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Abstract

The paper investigates from an empirical perspective aspects related to the occurrence of the

IGARCH effect and to its impact on volatility forecasting. It reports the results of a detailed anal-

ysis of twelve samples of returns on financial indexes from major economies (Australia, Austria,

Belgium, France, Germany, Japan, Sweden, UK, and US).

The study is conducted in a novel, non-stationary modeling framework proposed in Stărică and

Granger (2005). The analysis shows that samples characterized by more pronounced changes in

the unconditional variance display stronger IGARCH effect and pronounced differences between

estimated GARCH(1,1) unconditional variance and the sample variance. Moreover, we document

particularly poor longer-horizon forecasting performance of the GARCH(1,1) model for samples

characterized by strong discrepancy between the two measures of unconditional variance. The

periods of poor forecasting behavior can be as long as four years. The forecasting behavior is

evaluated through a direct comparison with a naive non-stationary approach and is based on

mean square errors (MSE) as well as on an option replicating exercise.

JEL classification: C14, C16, C32.

Keywords and Phrases: stock returns, volatility forecasting, GARCH(1,1), IGARCH effect,

hedging
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1. Introduction

The GARCH conditional modeling framework often produces evidence that the conditional

volatility process is highly persistent. In the case of the simple GARCH(1,1) process

rt = zth
1/2
t , ht = α0 + α1 r

2
t−1 + β1 ht−1,

(where zt are iid, Ez = 0, Ez2 = 1) this translates in the sum of the coefficients α1 and β1

being statistically equal to one, i.e. the so-called integrated GARCH (IGARCH) effect. As a

consequence, this methodology suggests as a data generating process for returns a stationary

model with an infinite second moment and in which shocks have a permanent effect on volatility.

This last assumption has a serious impact on volatility forecasts: current information remains

relevant when forecasting the conditional variance for all horizons.

This paper is motivated by growing empirical and theoretical evidence that the IGARCH

effect might be an artifact due to structural changes in the unconditional variance process. The

possible causal relation between non-stationarities and the IGARCH effect is a recurrent theme in

the financial econometric literature (see Lamoureux and Lastrapes (1990), Hamilton and Susmel

(1994), Cai (1994) among others) and can be traced back to Diebold (1986). Mikosch and Stărică

(2004) show theoretically that, at least in the frame of the Whittle estimation, the IGARCH

effect can be due to the behavior of the estimators under mis-specification. More concretely, they

show that estimating a Garch(1,1) model on a sample displaying non-stationary changes of the

unconditional volatility produces the IGARCH effect.

The aim of this paper is to investigate from an empirical perspective aspects related to the

occurrence of the IGARCH effect and to its impact on volatility forecasting. The paper reports

the results of a detailed analysis of twelve samples of returns on financial indexes from major

economies (Australia, Austria, Belgium, France, Germany, Japan, Sweden, UK, and US) (see

Table 1 for details).

The investigation is conducted in a novel, non-stationary modeling framework proposed in

Stărică and Granger (2005) (see Section 2). There the authors argue that modeling the returns

as non-stationary sequence of independent random variables with time-varying unconditional

variance describes the dynamics of the S&P 500 log-returns better than GARCH-type or long

memory-type models. As in Stărică and Granger (2005), we interpret the presence of significant

autocorrelations in the absolute (square) values of returns as evidence of non-stationary changes
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in the unconditional second moment of the series of returns. Consistent with this interpretation,

the success of the estimation is evaluated based on the removal of the long-memory look of the

sample autocorrelation sample (SACF) in the absolute returns standardized with the estimated

time-varying standard deviation.

The novel, non-stationary framework of our analysis is essential for the study of the impact

of structural changes of the unconditional variance on the sum of the estimated GARCH(1,1)

coefficients. Its use for the study of a large number of world’s most important stock indexes is

one of the original contributions of the paper. By successfully modeling twelve time series, our

analysis brings further evidence that the framework developed Stărică and Granger (2005) is a

viable set-up for the analysis of the dynamics of stock returns. Moreover, the analysis shows

that samples characterized by more pronounced changes in the unconditional variance display

stronger IGARCH effect.

The second goal of the paper is to investigate the impact of the IGARCH effect on volatility

forecasting. The assumption of an integrated conditional volatility model has an heavy impact on

volatility forecasts since an integrated data generating process implies that current information

will be relevant when forecasting the conditional variance for all horizons. Stărică (2003) showed

that the GARCH(1,1) model fails5 to provide sensible longer-horizon6 volatility forecasts on sub-

samples of returns on the S&P500 index characterized by IGARCH effect. The author argues

that the particularly poor forecast performance of the GARCH(1,1) model is due to the poor

estimation of the unconditional volatility of the data caused by the IGARCH effect.

In this paper, we investigate volatility forecasting performance of the GARCH(1,1) model on

different time series with and without the IGARCH effect. We confirm the findings in Stărică

(2003) and show that the poor GARCH(1,1) forecasting performance reported there is widespread

and, hence, not specific to the S&P 500 index. More specifically, we empirically identify peri-

ods of strong discrepancy between the estimated GARCH(1,1) unconditional volatility and the

sample standard deviation in nine of the twelve series under scrutiny. For the samples character-

ized by the worse GARCH(1,1) mis-estimation of the variance (due to the IGARCH effect) we

document particularly poor forecasting performance of the GARCH(1,1) model. On sub-samples

5The MSE error of the GARCH(1,1) model forecasts at 3 (6 respectively) month horizon were 2 (3 respectively)

times bigger than those of the naive forecast that takes the past year’s volatility as future volatility.

6The construction of long-horizon volatility forecasts are essential in many asset-pricing models.
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not affected by the IGARCH effect, the longer-horizon volatility forecast performance of the

GARCH(1,1) model is satisfactory.

The paper brings two other original methodological contributions. First concerns the statis-

tical estimation of the time-dependent unconditional volatility in the non-stationary framework.

The time-varying second moment of returns is estimated using the innovative non-parametric sta-

tistical methodology of Adaptive Weights Smoothing (AWS) proposed by Polzehl and Spokoiny

(2003) (Section 3). Second contribution concerns the evaluation of the longer-horizon volatility

forecasting performance. The GARCH(1,1) model is compared with a simple forecasting ap-

proach which assumes the volatility locally constant. The comparison cover horizons from one

day to one business year and is done using two different measures. The first one is the classical

mean square errors (MSE) of the variance forecasts.

