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Advancing the iid Test Based on Integration across the Correlation Integral: 
Ranges, Competition, and Power 

 
Ev�en Kočendaa and Ľubo� Briatkab 

 

Abstract 
This paper builds on Kočenda (2001) and extends it in two ways. First, two new 
intervals of the proximity parameter ε (over which the correlation integral is 
calculated) are specified. For these ε-ranges new critical values for various lengths 
of the data sets are introduced and through Monte Carlo studies it is shown that 
within new ε-ranges the test is even more powerful than within the original ε-
range. A sensitivity analysis of the critical values with respect to ε-range choice is 
also given. Second, a comparison with existing results of the controlled 
competition of Barnett et al. (1997) as well as broad power tests on various 
nonlinear and chaotic data are provided. The results of the comparison strongly 
favor our robust procedure and confirm the ability of the test in finding nonlinear 
dependencies. An empirical comparison of the new ε-ranges with the original one 
shows that the test within the new ε-ranges is able to detect hidden patterns with 
much higher precision. Finally, new user-friendly and fast software is introduced. 
 
Tento článek je roz�ířením studie Kočendy (2001) v nasledujících dvou rovinách. 
Za prvé, v článku jsou specifikovány dva nové intervaly pro proximity parametr ε, 
přes které se počítá korelační integrál. Pro tyto intervaly jsou tabulovány nové 
kritické hodnoty a pomocí Monte Carlo studie se ukazuje, �e test je citlivěj�í ne� 
při pou�ití původního intervalu. Rovně� je provedena analýza citlivosti těchto 
kritických hodnot na změnu intervalu proximity parametru ε. Za druhé, srovnáním 
výsledků porovnání testů, kterou provedl Barnett et al. (1997), a výpočtem síly 
testu pro rozličná nelineární a chaotická data pro v�echny intervaly poukazujeme 
na silnou schopnost testu odhalovat nelineární závislosti v datech. Empirické 
porovnání s původními výsledky ukázalo, �e test je s pou�itím nových intervalů 
schopen zachytit skryté struktury v datech s je�tě vět�í citlivostí. Na závěr, 
přiná�íme nový, u�ivatelsky příjemný a rychlý software pro výpočet testovací 
statistiky. 
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1. Introduction 

Growing interest as well as practical needs of researchers in testing for 

nonlinearity and chaos in high-frequency economic and financial data has 

prompted the design of various methods to accomplish the task. Among them, a 

well known BDS test was devised by Brock, Dechert, Scheinkman and LeBaron 

(1996) as a non-parametric method of testing for nonlinear patterns in time 

series.1 The method is based on the correlation integral described by Grassberger 

and Procaccia (1983) and is unique in its ability to detect nonlinearities 

independent of linear dependencies in the data. The null hypothesis is that data in 

a time series are independently and identically distributed (iid); an alternative is 

not specified. In order to conduct the BDS test, two free variables (embedding 

dimension m and proximity parameter ε) must be chosen ex ante, with limited 

guidance from statistical theory; thus it is likely that inappropriate values may be 

chosen. Kočenda (2001) has suggested an alternative test which, through 

integrating across the correlation integral, avoids arbitrary selection of the 

proximity parameter ε and allows for running the test across an empirically 

endorsed set of embedding dimensions m. 

 This paper builds on Kočenda (2001) and increases the operational ability 

of the alternative test in three ways. We improve the choice of the interval of the 

proximity parameter ε over which the correlation integral is calculated and 

suggest the range that maximizes the power of the test. We also bring necessary 

sets of critical values for various lengths of data and provide an analysis of their 

sensitivity with respect to the choice of proximity parameter range. Further, we 

compare the test with existing results of the single-blind controlled competition of 

Barnett et al. (1997) and perform power tests on various chaotic (nonlinear) and 

noisy chaotic data. The results strongly attest to our robust procedure. 

Additionally, new compact software to run the test, as well as allowing for 

associated simulations, is introduced as freeware. 

 Section 2 provides a brief theoretical background and describes the 

motivation for ε-range choice in greater detail. Section 3 deals with the choice of 
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ε-range and supplies critical values generated by the Monte Carlo technique. 

