4 04805 (10.43) j=4 04320 (9.47) j=4 05028 (10.27)
CARREFOUR LOREAL ST GOBAIN
j=1 -00510 (-1.36) j=1 -01341 (-3.58) j=1 -0.0620 (-0.48)
j=2 0.0330 (0.80) j=2 -0.0706 (-1.73) j=2 00660 (1.77)
j=3 01294 (3.35) j=3 00595 (1.49) j=3 02054 (5.48)
j=4 03981 (8.46) j=4 03587 (7.08) j=4 05025 (10.38)
TOTAL VIVENDI FTSE
j=1 -0.1308 (-3.51) j=1 -0.0197 (-0.53) j=1 -0.0874 (-2.21)
j=2 -0.0490 (-1.24) j=2 00617 (1.44) j=2 -0.0341 (-0.88)
j=3 00567 (1.54) j=3 01903 (4.75) j=3 01026 (2.69)
j=4 03260 (7.06) j=4 04628 (9.30) j=4 03587 (7.84)
CAC40 SBF NASDAQ
j=1 -0.0670 (-1.68) j=1 -0.0419 (-0.94) j=1 -0.0524 (-1.39)
j=2 0.0009 (0.02) j=2 00145 (0.35) j=2 00229 (0.60)
j=3 01338 (3.25) j=3 01494 (3.46) j=3 01649 (4.08)
j=4 04265 (8.40) j=4 04139 (8.30) j=4 04348  (9.45)

DOWJONES
j=1 -0.0013 (-0.40)
j=2 00814 (2.13)
j=3 02057 (5.47)
j=4 04779 (10.03)
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Table 6: Application to stock indices and asset prices for j=3
with different methods: (1) Locating change-points in the ¢-ratios
using Chow test, (2) Locating change-points in the ¢-ratios mini-
mizing the sum of squared residuals, (3) Spectral estimation

FRANCETEL
T—1390  min—-0.1220  max—0.1110
= 0 0 B) ) @)
GPH SEMLPAR | GPH SEMILPAR | GPH
¢lo0210 00211 |00200 00108 |0.0182
ny | 1190 1193 1190 990 1135
dy | 016 0.16 0.16 0.16 0.09
tstat | (444)  (5.44) | (444)  (5.04) | (2.99)
ny | 200 197 200 400 255
dy | -0.04 0.02 20.04 20.01 0.07
tstat | ((0.53)  (0.32) | (10.53)  (-0.21) | (1.24)
BNP
T—1339  min—00829  max—0.0625
=0 0 @ ) B
GPH SEMI-PAR | GPH SEMIL-PAR | GPH
¢l 00066 00123 |00066 00097 |-0.0157
ny | 917 1110 917 1033 162
dy | 010 0.11 0.10 0.12 0.12
tstat | (249)  (3.63) | (249)  (3.84) (1.81)
ny | 422 229 422 306 1177
dy | 0.09 0.00 0.09 0.08 0.01
tstat | (1.62)  (0.00) | (1.62)  (1.57) (0.33)
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LVMH

T=1340 min=-0.0811 max=0.0720
=] O (1) @) @) ®)
GPH SEMI-PAR | GPH SEMI-PAR | GPH
¢ | 0.0220 0.0244 0.0220 0.0207 -0.0200
ny | 1230 1255 1230 1213 108
c/i\l 0.13 0.14 0.13 0.13 0.32
t-stat | (3.27) (4.85) (3.27) (4.45) (4.09)
No 110 85 110 127 1232
C/l\g 0.07 0.06 0.07 0.07 0.00
t-stat | (0.61) (0.69) (0.61) (0.96) (0.00)
CARREFOUR
T=1339 min=-0.0710 max=0.0734
=] O ) @ @) ®)
GPH SEMI-PAR | GPH SEMI-PAR | GPH
¢ | 0.0112 0.0152 0.0112 0.0152 -0.0242
nq 1114 1203 1114 1203 43
671 0.09 0.08 0.09 0.08 0.45
t-stat | (2.23) (2.72) (2.23) (2.72) (3.81)
o 225 136 225 136 1296
C/Z\Q -0.10 -0.04 -0.10 -0.04 -0.02
t-stat | (-1.10) (-0.56) (-1.10) (-0.56) (0.69)
LOREAL
T=1340 min=-0.0555 max=0.0656
=] ) @ @) ®)
GPH SEMI-PAR | GPH SEMI-PAR | GPH
¢ | 0.0031 -0.0005 0.0031 -0.0005 0.0165
nq 815 637 815 637 1200
C/l\l 0.04 0.01 0.04 0.01 0.06
t-stat | (0.91) (0.26) (0.91) (0.26) (2.04)
o 525 703 525 703 140
C/l\g 0.03 0.04 0.03 0.04 0.09
t-stat | (0.67) (1.09) (0.67) (1.09) (1.23)
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ST GOBAIN