The second, innovative approach compares the financial consequences of using the two volatil-

ity forecasts for pricing and hedging simple financial derivatives on indexes. This comparison

is motivated by the observation that “a natural criteria for choosing between any pair of com-

peting methods to forecast the variance of the rate of return on an asset would be the expected

incremental profit from replacing the lesser forecast with the better one”, as stated by Engle et

al. (1993). The two volatility forecasts from the first comparison are employed to determine the

initial prices of the replicating portfolios of at-the-money options as well as the dynamic strategies

to be followed in hedging. Although motivated by the same idea, our approach differs in many

ways from that in Engle et al. (1993) and (1997) (see Section 6 for details). More concretely, we

focus on evaluating the ability of two competing modeling methodologies to help an investor to

implement a dynamic strategy that replicates a given claim. The quality of the volatility forecasts

of competing models is measured at the expiration. Our approach is based on the observation

that more accurate volatility forecasts lead to smaller replication errors.

The paper is organized as follows. Section 2 introduces the modeling set-up of our non-

stationary analysis of the dynamics of returns on stock indexes. Section 3 describes the non-

parametric statistical methodology used in estimation of the time-varying second unconditional

moment of returns. Section 4 presents the results of volatility estimation for the twelve series

of indexes and assesses the goodness-of-fit of the non-stationary, unconditional approach. In

Section 5 various sub-sample-specific measures of volatility and GARCH(1,1) modeling features

are analyzed. The aim is to produce sub-sample-specific measures of the IGARCH effect as well as
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of the amount of change of the unconditional variance estimated in the previous section. Section

6 investigates the forecasting performance of the GARCH(1,1) model on specific sub-samples

identified in the previous section while Section 7 concludes.

2. Non-stationary, unconditional modeling of index returns

In this section we introduce the modeling set-up of our in-depth analysis of the dynamics of

stock indexes. Following the approach of Stărică and Granger (2005), the returns on a financial

index (rt) are described as

(2.1) rt = σ(t)zt, t = 0, 1, . . .

where (zt) is a sequence of i.i.d. random variables, Ez = 0, Ez2 = 1 and σ(t) a positive function

of t. In the sequel, this function will be approximated by a step function, yielding a model with

a piecewise constant variance. We are assuming the mean of the return to be zero. Working with

de-meaned returns rt − r̄ does not change in any way the results of the analysis.
Equation (2.1) can be re-written as

(2.2) r2t = σ
2(t) + z̃t, t = 0, 1, . . .

where z̃t = σ2(t)(z2
t − 1), with Ez̃ = 0, or like in Stărică and Granger (2005) as

(2.3) log |rt| = log σ(t) + log |zt|, t = 0, 1, . . . .

Note that both the equations (2.2) and (2.3) fit in the general non-parametric regression set-up

yt = µ(t) + s(t)εt, t = 1, 2, ..., n,(2.4)

where the time-varying trend µ and variance s2 could be continuous or display jumps, the noise

(εt) is assumed i.i.d. with zero mean and unit variance, not necessarily Gaussian. Hence the

volatility function σ2(t) can be directly estimated using non-parametric smoothing techniques

(to be discussed in the next section).

In words, the returns are modeled as independent random variables with a time-varying un-

conditional variance. They form a non-stationary sequence, free of any dependency7 but with a

7Independent non-stationary sequences can display significant sample ACF. In particular, the long memory in

volatility effect can occur for independent sequences with a time-varying unconditional variance. For more details

on this issue, see Mikosch and Stărică (2004).
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marginal distribution that evolves through time. Moreover, the only changing probabilistic fea-

ture of the marginal distribution is the unconditional variance. Consequently, the logarithm of the

absolute returns are described as stochastic variations around a time-varying trend or expected

level µ. An innovative statistical methodology, which we describe in Section 3, is used to produce

a piecewise-constant approximation of the function µ (σ, respectively). In the analysis of the

returns on the twelve indexes both equation (2.2) and (2.3) were used as basis for the estimation

of time-varying second moment of the returns. The estimation results were identical. As we will

see in Section 4, even the rough approximation of the variance dynamics by a step function is

sufficient to explain most of the dependency structure present in the sample ACF of absolute

return series, hence providing an explanation for the so called “long memory in volatility” effect.

The non-stationary framework allows for estimation of a time-varying second unconditional

moment, an essential step for the study of the impact of structural changes in the volatility on

the sum of the estimated GARCH(1,1) coefficients.

We continue with the description of the methodology used to estimate the function µ.

3. Non-parametric volatility estimation: Adaptive Weights Smoothing (AWS)

methodology

In this section we describe the statistical methodology to be used in estimation of the volatility

in the non-stationary modeling framework described in Sections 2. The main goal of our analysis

is estimation of the time-varying volatility which appears in either of the two alternative forms,

(2.2) or (2.3), of the model (2.1) as the trend function µ in (2.4).

3.1. Local constant approximation of µ and s. Our approach does not impose any global

structural (parametric) assumption on the functions µ and s. Instead, we assume the following

local parametric structure: for every time point t there exists a time interval around t in which the

data can be well approximated by a simple parametric model. In this paper, both the variability

s and the trend µ are locally approximated by constants, yielding step function approximations

of the two functions of interest.

The statistical procedure we are about to describe focuses on constructing intervals where a

parametric, stationary model provides a good approximation to the unknown true data generating
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process. On these intervals, called intervals of homogeneity, the parameters of the model can be

consistently estimated. The size of these intervals is referred to as degree of locality.

One possible approach to building the homogeneity intervals consists in selecting a bandwidth h

and in estimating the functions µ and s on the time window [t−h, t+h] using the approximating
model equation

yu = µ(t) + s(t)εu, u ∈ [t− h, t+ h].

Such a simple parametric model with unknown coefficients µ(t) and s(t) can be estimated using

the standard least squares approach. The degree of locality is here determined by the bandwidth

h. Its choice is crucial in applications. A small h means that only few data points are used for

estimating the unknown parameters leading to insufficient noise reduction, while selection of a

large bandwidth h may lead to a substantial bias due to the poor approximation to the true

function µ that a constant model might provide on the long window [t − h, t + h] . The choice

of the optimal bandwidth hence depends on the unknown shape of the function to estimate. A

fixed bandwidth can be too restrictive for the analysis we aim to perform, hence we choose an

approach with a bandwidth self-adapting to the data.

3.2. Adaptive smoothing. A more flexible approach, the Adaptive Weights Smoothing (AWS),

was introduced in Polzehl and Spokoiny (2000) in the context of image de-noising and extended

in Polzehl and Spokoiny (2002) to a large class of statistical models. The AWS method has a

number of features which make it well-suited for the problem at hand. Firstly, it is completely

data-driven and it adapts automatically to the unknown structure of the signal function µ in the

model. In particular, it is very sensitive to structural changes and can identify the location of

the break point with high precision. Secondly, it can be applied to a situation where the noise

is heteroscedastic (as it is the case with reformulation (2.2) of the model (2.1) ). In the case

of a heteroscedastic regression, it can also be used to estimate the time-varying variance of the

noise. Finally, in many special cases it provides nearly optimal noise reduction, see Polzehl and

Spokoiny (2002), (2003).