Section 4 contains a sensitivity analysis of critical values over different ranges of 

proximity parameter ε. Section 5 examines power tests, Section 6 describes the 

new software, and Section 7 briefly concludes. 

 

2. Theoretical Background and Motivation 

Chaotic systems of low dimensionality can generate seemingly random numbers 

that may give an impression of white noise, thereby hiding their true nature. 

Under presumed randomness, a nonlinear pattern can hide without being detected. 

Exchange rates, stock market returns and other macroeconomic variables of 

generally high frequency, for example, may originate from low-dimensional 

chaos. Detection of nonlinear hidden patterns in such time series provides 

important information about their behavior and improves forecasting ability over 

short time periods.2 

 The analysis of chaotic systems often starts with computing a correlation 

dimension because of the ease of computation and the availability of sampling 

theory. The aforementioned BDS test is based on such a technique and was 

designed to detect hidden patterns in stochastic time series. This test is a non-

parametric test of the null hypothesis that the data are independently and 

identically distributed (iid) against an unspecified alternative. The procedure has 

power against both deterministic and stochastic systems. The BDS test is a well- 

known standard procedure; it is widely used for its ability to deal with stochastic 

time series, which makes its application in modern macroeconomics and financial 

economics extremely appealing. 

 While the BDS statistic is easy to compute, it suffers from an obvious 

drawback�the values of two parameters, proximity parameter ε (also referred to 

as tolerance distance or metric bound) and embedding dimension m, must be 

                                                                                                                                                               
1 We cite other well known tests later in Section 5.1. 
2 Recent advances in research of chaos allow researchers to control chaotically behaving systems 
in various fields of physics, biology, chemistry, and medicine. Effective control for chaos in 
economics does not seem to be more realistic than discovering Shangri-la, though. 
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determined ex ante.3 Further, the BDS statistic, when used for testing, has often 

been evaluated for only few values of the proximity parameter ε. This was brought 

about, in part, by the Monte Carlo studies of Hsieh and LeBaron (1988) who tested 

the asymptotic normality of the statistic for three values of the parameter, and 

tabulated the corresponding critical values. 

 The alternative test of Kočenda (2001) suggests considering an OLS-

estimate of the correlation dimension over a range of ε-values, and is thus closer 

in spirit to the original correlation dimension than is the BDS test (for full details 

see the original paper).4 The test rests upon the concept of the correlation integral, 

developed by Grassberger and Procaccia (1983). Formally, let }{ tx be a scalar 

time series generated randomly according to a density function f. Form m-

dimensional vectors, called m-histories, ),,,( 11 −++= mttt
m
t xxxx K . The correlation 

integral at embedding dimension m is computed as 
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Thus, the correlation integral measures the fraction of pairs that lie within the 

tolerance distance ε for the particular embedding dimension m. 

 The alternative statistic uses a number of tolerance distances chosen from 

a specific range for each particular embedding dimension by calculating the slope 

of the log of the correlation integral versus the log of the proximity parameter over a 

broad range of values of the proximity parameter. The slope coefficients, mβ , can 

be estimated as 
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3 Some guidance can be found for example in Dechert (1994), Brock, Dechert, Scheinkman and 
LeBaron (1996), de Lima (1992), and Hsieh and LeBaron (1988). 
4 It is worthwhile noting that originally an important reason to develop the BDS test was that point 



 5

which equals to calculating the slope coefficient mβ  from the least squares 

regression 

 ( )( ) ( ) iimmiTm uC ++= εβαε lnln , ;    i = 1, �, n                                    (2.3b) 

where )ln(ε  is the log of proximity parameter (tolerance distance), ))(ln( , εTmC is 

the correlation integral value, m is the embedding dimension, and the variables 

with a bar denote the mean of their counterparts without a bar.5 Since a range of 

different tolerance distances ε is used the slope coefficients mβ  do not depend on 

an arbitrary choice of ε. As for the choice of embedding dimension m, a range of 

empirically endorsed dimensions m is used, which gives enough variety to capture 

a more complex dimensional structure without eliminating unexplored 

opportunities. One theoretical feature of the slope coefficients mβ  is that under the 

null hypothesis that the data are iid, these slopes should equal the respective 

embedding dimension m at which the statistic is calculated (i.e. mm =β ).6 

However, slope coefficient estimates mβ  are smaller than respective embedding 

dimension m, i.e. mm ≤β . For details and proof see the appendix. 