T—1340  min—0.0938  max—0.0531
=] W 0 ) ) &)
GPH SEMLPAR | GPH SEMIPAR | GPH
¢l -00076 00153 |-00076 00113 | -0.0027
ny | 352 1176 352 1093 527
d | 017 0.19 0.17 0.17 0.08
tstat | (2.29)  (6.41) | (229)  (5.57) | (1.95)
ny | 988 164 988 247 813
dy | 008 0.01 0.08 -0.03 0.04
tstat | (191)  (0.15) | (1.91)  (0.54) | (1.15)
TOTAL
T—1340  min—0.0588  max—0.0469
=] W 0 ) ) )
GPH SEMLPAR | GPH SEMIPAR | GPH
¢l -00019 00054 |-0.0019 00054 | -0.0017
ny | 570 912 570 912 573
dy | 009 0.03 0.09 0.03 0.07
tstat | (158)  (0.91) | (158)  (0.91) | (1.76)
ny | 770 428 770 428 767
dy | 001 -0.06 0.01 -0.06 -0.01
tstat | (0.24)  (-1.35) | (024)  (-1.35) | (-0.28)
VIVENDI
T—1338  min—0.1787  max—0.1116
[N Y 0 ©) ) )
GPH SEMLPAR | GPH SEMILPAR | GPH
¢ 00037 00062 |-00037 00025 | -0.0005
ny | 571 914 571 788 670
d, | 006 0.08 0.06 0.09 0.09
tstat | (1.22)  (244) | (1.22)  (258) | (2.42)
ny | 767 424 767 550 668
dy | 0.04 0.03 0.04 -0.01 0.04
tstat | (0.95)  (0.67) | (095)  (-0.24) | (1.06)
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FTSE

T—1338  min—00359  max—0.0414
=0 0 ) ) B
GPH SEMILPAR | GPH SEMILPAR | GPH
¢ | 00007  -0.0004 |0.0007 -0.0004 |-0.0119
n, | 730 640 730 640 84
d, | 002 0.03 0.02 0.03 0.23
tstat | (0.64)  (0.79) | (0.64)  (0.79) | (2.64)
ny | 608 698 608 698 1254
dy | 002 20.02 0.02 -0.02 0.00
tstat | (0.52)  (-0.54) | (052)  (-0.54) | (0.00)
CAC40
T=1339  min—0.0449  max—0.0547
=1 0 0 ) B B
GPH SEMLPAR | GPH SEMIPAR | GPH
¢ |-00000 00137 |-00009 00137 | 0.0066
n, | 603 1243 603 1243 1026
d, | 010 0.12 0.10 0.12 0.06
tostat | (1.85) (4.14) (1.85)  (414) | (1.91)
ny | 736 96 736 96 313
dy | -0.03 2010 -0.03 -0.10 0.06
tstat | (0.59)  (-1.23) | (-0.59)  (-1.23) | (1.16)
SBF
T—1340  min—0.0401  max—0.0504
= 0 0 @ ) B
GPH SEMIPAR | GPH SEMI-PAR | GPH
¢ |00055 00053 |0.0055 0.00539 | 0.0002
n; | 980 971 980 971 676
dy | 0.09 0.11 0.09 0.11 0.10
tstat | (2.28)  (344) | (228)  (344) | (2.69)
ny | 360 369 360 369 664
dy | 001 -0.06 0.01 -0.06 -0.05
tstat | (0.16)  (-1.27) | (0.16)  (-1.27) | (-1.32)
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NASDAQ