To keep the exposition simple, let us first assume that we are in the case of a known variance

s2(t). When that is not the case, we substitute it with an estimate ŝ2(t). The details on how to

produce such estimate are given at the end of this section. The central idea of the approach is to

construct, for every time point t, a set of non-negative weights wt,u satisfying wt,u ∈ [0, 1]. These
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weights measure how relevant observation yu is to the estimation of the function µ at moment

t. The higher the weight wt,u, the stronger the contribution of observation yu to the estimation

of the function µ at t. When wt,u is zero, observation ys does not contribute to the estimation

of µ at time t. Once constructed, the weights serve to produce the estimate µ(t) defined by the

weighted least squares:

µ̂(t) = argmin
µ

∑
u

(yu − µ)2s−2(u)wt,u.

This is a quadratic optimization problem with the closed form solution

µ̂(t) =

(∑
s

s−2(u)wt,u

)−1∑
u

yus
−2(u)wt,u.(3.1)

The weights wt,u are constructed from the data using the following iterative procedure. We start

with the usual kernel weights w(0)
t,u = K(|t− u|2/h2

0) for some kernel K and a (small) bandwidth

h0. Let us denote by w
(k)
t,u the weights after the k-th iteration, by hk, the k-th iteration bandwidth,

and by µ̂(k)(t) the local estimate given by (3.1) with weights w(k)
t,u .

The weights w(k+1)
t,s are iteratively defined as

w
(k+1)
t,u = K(|t− u|2/h2

k) K(d
(k)
t,u ),

where

d
(k)
t,u := |µ̂(k)(t)− µ̂(k)(u)|.

In words, the weights w(k+1)
t,u are a product of a location penalty, K(|t− u|2/h2

k) with a statistical

penalty, K(d(k)
t,u ). Note that, while in classical smoothing

8 only the information within a neigh-

borhood of t, [t− h, t+ h] is pooled for estimation of µ(t), the AWS estimate at time t uses also
observations that are chronologically remote from the moment t, provided that the values of the

estimated µ in those points are close to the estimate in t. In other words, in estimating µ(t),

the AWS methodology pools information from all episodes that are similar to what was going

on at moment t. The weights w(k)
t,u and the estimates µ̂(k)(t) are recomputed at every step k as

the bandwidth parameter hk increases. The details of the procedure can be found in Polzehl and

Spokoiny (2002), (2003).

For estimating the time-varying variance s2(t), we build the differences ε̂t = (yt − yt−1)/
√
2.

Since every ε̂2t has approximately the mean equal to s2t , we apply the AWS procedure for mean

8In classical smoothing the weights are defined as wt,s = K(|t − s|2/h2), where h is the optimal bandwidth.
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estimation to ε̂s. This yields a locally constant approximation of the true time-varying variance

function s2(t), see Polzehl and Spokoiny (2002). The expression (3.1) can be used to bound

the standard deviation of the estimate µ̂(t) and therefore, to construct the α-percent confidence

intervals for this estimate.

4. Non-parametric volatility estimation: Empirical results

Our analysis is conducted on a set of daily returns on twelve stock market indexes (see the

Appendix for more details on the indexes under study). The samples analyzed are described in

Table 1.

Index Country sub-sample Full sample

1. ASX Australia 01/07/1995-05/06/2003 05/01/1985-26/05/2004

2. ATX Austria 07/01/1993-07/02/2001 07/01/1993-26/05/2004

3. CAC 40 France 15/05/1995-23/04/2003 03/04/1990-15/04/2004

4. FTSE 100 UK 21/04/1995-21/03/2003 06/05/1984-18/03/2004

5. DAX Germany 08/04/1995-21/03/2003 03/04/1990-17/03/2004

6. OMX Sweden 23/10/1994-25/10/2002 02/11/1986-18/04/2004

7. Russell 3000 USA 16/09/1994-31/08/2002 07/01/1988-03/06/2004

8. S&P/TSX Canada 17/12/1994-01/12/2002 18/08/1984-18/03/2004

9. BEL 20 Belgium 13/01/1995-22/03/2003 05/01/1985-26/05/2004

10. NIKKEI 225 Japan 01/12/1985-21/01/1994 09/02/1984-18/03/2004

11. FAZ Germany 24/03/1995-21/03/2003 07/09/1984-19/03/2004

12. DJI USA 06/11/1994-16/10/2002 02/01/1988-18/04/2004

Table 1. Samples of index returns. The full sample is used in the analysis in Sections

4 and 5. The dates in the second column (sub-sample) correspond to 2000 observations

used in evaluating volatility forecasting performance of the stationary, parametric, conditional

GARCH(1,1) methodology in Section 6.

In the rest of the section we present the results of the non-stationary, non-parametric estimation

of volatility based on the AWS methodology described in Section 3 and we evaluate the goodness-

of-fit of the non-parametric estimation approach. In the analysis of the returns on the twelve

indexes both equations (2.2) and (2.3) were used as basis for the estimation of time-varying second

moment of the returns. The estimation results were identical.
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Figure 4.1 displays the time-varying annualized standard deviation estimated using the method-

ology described in Section 3. The (annualized) absolute returns are plotted together with the

volatility. The shaded area corresponds to the sub-samples specified in Table 1. This sub-samples

are the object of a detailed analysis focusing on the forecasting performance of the GARCH(1,1)

model in Section 6. The criteria for the selection of the sub-samples will be described in Section

5.

The graphs in Figure 4.1 show that the AWS approach identifies significant changes in the

unconditional variance of the returns on the twelve indexes under scrutiny. The European and

North-American series show a lower level of volatility in the middle of the 90’s followed by an

increase covering the second half of the decade (from 1996 on) and the beginning of the first

decade of the new millennium. Most of them exhibit a lowering of the level of volatility in 2003.

Note that the sub-samples, highlighted by the shaded areas, cover the periods animated by the

most significant changes in the level of volatility.

Figure 4.2 displays the sample ACF of the absolute values of the returns and of the returns

standardized with the estimated time-varying sd. All absolute returns display the so-called ’long-

memory in volatility’ effect, i.e. the presence of significant sample autocorrelations at large lags.

A sample ACF that shows positive correlations at large lags (like those in Figure 4.2) could be a

sign of non-stationarities in the second moment structure of the time series as well as a proof of a

stationary, non-linear long-range dependence; see Mikosch and Stărică (2004). As in Stărică and

Granger (2005), we interpret the presence of significant autocorrelations in the absolute (squared)

values of returns as evidence of non-stationary changes in the unconditional second moment of

the series of returns. Accordingly, the success of the estimation of time-varying unconditional

volatilities is evaluated based on the removal of the long-memory aspect of the sample ACF for the

absolute returns standardized with the estimated time-varying standard deviation. That is, the

estimation procedure may be considered successful if the standardized returns look uncorrelated.