 

3. Proximity parameter range and critical values 

Kočenda (2001) performed a Monte Carlo study with 10,000 replications of the 

distribution of the mβ  statistic under the null hypothesis of iid data.7 Critical values 

were tabulated for data-length of 500, 1000, and 2500 observations allowing for 

nine embedding dimensions m (2-10). The range of proximity parameter ε, for 

which the critical values were generated, extends over the specific interval: n = 41 

proximity parameters ε ranging over the interval (0.25σ, 1.00σ) in proportionally 

equal increments (σ being standard deviation of a sample). 

 The above original interval is chosen sensibly to allow for hidden patterns 

                                                                                                                                                               
estimates of the correlation dimension were very unstable across values of ε. 
5 As mβ  is, in fact, an OLS estimate of the slope coefficient, by econometric tradition it should be 

labeled as mβ� . For the sake of notational simplicity, we decided to omit the hat. 
6 See Hsieh (1991). 
7 A compound random number generator based on the idea of Collings (1987) and constructed 
from 17 generators described by Fishman and Moore (1982) was employed to generate iid data. 
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corresponding to very narrow tolerance distances. However, a single ε-range 

prevents observing whether and how sensitive the tabulated critical values are to a 

choice of different ε-range. Further, the originally chosen ε-range does not need to 

be an optimal range; e.g. the range that, when used, maximizes the power of the 

test. We elaborate on this issue in the following sections. 

 

3.1 Range selection 

The issue of the ε-range choice is complicated by the fact that we cannot 

theoretically derive a correct range of proximity parameters. This is due to the fact 

that the behavior of the mβ  statistic within an ε-range is closely related to the 

composition of the analyzed data. Therefore it is possible that one ε-range is more 

appropriate for some kind of data and a different e-range for another one. (We will 

come back to these issues in Section 5.4) For this reason, we select two additional 

ranges of proximity parameters to study whether and how the critical values 

behave.8 We proceed with calculating critical values, then compare them for three 

different intervals, and finally perform a series of power tests to expose the range 

that provides the test with the greatest power against the null hypothesis. Such a 

range should be considered the optimal one. Since both the BDS and the Kočenda 

tests start with computing the correlation integral, we use the BDS literature as a 

point of reference on what proximity parameters are often used as required entries 

to compute the test. Table 1 offers a summary of selected representative literature 

dealing with the issue. 

 To repeat, Kočenda (2001) provides critical values for proximity 

parameter in a range of (0.25σ, 1.00σ); this is our first (original) interval. This 

range is the most discriminating range of the proximity parameters ε, which means 

that it takes into account primarily very small tolerance distances among the data 

in a sample. By this token the test is able to uncover only a specific class of non-

                                                           
8 The issue of different ε-ranges is discussed also in Belaire-Franch (2003) who argues that 
although the power of Kočenda�s test can be more powerful than the BDS test, more than one ε-
range should be used. The two additional ranges used in his study were constructed only as an 
additive extension to the original range without any theoretical or empirical argument given to 
support the choice. 
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iid patterns within data. 

 The second interval is motivated by the results of Monte Carlo studies 

performed by Hsieh and LeBaron (1988), who found that the power and size of 

the BDS test is maximized when proximity parameter ε is chosen between 0.5 and 

1.5 of the standard deviation of the sample. For this reason we have chosen to 

calculate values of correlation integral for (0.50σ, 1.50σ) range of proximity 

parameters. Table 1 illustrates that, indeed, numerous empirical studies used 

isolated values of proximity parameter within such a range of values. 