T=1331 min=-0.0661 max=0.0562
=] 1) @) @) ®)
GPH SEMI-PAR | GPH SEMI-PAR | GPH
c 0.0047 0.0209 0.0047 0.0209 0.0072
nq 798 1232 798 1232 882
c/i\l 0.05 0.13 0.05 0.13 0.08
t-stat | (1.11) (4.47) (1.11) (14.47) (2.40)
No 533 99 533 99 449
C/l\g 0.00 0.00 0.00 0.00 0.06
t-stat | (0.05) (0.00) (0.05) (0.0000) (1.37)
DOWJONES
T=1331 min=-0.0409 max=0.0304
= | O ) @) @) ®)
GPH SEMI-PAR | GPH SEMI-PAR | GPH
c 0.0052 -0.0079 0.0052 -0.0079 -0.0072
nq 1037 171 1037 171 191
c/i\l 0.12 0.18 0.12 0.18 0.15
t-stat | (3.00) (2.81) (3.00) (2.81) (2.41)
o 294 1160 294 1160 1140
C/l\g 0.02 0.08 0.02 0.08 0.00
t-stat | (0.33) (2.68) (0.33) (2.68) (0.00)
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Table 7: Tests for comparing predictive accuracy - p-values

AS SI WI NB MGN MR n
FRANCETEL 0.000 0.000 0.000 0.181 0.000 0.000 1.24

BNP 0.020 0.000 0.007 0.365 0.004 0.035 1.01
LVMH 0.241 0.286 0.000 0.328 0.064 0.162 1.31
CARREFOUR 0.686 0.547 0.000 0.435 0.507 0.596 1.30
LOREAL 0.000 0.000 0.000 0.265 0.000 0.000 0.72
STGOBAIN 0.075 0.000 0.324 0.356 0.005 0.030 1.10
TOTAL 0.000 0.000 0.000 0.090 0.000 0.000 0.46
VIVENDI 0.001 0.000 0.000 0.467 0.028 0.055 0.67
FTSE 0.000 0.000 0.000 0.027 0.000 0.000 0.23
CAC40 0.000 0.000 0.000 0.203 0.000 0.000 1.49
SBF 0.000 0.000 0.062 0.448 0.000 0.009 1.49
NASDAQ 0.000 0.227 0.000 0.268 0.000 0.001 1.26

DOWJONES 0.530 0.000 0.000 0.475 0.407 0.478 1.06

Note: The different columns are: AS: Asymptotic test, SI: Sign test, WI: Wilcoxon’s
test, NB: Naive benchmark test, MGN: Morgan-Granger-Newbold’s test, MR: Meese-
Rogoff’s test, n: number of times where the residuals coming from the method locating
change-points in the {-ratios by minimizing the sum of squared residuals are smaller than
the residuals coming from the spectral method, divided by the inverse number (when
n>1, it means that the first method is better). The null hypothesis is the hypothesis
of equal accuracy of different predictive methods. The loss function is quadratic. The
test statistics follows asymptotically different distributions: /N (O, 1) for the asymptotic
test, the sign test, the Wilcoxon’s test, the Meese-Rogoff’s test, F'(Tp, Tp) for the Naive
benchmark test and a t7,—1 for the Morgan-Granger-Newbold’s test (where Tp is the
number of predicted observations, i.e. Ty = 20). The Meese-Rogoff test statistic is
computed with the Diebold-Rudebusch covariance matrix estimator. The truncation lag
is 2 for the asymptotic test and is given by the integer part of T[;l /5 for the Meese-Rogoft’s
test.
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Figure 1.- ACF and spectrum of the long-memory SETAR model
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Simulated distribution of the bias (¢ — c¢) over 100 replications

Chow test on t-ratios - d=0.40

Fig. 4a.
Case (i) - GPH estimator

Fig. 4e.
Case (i1) - GPH estimator
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Case (iii) - GPH estimator

Case (iii) - Semiparametric estimator




Simulated distribution of the bias (¢ — c¢) over 100 replications

Minimization of the sum of squared residuals - d=0.49

Fig. 5a
Case (1) - GPH estimator

Fig. 5b
Case (1) - Semiparametric estimator
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Fig. 5f
Case (ii) - Semiparametric estimator
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Simulated distribution of the bias (¢ — c¢) over 100 replications - Grid search method
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Fig. 3a
d=0.49 - GPH estimator

Fig. 3¢
d=0.49 - Semiparametric estimator
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Fig. 3b
d=0.10 - GPH estimator

Fig. 3d
d=0.10 - Semiparametric estimator