The graphs in Figure 4.2 show that even a rough approximation of the variance dynamics by

a step function is sufficient to explain most of the dependency structure present in the sample

ACF of absolute return series, thus providing an explanation for the so called “long memory in

volatility” effect. In fact, the absolute returns standardized with the time-varying sd estimated

by the AWS methodology, are practically uncorrelated.
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5. Changes in the unconditional volatility and the IGARCH effect

In this section we investigate the dynamics of the IGARCH effect for the twelve indexes under

scrutiny. When modeling the returns on an index in the stationary, parametric, conditional ARCH

framework, the working assumption is often that the data generating process is the stationary

GARCH(1,1) model

(5.1) rt = zth
1/2
t , ht = α0 + α1 r

2
t−1 + β1 ht−1,

where (zt) are iid, Ez = 0, Ez2 = 1. Condition α1 + β1 < 1 is necessary and sufficient for the

process to be weakly stationary9

The IGARCH effect consists in the sum α1+β1 being (slightly smaller and) close to one. Under

the assumption that the returns have finite second moment, the unconditional variance of the

GARCH(1,1) model (5.1) is given by

(5.2) σ2
GARCH(1,1) := α0/(1 − α1 − β1).

Replacing the GARCH(1,1) coefficients in (5.2) with estimated values yields the estimated GARCH-

(1,1) unconditional variance, σ̂2
GARCH(1,1) . Note that (5.2) implies that the stronger the IGARCH

effect, i.e. the closer α̂1+β̂1 is to one, the larger the estimated GARCH(1,1) unconditional volatil-

ity becomes.

In the recent financial econometric literature, many authors (some of which were cited in the

Introduction) have argued that there is a causal connection between the IGARCH effect and

structural changes in the unconditional variance of returns. That is, estimating a Garch(1,1)

model on a sample displaying non-stationary changes of the unconditional volatility, may induce

a spurious IGARCH effect.

The non-stationary paradigm of modeling and estimating the unconditional variance of returns

described in the previous section offers a consistent set-up for an empirical investigation of such

connection. The investigation is carried through sub-sample-specific measures of volatility and

GARCH(1,1) modeling features. The sub-sample-specific measures quantify and compare the

strength of the IGARCH effect and the amount of change of the unconditional sd (as estimated

in Section 4) in a window moving through the data.

9If this condition is not fulfilled, the GARCH(1,1) process, if (strongly) stationary, has infinite variance.
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Let us now define precisely the two mentioned sub-sample-specific measures. To measure the

intensity of the IGARCH effect in the sample [t− a, t], a GARCH(1,1) model is estimated using
the quasi-ML estimation method. A sample size of a = 2000 is commonly assumed to be sufficient

for a precise estimation of a GARCH(1,1) model. Sample sizes that are significantly smaller yield

unacceptably large standard deviations for the estimated parameters. This is the sample size

that we use in the sequel analysis.10 Besides the statistical motivation, the choice of a window

of length 2000 incorporates the belief, common in the econometric community, that return time

series can be safely modeled by stationary models, i.e. the stochastic features of the data are

relativelty stable in time. Denote by σ̂GARCH(1,1) (t) the estimated GARCH(1,1) unconditional

sd of the sample [t − a, t] and by σ̂(t) that sample’s sd σ̂(t) := (
∑t

i=t−a r
2
i )/a. The strength of

the IGARCH effect in the sample [t − a, t] is measured by its impact on the estimation of the

unconditional variance of that sample. More concretely, the ratio

(5.3) ν(t) :=
σ̂GARCH(1,1) (t)

σ̂(t)
,

will be used in the sequel as a quantitative measure of the intensity of the IGARCH effect. A par-

ticularly strong IGARCH effect in the sample [t− a, t] will produce an estimated σ̂GARCH(1,1) (t)

much greater than the sample sd, and hence a ratio ν(t) much greater than one. A ratio ν(t)

close to one identifies the sub-samples on which the GARCH(1,1) estimated variance matches

the sample variance (due to the absence of the IGARCH effect). We interpret a strong discrep-

ancy between the two estimates of the standard deviation of the data as a clear indication that

GARCH(1,1) fails to model the dynamics of the returns.

To measure the amount of change in the unconditional volatility on the interval [t− a, t], first
the mean σ̄(t) of the AWS unconditional volatility estimate σ̂AWS(u), u ∈ [t− a, t] is computed

σ(t) =
1
a

a∑
i=0

σ̂AWS(t− a+ i).

10The analysis was run on smaller sample sizes of a = 1750 and a = 1500 observations. While the details

change, the overall qualitative results do not. A sample size of 1500 is the absolute minimum in terms of statistical

precision of the estimated coefficients. See Straumann (2005).



16

Then the following relative measure of the variation of the unconditional volatility to the mean

unconditional volatility is built

(5.4) l(t) :=
∑a

i=0 |σAWS(t− a+ i)− σ(t)|/a
σ(t)

.

In words, l(t) measures how much the unconditional volatility has changed in the window of a

observations ending at t, relative to the unconditional volatility of the window [t− a, t].
We emphasize that although the ratios ν(t) and l(t) are indexed by t, they measure features of

the data in the window of a observations ending at time t. One needs to keep this in mind when

interpreting the graphs in Figures 5.1, 5.2, and 5.3.

The two measures are re-calculated every 50 days on a window of past a observations (in

the case of the ratio ν, the GARCH(1,1) model is re-estimated on the new sub-sample). The

results are displayed in Figures 5.1, 5.2, and 5.3. Besides the two measures ν(t) and l(t), we also

display the sum α̂1 + β̂1 with the upper one-sided 95% confidence intervals and the estimated

GARCH(1,1) unconditional sd together with the sample sd.

Sub-samples with a particularly pronounced IGARCH effect are identified in most of the twelve

time series. It is particularly significant the fact that sub-samples with a more pronounced

IGARCH effect as measured by ν(t) are also characterized by higher measures of the amount of

unconditional volatility change as measured by l(t). Hence, our analysis seems to give evidence in

favor of the hypothesis of a connection between non-stationarities in the second moment structure

and the IGARCH effect.

The series can be divided into three groups, according to the level attained by the measure

ν(t) of the IGARCH effect.

5.1. No IGARCH effect. The first three time series from Table 1, i.e. ASX, ATX, CAC 40

indexes, are characterized by the absence of the IGARCH effect (see Figure 5.1). The upper 95%

confidence bound is strictly smaller than 1. Hence the point estimate α̂1 + β̂1 is significantly

different from 1. Moreover, the ratio ν(t) remains smaller than or equal to one (and always close

to it), showing a good match between the estimated GARCH(1,1) unconditional variance and the

sample variance. It is worth noticing that l(t) is bounded by 30%, indicating moderate changes

of the sd.
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5.2. Mild IGARCH effect. For the next three samples (series 4 to 7 from Table 1, i.e., FTSE

100, DAX, and OMX indexes), the IGARCH effect is rather light but noticeable (see Figures 5.1

and 5.2). While one is on the boundary or slightly inside the asymmetric confidence interval, the

point estimates mostly remain away from it. We note that the IGARCH effect appears towards

the end of the samples examined. The initial estimates on these samples are characterized by

a sum of GARCH(1,1) coefficients α̂1 + β̂1 that is significantly away from one and by values of

l(t), the measure of the amount of changes in the unconditional volatility, smaller than in the

end of the samples. The end of the samples is animated by more pronounced changes in the

unconditional second moment (higher values of l(t)). The IGARCH effect takes hold, while the

two measures of sd, the estimated GARCH(1,1) unconditional sd and the sample sd drift apart.