 The third interval represents the broadest range of sensible proximity 

parameter values that are used in the empirical literature. Since we concur with 

Kanzler (1999), who shows that the asymptotic normality of the BDS test depends 

on the correct choice of proximity parameter, we employ the broad interval of 

proximity parameters within (0.25σ, 2.00σ) in order to avoid omitting its possible 

correct values when computing the statistic of the Kočenda test. The ample use of 

proximity parameter values from within the third range is again documented in 

Table 1. 

 

3.2 Critical values 

In order to derive statistical properties of the Kočenda test when different proximity 

parameter ranges are used, a Monte Carlo study of the distribution of the statistic 

under the null hypothesis is performed.9 Our sample consists of drawing 20,000 

time series from a standard normal distribution of length 500, 1000, and 2500 

observations in each series. 

 The data were generated using an inversive congruential generator. The first 

1000 observations were discarded to avoid dependency on the initial condition. 

Finally, the generated data were randomly shuffled to reduce any hidden non-

random dependencies in the data. The practical advantage of an inversive 

congruential generator (ICG) against a linear congruential generator (LCG) is that 

ICG guarantees the absence of a lattice structure. We have opted for the ICG for its 

superiority, despite the fact that it is significantly slower than LCG. Both generators 

                                                           
9 Monte Carlo simulations are used instead of distribution theory because the test is non-parametric. 
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are easy to implement and there is abundant literature available with the portable 

code, parameters and test results.10 For a concise survey of the performance of 

inversive random number generators in theoretical and empirical tests, as well as 

tables of parameters to implement inversive generators see Hellekalek (1995). For 

a survey of the latest concepts and results of random number generation, we 

recommend starting with L�Ecuyer (2004). 

 Following Kočenda (2001), the generated iid samples were exposed to the 

computational procedure of the correlation integral allowing for nine embedding 

dimensions m (2-10) and 41 tolerance distances ε ranging over the three different 

intervals introduced in section 3.1, in proportionally equal increments. Then, slope 

coefficient estimates of mβ  were calculated according to equation (2.3a). When 

computing the slope coefficient estimates of mβ , a cut-off point was set to 

eliminate the erratic portion of the trajectories at the highest embedding 

dimensions, m (7-10). Such a cut-off point does not affect the analysis for lower 

embedding dimensions m, but considerably reduces the increasing variance as 

embedding dimension m grows larger and tolerance distance ε becomes smaller. 

The cut-off point represents the number of matches that maximizes the power of 

the test or, implicitly, minimizes error of the second kind.11 

 Finally, quantiles for the slope coefficient estimates mβ  at different 

dimensional levels were tabulated. Table 2 presents the quantiles to allow a 

hypothesis testing at levels of 1%, 2%, 5%, and 10% for time series of 500 

observations. Tables 3 and 4 present the quantiles for time series of the length 

1000 and 2500 observations, respectively. Let Lα and Uα be lower and upper 

                                                           
10 The described data-generating strategy was chosen for two reasons. First, an ICG effectively 
eliminates repetitiveness in the data caused by the limitations of computer hardware. Secondly, 
other methods such as hypothetically obtaining white noise residuals by estimating a generating 
process (i.e. AR, ARCH, GARCH, etc.) may possess some unaccounted for structural form which 
would bias the critical values in a Monte Carlo simulation. The issues of how the asymptotic 
distribution of the test statistics might be affected by the estimation process is discussed by de 
Lima (1998). 
11 By simulation it was found that such a number lies in the interval between 40 to 50. To be on the 
safe side, the value of the correlation integral was constrained to be 50. The �cut-off� value for 
Cm(ε) must be chosen before slope coefficient estimates are computed. Cm(ε) = 50 resulted from 
simulations that were compared with various trajectories resulting from the analysis conducted on 
different time series. 
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bounds of the (100 - α) percentage confidence interval. If [ ])()( αα UxLx >∨< , 

then the null hypothesis of iid can be rejected at the α percent confidence level. 