The maximum of the ratio ν(t) is 1.2-1.4 while the measure of the amount of variation of the

unconditional volatility is bounded by 35%. Note that higher values of ν(t) usually corresponds

to higher values of l(t).

5.3. Strong IGARCH effect. For the remaining six time series (series 8 to 12 from Table 1,

i.e. Russell 3000, S&P/TSX, BEL 20, NIKKEI 225, FAZ, and DJI indexes), the IGARCH effect

is pronounced (see Figures 5.2 and 5.3). The value one is well inside the one-sided confidence

interval while the point estimates also come close to one (in some cases being practically equal to

it). The maximum of the ratio ν(t) is bigger than 1.4 while the maximum of the relative measure

l(t) gets close and sometimes trespasses the threshold of 40%. As before, periods animated by

significant changes in the unconditional variance of the returns are also characterized by strong

IGARCH effect.

5.4. The choice of the sub-samples in Table 1. Since for the model (5.1) the volatility

forecast at longer horizons is, practically, the unconditional variance (see equation (6.1)), poor

point estimates for this last quantity will, most likely, have a strong impact on the longer horizon

volatility forecasting performance of the model. To substantiate this conjecture in the next

section we analyze the forecasting performance of the Garch(1,1) model on sub-samples that are

characterized by a strong IGARCH effect. The sub-samples were chosen to cover the periods when

the level of the measure ν(t) is at its peak. As Figures 5.1, 5.2, and 5.3 show, the measure l(t)

quantifying the amount of variation of the unconditional volatility of these sub-samples is, often,

also at its highest, i.e. the sub-samples we chose to analyze in a forecasting set-up are often those
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that show the largest (or close to the largest) relative amount of changes in the unconditional

variance.

It is worth noticing that eleven of the twelve sub-samples analyzed cover a eight year period

between 1995 and 2004 with only one other, i.e. the NIKKEI 250 covering the period 1985-1994

interval. The choice of the periods, i.e. full samples, within which the sub-samples to be analyzed

in detail were selected, is due to the limited availability of data. We believe that the fact that

the selected sub-samples coincide with the known intervals of stock market upheaval (the end of

the 90’s for the Western stock markets and the end of the 80’s and the beginning of the 90’s for

the Japanese stock market) is not a coincidence. It is in fact precisely during these turbulent

intervals, characterized by relevant changes in the unconditional variance, that the Garch(1,1)

model performs poorly.

6. Forecasts of future volatility

In this section we evaluate the performance of the GARCH(1,1) in volatility forecasting on the

sub-samples of length 2000 days, reported in Table 1. The dotted vertical bars in Figures 5.1,

5.2, 5.3 mark the end of the sub-samples for each index.

Under the assumption of a GARCH(1,1) data generating process (5.1) that satisfies α1+β1 < 1,

the minimum Mean Square Error (MSE) forecast at time t for r2t+p is

(6.1) σ2, GARCH
t+p := Etr

2
t+p = σ

2
GARCH(1,1) + (α1 + β1)p−1(ht − σ2

GARCH(1,1)),

where σ2
GARCH(1,1) is the unconditional variance defined in (5.2). Consequently, the minimum

MSE forecast for the variance of the cumulative return over the next p days, is given by

σ 2, GARCH
t,p := Et(rt+1 + . . .+ rt+p)2 = σ

2, GARCH
t+1 + · · · + σ2, GARCH

t+p .

From Equation (6.1) it follows that, for large p, the forecast σ2, GARCH
t+p is close to the unconditional

variance, σ2
GARCH(1,1). Therefore, failing to produce accurate point estimates for this last quantity

will, most likely, produce poor longer horizon volatility forecasts. Stărică (2003) showed that for

sub-samples of returns on the S&P500 index characterized by IGARCH effect, the GARCH(1,1)

model fails to provide sensible longer-horizon volatility forecasts. In the sequel we bring further

empirical evidence supporting this finding. We also document the fact that for sub-samples on
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which the two measures of volatility are in good match, the forecasting behavior of the GARCH-

(1,1) model is satisfactory.

Our evaluation includes a direct comparison with a simple forecasting approach which assumes

that the volatility is locally constant (this choice of an alternative is motivated by the finding in

Section 4). A second approach consists in a portfolio option replication exercise where the two

volatility forecasts from the first comparison are used to set the price of at-the-money options

with various maturities through a dynamic strategy that replicates the instrument to be priced.

6.1. Direct comparison of volatility forecasts. This subsection describes the set-up for di-

rect evaluation of short- and longer-horizon volatility forecasting performance of a GARCH(1,1)

model.

The benchmark model (BM) for volatility forecasting is the simple non-stationary model (2.1).

Since no dynamics is specified for the variance, future observations rt+1, rt+2, . . . are modeled as

iid with constant variance σ̂2
250(t), an estimate of σ

2(t). In the sequel, we use the sample variance

of the previous year of returns as the estimate for σ2(t). The forecast is then given by

(6.2) σ2, BM
t+p := σ̂2

250(t) =
1
250

250∑
i=1

r2t−i+1.

The forecast for the variance of the next p aggregated returns is then, simply,

(6.3) σ 2, BM
t,p := p σ̂2

250(t).

To measure of the realized volatility in the interval [t+1, t+p] we define

(6.4) r 2
t,p :=

p∑
i=1

r2t+i,

moreover, we compare the following MSE on n forecasts performed,

(6.5) MSE∗(p) :=
n∑

t=1

(r 2
t,p − σ 2, ∗

t,p )2

where ”∗”, here and in the sequel, stands for ”BM” or ”GARCH”. The MSE (6.5) is preferred
to the simpler MSE

n∑
t=1

(r2t+p − σ2, ∗
t+p)

2



21

since this last one uses a poor measure of the realized return volatility11. Through averaging

some of the idiosyncratic noise in the daily squared return data is canceled yielding (6.4), a

better measure against which to check the quality of the two forecasts.