 

4. Sensitivity of critical values to an εεεε-range choice 

When compared, critical values for equal length of a data sample and embedding 

dimension differ. Figure 1 summarizes how the critical values of the statistic vary 

with the choice of proximity parameter range. For each size of a data sample (500; 

1000; 2500 observations) we present dispersions of critical values at 2.5% and 

97.5% quantiles. Dispersions, or relative changes of critical values, are calculated 

as respective quantile differences between critical values obtained for two 

specified intervals over particular embedding dimension. The relative changes are 

of various signs but in the figure they are pictured in absolute value for better 

accessibility. 

 Overall, the largest relative differences of critical values exist between 

pairs of ranges [(0.25σ, 1.00σ) and (0.50σ, 1.50σ)], and [(0.25σ, 1.00σ) and (0.25σ, 

2.00σ)]. The differences in critical values between these two pairs range from 4% 

to 10% at embedding dimensions up to 5 and differences reach higher values as 

embedding dimension increases. This is a notable feature for 97.5% quantile 

where differences range from 10% to about 40%; the increase in differences is 

correlated with embedding dimension and is inversely related to sample size. 

 The smallest differences, on other hand, exist between a pair of tabulated 

critical values of the newly suggested ranges [(0.50σ, 1.50σ) and (0.25σ, 2.00σ)]. 

Specifically, all differences were below 8% or even smaller, below 3%, at 

embedding dimensions from 1 to 5. When we consider the values themselves, the 

differences are negligible. 

 Variation of critical values is not only associated with the range of 

proximity parameter but also with the value of embedding dimension used and 

with the size of a sample, as we already mentioned. To complete the assessment 

of differences among critical values tabulated for different ranges of proximity 

parameter, we provide Table 5, which contains absolute differences among critical 

values between pairs of all three ε-ranges. 



 10

 We have found that, in the case of a sample size of 2500 observations, the 

differences of critical values tend to increase with embedding dimension m for all 

three pairs of ε-ranges (while this tendency can be traced for 97.5% quantile, it 

becomes less pronounced for 2.5% quantile). We can trace the same tendency for 

some pairs of ε-ranges in a sample size of 1000 observations.12 For a sample size 

of 500 observations the differences in critical values follow an erratic pattern. In 

general, the differences are also somewhat larger for a small sample size (e.g. in 

our case a sample of 500 observations is a small sample when compared to a 

sample size of 1000 or 2500 observations). The main reason is that as embedding 

dimension m increases, fewer and fewer non-overlapping m-histories become 

available to compute the correlation integral. In a small sample, there are few data 

available and deviation of critical values is thus greater for the small data size.13 

 A further implication is that for samples of moderate size only a low-

dimensional chaos is characterized. This is due to the fact that the estimates of 

C1,T show a far larger deviation around their asymptotic values when the samples 

are small than when they are large (Kanzler 1999). However, as we stated earlier, 

the correct choice of ε is unknown. Moreover, small ε causes the expected number 

of close histories to be small and thus renders estimation of Cm,T less reliable. This 

means that the choice of ε has a greater impact on the reliability of Cm,T than on 

C1,T. 

 The main result of sensitivity analysis of critical values is that they differ 

for three ε-ranges and these differences are smallest between the critical values of 

the ranges [(0.50σ, 1.50σ) and (0.25σ, 2.00σ)]. 

 It may seem that when several intervals of proximity parameter ε are 

proposed a problem of arbitrary selection of proximity parameter (in the BDS test) 

is transformed into the problem of selecting its appropriate range (in the Kočenda 

test). Fortunately, in the following section, we show that this is not the case. 

 
                                                           
12 This is in line with the findings of Brock, Hsieh, and LeBaron (1993) and Kanzler (1999) with 
respect to the BDS test: As the embedding dimension m increases, the BDS distribution moves 
away from its asymptotic distribution, the standard normal. The lower the dimension, the better the 
small-sample properties, whatever the sample size and size of the epsilon. 
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5. Performance and power of the test 

5.1 Performance in competition 

In order to compare performance of the Kočenda test with other tests for 

nonlinearity and chaos we have exploited the study of Barnett et al. (1997) who 

performed a well-known single-blind controlled competition to compare the 

power of five highly regarded tests for nonlinearity or chaos against various 

alternatives.14 This approach allows us to distinguish which of the three ε-ranges 

maximizes the power of the test as well. This way, selection of the appropriate 

range loses its mystery. 