The direct comparison of short- and longer-horizon volatility forecasts was performed on the

twelve sub-samples of length 2000 reported in Table 1. The GARCH(1,1) model is estimated

initially on the first 1000 data points from every sample. Consistent with the assumption of

stationarity, fundamental to the ARCH methodology, the model is re-estimated every week (i.e.

every 5 days) using the observations from the beginning of the sample up to the moment of

re-estimation. At the same time, σ̂2
250(t) is also estimated. After every re-estimation, volatility

forecasts are made for the next year (p = 1, . . . , 250) using (6.2) and (6.3). Following the out-of-

sample forecasting paradigm, the quantities MSEGARCH(p) andMSEBM (p) defined in (6.5) are

calculated based on the observations from the year that followed. The graphs in Figure 6.1 display

the ratio MSEBM (p)/MSEGARCH (p). A ratio smaller than one at horizon p indicates that the

volatility forecast of the GARCH(1,1) parametric, conditional methodology for the interval of next

p days is poorer than that based on the simple approach that assumes that the history of the

past year will repeat. Figure 6.1 demonstrates strong variation in the quality of the GARCH(1,1)

forecast. The first two graphs demonstrate an overall good performance at all forecasting horizons.

The third and the fourth show only good shorter-horizon performance, with a deterioration of the

quality of forecast at horizons beyond three or four months. For the rest of the sub-samples (from

five to twelve) and for periods as long as four business years, the GARCH(1,1) model provides

poor shorter- and longer- volatility forecasts (sometimes with exceptions of forecasts of at most

ten days ahead).

6.2. Volatility forecasts for option replication. In this subsection we perform an indirect

evaluation of short- and long-horizon volatility forecasting performance of a Garch(1,1) model.

This evaluation consists in an option replication exercise. The goal is to get a financially sound

measure of the accuracy of different variance forecasts.

The use of option prices to measure the forecasting capabilities of a model was considered

(among others) by Engle et al. (1993), with the motivation that ”the pricing of the options

11It is well known (see Andersen and Bollerslev [1]) that the realized square returns are poor estimates of the

day-by-day movements in volatility, as the idiosyncratic component of daily returns is large.
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provides the appropriate test of forecasts of asset volatility”. Engle et al. (1997) compare the

behavior of different specifications of GARCH when applied to pricing options on the NYSE

index, by checking if the option price based on a given model is a good forecast of the final payoff

of the option.

In what follows we use an alternative approach based on option replicating strategies implied by

each model. That is, we focus on evaluating the ability of two competing modeling methodologies

to help an investor to implement a dynamic strategy that replicates a given claim. Our approach

is based on the assumption that more accurate volatility forecasts lead to smaller replication

errors.

We compare the performances of Garch(1,1) model and of the simple model BM (2.1). The

option replication exercise goes as follows. At time tk we start a self-financing strategy, involving

the underlying asset and a bank account. We consider the usual hypotheses of ”perfect market”

with no transaction costs and zero interest rate. The goal of the strategy is to replicate the payoff

at time tk + T of an at-the-money straddle, i.e. a portfolio consisting of a European call option

and a European put option, both at-the-money and with the same maturity. Independently of

the model imposed on the underlying, the same hedging strategy, namely Black-Scholes Delta-

hedging, is used to define the composition of the replicating portfolio. This implies that differences

will be mostly due to model-specific estimates of the volatility of the underlying. One could object

that, coherently with the assumption of a Garch(1,1) model, one should use a Garch(1,1) option

pricing methodology, as proposed in Duan (1995) for example. There are a few reasons for which

we do not follow this approach. First, Garch(1,1) pricing does not yield closed-form expressions

neither for pricing nor for hedging. Hence one would have to relay on a time-consuming Monte

Carlo methodology. Second, according to our experience (and also shown by Choi (2005)) the

differences between Black-Scholes and Garch(1,1) prices are rather small, especially when options

are near moneyness. The third reason is that the market practice is to consistently use the Black-

Scholes formula, even when the hypothesis under which this formula holds might be violated.

This last argument we find particularly compelling since our goal is to evaluate the relevance of

various modeling approaches to the practice of pricing. Note that our article of reference in this

part of the comparison, i.e. Engle et al. (1997), follows the same approach.

Let us now describe the construction of the replicating strategy. Let rt, t = 1, . . . , 2000, be

the series of log-returns in the sub-sample. A new strategy is started every week, at times tk,
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(where t1 = 1000 and tk+1 − tk = 5) and the composition of the replicating portfolio is adjusted
every day until maturity. The goal of each strategy is to replicate, at maturity, the payoff of

an at-the-money straddle, i.e. of a portfolio consisting of a call and a put, both at-the-money.

At time t, the number of shares of the underlying in the replicating portfolio is given by the

Black-Scholes hedge ratio formula for a straddle with strike K and time to maturity τ , that is

∆(St, σ
∗
t,τ ) = 2Φ

(
log St/K + σ2, ∗

t,τ /2
σ∗t,τ

)
− 1,

where Φ(·) is the standard normal cumulative density function, St is the price of the underlying

at time t, σ∗t,τ is the volatility forecasted at time t by model ∗ for the period from t to t + τ .

While for the BM model the only sensible choice of such forecast is represented by (6.3), for the

GARCH model one could use either the stationary variance (as it is often done, see Duan (1995))

or the conditional forecast as defined in (6.2) and employed for instance by Engle et al. (1997).

Choi (2005) proved that in this way one obtains a good approximation of the exact GARCH

pricing formula. The value St is obtained from the historical time series of log-returns by setting

Stk = 1, for each starting time tk. Since the options to be replicated are at-the-money, we set the

strike price K to one. The replicating portfolio is daily re-adjusted according to the new values

of ∆(·). In order to make the strategy self-financing, the money involved in buying or selling of
the shares is withdrawn from (or deposited into) a bank account. We assume that the interest

rate is zero. The initial cost of the strategy, under the hypothesis that the underlying follows the

model ∗, is C∗
tk
= BS(σ∗tk,τ ), where BS(·) is the Black-Scholes pricing formula for the straddle.

That is, if the model ∗ is correct, investing C∗
tk
at time tk and following the appropriate strategy,

one should get at time tk + T , with probability one, the payoff of the straddle.12 We denote by

e∗H,tk
(T ) the difference between the final value of the replicating portfolio, based on model ∗ and

started at time tk, and the payoff of the straddle at maturity T . The smaller the absolute value

of the error is, the more accurate are the volatility forecasts of model ∗.
We applied the replicating procedure on the sub-samples of Table 1. Both models are re-

estimated weekly, that is at each time tk. Consistent with the hypothesis of stationarity, the

Garch(1,1) estimation uses all returns available from the beginning of the sample up to time tk.

The BM estimation uses only the previous 250 returns (roughly one business year of data).

12We are neglecting the discretization error because it would affect both the models and, the trading interval

being rather fine, it should be small with respect to model error.



24

The first replication exercise compares the BM strategy to the GARCH strategy when the

stationary variance is employed. Figure 6.2 displays the mean values of the hedging errors for

the 12 series for maturities of five and twenty days. From this figure it is apparent how the

problems affecting the GARCH estimates of series 7 to 13 lead to significant errors in replication

exercise, much greater indeed than those produced in the simple BM set-up. The performance of

the approach using GARCH stationary variance gets worse for longer maturities.

In the second replication exercise the Garch(1,1) volatility, σGARCH
t,τ is computed every day t

according to formula (6.2), using the most recent parameter estimates available. We performed

the strategy for four maturities: T = 60, 120, 180, 250 days. For each maturity we performed

as many replication exercises as allowed by the length of the sample, that is 188, 176, 164, and

150 respectively. We then computed the mean of the hedging errors of each series for any given

maturity. The results are reported in Figures 6.3. Although the use of the conditional variance

brings an obvious improvement, we see that the Garch strategies tends to produce a great error

for those series that display a particularly large ratio MSEGARCH/MSEBM . In fact, while for

series 1 to 6 the overall behavior of the two approaches is similar for all maturities, for series 7

to 12, the Garch(1,1) model has an average error significantly greater than that produced by the

naive BM approach. Note that the difference between errors increases with maturity becoming

very relevant for T = 250.

To evaluate the significance of the errors produced by the two approaches and represented by

the graphs in Figure 6.3 we used two statistical tests. The tests are made under the assumption

of stationarity of the return series.13 If Dt(T ) := eGARCH
H,t (T )− eBM

H,t (T ), we test the hypothesis

(6.6) H0 : EDt = 0 against H1 : EDt > 0,

(an one-sided test). Note that, since the hedging errors are computed on overlapping returns,

they are obviously dependent.

Both tests use the sample mean D as the test statistics and differ in the way the asymptotic

distribution of the test statistic is obtained. The first test uses the overlapping-block bootstrap

(Künsch (1998)) with the block-length selection proposed by Politis and White (2003). The

second one computes the asymptotic distribution from the Central Limit Theorem for stationary

13It is hard to test the significance of the differences in Figure 6.3 under the working hypothesis of non-stationary

returns.
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sequences with sumable covariances (note that Diebold and Mariano (1995) and by Harvey et.

al (1997) use a similar test).

For the first test, the distribution of the test statistic is obtained as follows. Define the over-

lapping blocks of size b

D1 = {D1, . . . ,Db}, . . . ,Dn−b+1 = {Dn−b+1, . . . ,Dn}.

New samples D∗
1, . . . ,D

∗
m are drawn with replacement from the set D1, . . . ,Dn−b+1. The simu-

lated samples preserve most of the original dependence structure since the dependency inside any

block remains untouched. The samples are used to calculate sample means D∗
1, . . . ,D

∗
m. Since m

can be made as big as one wants, the procedure yields a good approximation of the sampling dis-

tribution of D∗. The results in Künsch (1998) show that, under general conditions, the sampling

distribution of D∗ approximates that of D (for details see Künsch (1998)).

For the second test, the asymptotic distribution of the test statistic is given by

(6.7) d ∼ N(0, v2), v2 = γ(0) + 2
∞∑

h=1

γ(h),

where γ(·) is the autocovariance function that is assumed sumable.14 For statistical purposes,

the theoretical autocovariance function is replaced with the sample version.

Figure 6.4 displays the results of the first test. It shows relevant information on the boot-

strapped sampling distribution of the test statistic (obtained with the block bootstrap method dis-

cussed above). More concretely, the 5%th (downwards-pointing triangle), 10%th (cross), 90%th

(cross) and 95%th (upwards-pointing triangle) quantiles of the bootstrapped sampling distribu-

tion of the test statistic D, together with the mean of the distribution (square) are displayed.

One notices that, while for T = 60 the support of most of the sampling distributions contains

zero, i.e. the errors of the two models are not significantly different, for longer horizons, the

support of several sampling distributions does not include the zero value any more, indicating

that the GARCH(1,1) model produces statistically significant bigger errors. In particular, for the

14The statistical analysis of the series dt(T ) show that the autocovariances are never significant beyond the first

40 lags. Most of the time the number of significant lags is smaller or equal to 6 and when significant autocorrelations

are present at larger lags they are barely significant. These facts confirm the appropriateness of the hypothesis of

sumability of the autocovariance function.
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one year horizon, the hedging errors of the GARCH(1,1) model for the series 2 and 6 to 12 are

statistically bigger than those of the simple BM at a 95% confidence level.

Series Horizon

60 days 120 days 180 days 250 days

1. 0.01 0.06 0.10 0.11

2. 0.00 0.00 0.00 0.00

3. 0.43 0.37 0.24 0.10

4. 0.75 0.72 0.71 0.46

5. 0.82 0.74 0.83 0.63

6. 0.36 0.15 0.08 0.08

7. 0.48 0.08 0.00 0.00

8. 0.19 0.06 0.01 0.00

9. 0.01 0.00 0.00 0.00

10. 0.13 0.01 0.00 0.00

11. 0.45 0.28 0.12 0.02

12. 0.00 0.00 0.00 0.00

Table 2. p-values for the test (6.6) based on the CLT asymptotic distribution applied to

D(T)=eGARCH
H (T )− eBM

H (T ), the differences between hedging errors at different maturities

T = 60, 120, 180, 250. The null hypothesis is ED = 0. The samples are those of Table 1.

The series and the periods where the null hypothesis is rejected are in bold face. The bold

face values indicate that the Garch model produces statistically significant greater hedging

errors than the BM model.

Table 2 displays the p-values of the test based on the CLT, i.e. the probability under the null

hypothesis that the test statistic would take values larger or equal to its actual sample value.

Rejections of the null, indicating the series and the maturities where the mean of the hedging

errors based on a Garch(1,1) modeling is significantly bigger that that of the errors incurred using

the BM approach at 95% confidence level, are in bold. We see that, as the horizon increases

(notably for T = 180 and T = 250), the Garch(1,1) model produces significantly larger errors on

average on the series that display a particularly large ratio MSEGARCH/MSEBM , i.e. the series

7 to 14 (with the exception of series 12 which for T = 180 displays a significant p-value, while

for T = 250 the value is barely significant at 95% confidence level). For the first six series (with
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the exception of series 2), for T = 180 and T = 250, the two approaches are not significantly

different. The statistical testing confirms the overall picture given by the graphs in Figure 6.3.