 In order to facilitate accessibility of our results we briefly outline the above 

single-blind competition. Despite the fact that the study of Barnett et al. (1997) is 

widely known, we urge consulting the original source for exhaustive details. The 

data used in this competition were simulated by five different generating 

specifications at two sample sizes. The �small� sample size contains 380 and 

�large� sample size 2000 observations. The samples were generated by the 

following five models: 

1. Fully deterministic, chaotic Feigenbaum recursion (FEIG) of the form: 

 ( )11 157.3 −− −= ttt yyy , (5.1) 

where the initial condition was set at 7.00 =y ; 

2. A generalized autoregressive conditional heteroscedasticity model (GARCH) of 

the form: 

 ttt uhy 21= , (5.2) 

where ht is defined by 1
2

1 8.01.01 −− ++= ttt hyh , with 10 =h  and 00 =y ; 

3. A nonlinear moving average model (NLMA) of the form: 

 218.0 −−+= tttt uuuy ; (5.3) 

4. An autoregressive conditional heteroscedasticity model (ARCH) of the form: 

 ( ) ttt uyy 212
15.01 −+= , (5.4) 

                                                                                                                                                               
13 This is similar to the case of the BDS test. 
14 We acknowledge that Brock, Hsieh, and LeBaron (1993) performed similar tests but these were 
done mainly on the BDS test and as such they are less suitable as a point of reference for our 
further purpose. 
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with the value of the initial observation set at 00 =y ; 

5. An autoregressive moving average model (ARMA) of the form: 

 121 3.015.08.0 −−− +++= ttttt uuyyy , (5.5) 

with 10 =y  and 7.01 =y . 

 The white noise disturbances, ut, in the four stochastic models were 

sampled independently from a standard normal distribution and were generated 

using the fast acceptance-region algorithm of Kinderman and Ramage (1976), 

with the initial seed value set by the clock of the computer at the time the program 

was run. Of the five data generating models, specification (5.1) is chaotic and 

noise free, whereas the other specifications represent stochastic processes. 15 

 The five tests that were used in the competition are the following: Hinich 

bispectral test in the frequency domain of flatness of the bispectrum, which is a 

test of the null hypothesis that the skewness function is flat, and hence that there is 

a lack of third order nonlinear dependence (for details see Hinich, 1982); BDS test 

for implicit evidence of nonlinearity. This is a test of the null hypothesis of iid (for 

details see Brock, Dechert, Scheinkman, and LeBaron, 1996); NEGM 

nonparametric test for positivity of the maximum Lyapunov exponent, which is a 

direct test for chaos (for details see Nychka, Ellner, Gallant, and McCaffrey, 

1992); White test for nonlinearity, a test of the null hypothesis of the linearity in 

the mean (for details see White, 1989a, b; Lee, White, and Granger, 1993; 

Jungeilges, 1996); Kaplan test for nonlinearity, which is a test of the null 

hypothesis of linearity of the dynamics found in the data (for details see Kaplan, 

1994). 

 Following the strategy of Barnett et al. (1997) we have used the same 

samples of the data that were used for the blind competition and run the Kočenda 

test on them; we have downloaded all ten data samples generated by models (5.1-

5.5) from the Working Paper Archive maintained at Washington University.16 The 

results are presented in Table 6. 

                                                           
15 For exhaustive details on models, data generating, as well as discussion on particular processes, 
see the original paper of Barnett et al. (1997). 
16 The web address of the data is http://econwpa.wustl.edu/eprints/data/papers/9510/9510001.abs 
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 For the most restrictive interval (0.25σ, 1.00σ) and small sizes of the data 

the test was unable to confidently reject the iid hypothesis in case of GARCH, 

NLMA, and ARCH processes. Poor performance of the test in the case of the 

ARCH process occurred at embedding dimensions of 6 and higher; this range of 

values is associated with a higher dispersion of critical values (see Section 3.3). 