Series p-values for Garch(1,1) hedging p-values for BM hedging

60 days 120 days 180 days 250 day 60 days 120 days 180 days 250 days

1. 0.00 0.02 0.05 0.00 0.08 0.09 0.10 0.05

2. 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.05

3. 0.21 0.24 0.38 0.36 0.51 0.50 0.68 0.87

4. 0.32 0.35 0.32 0.30 0.28 0.16 0.06 0.52

5. 0.18 0.26 0.39 0.02 0.18 0.09 0.00 0.01

6. 0.27 0.11 0.13 0.14 0.30 0.34 0.34 0.80

7. 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00

8. 0.00 0.00 0.00 0.00 0.35 0.29 0.36 0.45

9. 0.01 0.03 0.11 0.00 0.03 0.29 0.34 0.17

10. 0.00 0.00 0.00 0.00 0.16 0.21 0.17 0.23

11. 0.03 0.04 0.01 0.00 0.11 0.09 0.08 0.12

12. 0.00 0.00 0.00 0.00 0.44 0.42 0.29 0.35

Table 3. p-values for test (6.6) applied to eGarch
H (T ) (the left side of the table) and eBM

H (T )

(the right side of the table), the hedging errors at different maturities T = 60, 120, 180, 250.

The null hypothesis is E e∗H = 0. The samples are those of Table 1. The series and the

periods where the null hypothesis is rejected are in bold face. The higher number of bold face

values on the left of the table indicate that the Garch model produces more often hedging

errors that are statistically different from 0 on average.

A similar test can be applied to the individual means of the hedging errors. At maturity, a

correct hedging strategy leads, with probability one, to no hedging error. Of course, in practice,

the error will never be exactly 0. However, applying the correct hedging strategy should produce,

on average, no hedging error. Hence, testing the hypothesis Ee∗H,t(T ) = 0 allows us to evaluate

statistically the quality of the hedging strategy based on model ∗ (as usual ∗ stands for GARCH
or BM).

Table 3 contains the p-values of the test (6.6) based on the sample mean (6.7) with Dt :=

e∗H,t(T ). The sampling distribution of the test statistic is obtained by overlapping-block bootstrap

with the block length selection criteria of Politis and White (2003). The results in Table 3 confirms
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the previous findings. The Garch strategy produces statistically significant errors on the series

with a particularly non-favorable (to Garch) ratioMSEBM/MSEGARCH while the BM approach

seems to produce, with few exceptions, a correct replicating strategy, i.e. a mean zero average

error.

To summarize, it appears that, for the time series considered, the Garch(1,1) model does not

outperform the simple BM model. Moreover, for most of the twelve series, the BM model produces

better results, i.e. smaller replication errors. The results of the exercise seems to indicate that,

for the series under scrutiny, the Garch(1,1) dynamics provides a poorer description of the longer

horizon evolution of the price process than a naive modeling strategy that simply takes the past

for the future.

7. Conclusions

We investigated the relationship between non-stationarities and the IGARCH effect in a novel

modeling framework proposed in Stărică and Granger (2005) that treats the returns as indepen-

dent observations with a time-varying unconditional second moment. By successfully modeling

twelve series of index returns, we brought further evidence that this non-stationary framework

is a viable set-up for the analysis of the dynamics of stock returns. The novel modeling set-up

was complemented with an innovative estimation approach of the unconditional time-varying

volatility based on the Adaptive Weights Smoothing approach of Polzehl and Spokoiny (2003).

As a corollary, our analysis gave empirical evidence of the possible causal relationship between

shifts in the unconditional volatility and the IGARCH effect as emphasized by Diebold (1986),

Lamoureux and Lastrapes (1990), Hamilton and Susmel (1994), Cai (1994), Mikosch and Stărică

(2004) among others. It indicated that periods of relative small changes of the unconditional

variance are characterized by the absence of the IGARCH effect. On the other hand, we found

that the periods displaying significant changes of the unconditional variance of returns were often

characterized by the presence of the IGARCH effect.

We showed that GARCH(1,1) process often fails to model the dynamics of index returns

producing estimates of the unconditional variance that are significantly bigger than the variance

of the sample. We evaluated the forecasting performance of the GARCH(1,1) model on such

samples strongly affected by the IGARCH effect. We showed that the GARCH(1,1) model often

fails to produce reasonable longer horizon forecasts and that poor forecasting episodes can last
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at least four years (sometimes much longer than that). We found that the poor forecasting

behavior affects negatively the quality of GARCH(1,1) replicating strategies of simple claim.

More concretely, the GARCH(1,1) produces replication errors that are significantly greater than

those of a naive modeling approach that takes the past as the future.

8. Appendix.

All Ordinaries (All Ords ASX) index is made up of the weighted share prices of about 500 of

the largest Australian companies. The Austrian Traded Index (ATX) is a capitalization-weighted

index of the most heavily traded stocks on the Vienna Stock Exchange. The CAC-40 Index

is a narrow-based, modified capitalization-weighted index of 40 companies listed on the Paris

Bourse. The German Stock Index (DAX) is a total return index of 30 selected German blue chip

stocks traded on the Frankfurt Stock Exchange. The FTSE 100 Index is a capitalization-weighted

index of the 100 most highly capitalized companies traded on the London Stock Exchange. The

Stockholm Options Market Index (OMX) is a capitalization-weighted index of the 30 stocks that

have the largest volume of the trading on the Stockholm Stock Exchange. The Russell 3000 Index

is a total return index of 3000 companies representing approximately 98% of the U.S. market. The

S&P/Toronto Stock Exchange Composite Index (S&P/TSX) is a capitalization-weighted index

designed to measure market activity of stocks listed on the TSX. The BEL 20 Index is a modified

capitalization-weighted index of the 20 most capitalized and liquid Belgian stocks that are traded

on the Brussels Stock Exchange. The Nikkei-225 Stock Average is a price-weighted average of 225

top-rated Japanese companies listed in the First Section of the Tokyo Stock Exchange. FAZ is

a stock index produced by the Frankfurter Allgemeine Zeitung, representing 500 German stocks.

FAZ index is share price index and only reflect price trends. (By contrast the DAX, a performance

index, also take dividends and rights issues into account.) The Dow Jones Industrial Average is

a price-weighted average of 30 blue-chip stocks that are generally the leaders in their industry.
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Figure 6.1. The ratio MSEBM (p)/MSEGARCH (p) defined in (6.5) for the sub-samples in Table

1. The order from top-left to bottom-right corresponds to that in the table. A ratio smaller than 1

at horizon p indicates that Garch(1,1) volatility forecast for the next interval of p days is poorer than

that based on the simple BM approach.
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Figure 6.2. Means of the hedging errors of the replicating strategies for straddles with maturities

T = 5 (left) and T = 20 days (right) for the twelve series of Table 1, when the stationary variance of

GARCH is employed.
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Figure 6.3. Means of the hedging errors of the replicating strategies for straddles with maturities

T = 60, 120, 180, 250 for the twelve series of Table 1.
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Figure 6.4. The 5%th (downward-pointing triangle), 10%th (cross), 90%th (cross), 95%th (upward-

pointing triangle) quantiles and the mean (square) of the bootstrapped sampling distribution of the test

statistic D, corresponding to the differences of hedging errors of replicating strategies for straddles

with maturities T = 60 (upper-left), 120 (upper-right), 180 (lower-left), 250 (lower-right) for the

twelve series of Table 1.