For two additional intervals, (0.50σ, 1.50σ) and (0.25σ, 2.00σ), the test rejected 

the iid hypothesis correctly at the 1% level for all processes and both sample sizes. 

This result is very encouraging since rejection of the iid null could also be made at 

all embedding dimensions; thus, the procedure has not left a void in inference 

with respect to both subjectively selected parameters of the test. Note that both 

sample sizes of competition data (380 and 2000) are different than sizes for which 

we generated critical values (500, 1000, and 2500). For small (380) and large 

(2000) samples the closest critical values for sizes of 500 and 2500 observations 

were used, respectively. 

 We knew the nature of the data beforehand and therefore we did not 

perform a blind competition in the strictest sense. On the other hand, human 

factor enters the execution of the Kočenda test only in selecting ε-range and 

embedding dimensions; this becomes obvious later when we introduce new user-

friendly and fast software to perform the test. By running the test in all three ε-

ranges, each time for nine embedding dimensions, we eliminated potential 

reservations concerning our results. Further, since original data as well as our 

software are freely available, within minutes our findings can be easily replicated 

and verified. 

 To summarize: our results show that the test performance is very 

satisfactory since with a correctly selected ε-range it performs equally or better 

than the tests included in the competition performed by Barnett et al. (1997).17 

                                                           
17 The following summary of the competition results comes from from section 9.1 Overview of 
Barnett et al. (1997). The Hinich bispectrum test was correct in three out of the five cases and 
failed in two of the cases with the small sample. With the large sample, the test was correct in three 
of the five cases, failed in one case, and was ambiguous in one case. The associated Gaussianity 
test, is a test of a necessary and not sufficient condition for Gaussianity and hence can reject but 
not accept. Judging the test on its rejections of Gaussianity, the small sample results produced only 
two rejections, and both were correct rejections. With the small sample, the test produced four 
rejections, and all four were valid rejections. With the small sample, the BDS test was correct in 
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Further, the time needed to run the test with our new software is negligible. 

 

5.2 Power tests 

In addition to the performed competition we decided to verify performance of the 

test with multiple data sets by proceeding with a series of power tests. Power tests 

allow for further assessment of performance as well as enable us to establish a 

basis for correct selection of the ε-range. 

 In order to show ability of the test to correctly distinguish between truly 

random and random-like data we have performed a series of power tests to judge 

the performance at a 5% significance level, thus fixing the probability of the 

�first-type� error. When the test is applied to the random-like data, the relative 

number of non-rejections of the null hypothesis (H0: data are iid) at the given 

significance level corresponds to the probability that the test is subject to the 

�second-type� error�not rejecting the null hypothesis when it is not true. The 

smaller the probability of the �second-type� error (probability of the �first-type� 

error being fixed) is, the greater the power of the test. 

 To conduct the power tests we pursued the following strategy. For each of 

the five models described in specifications (5.1-5.5), and used by Barnett et al. 

(1997), we have generated 1000 samples of data.18 The data were generated in 

three sizes of 500, 1000, and 2500 observations. We have used all samples to 

perform a battery of power tests; the results are reported in Tables 7-9. For better 

accessibility we report cumulative results of the power tests as a percentage of H0 

rejections; the percentage when the test correctly rejects the null hypothesis since 

tested data are anything but iid. 

 Across all proximity ranges as well as sample sizes the test always 

                                                                                                                                                               
two cases out of five and ambiguous in the other three. With the large sample, the test was correct 
in all five cases. The NEGM test was correct in all five small sample cases and all five large 
sample cases. In the small sample cases, White's test was correct in four out of the five cases, and 
failed in the remaining case. In the large sample cases, White's test again was correct in four out of 
the five cases, and failed in one case. Kaplan's test was correct in all five cases both with the small 
samples and the large samples. 
18 Because the Feigenbaum process is deterministic we have replicated 1000 times only the four 
other processes, to be precise. Since competition performed by Barnett et al. (1997), 
understandably, does not contain power tests of participating tests, we do not offer any comparison 
in this respect. 
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accurately rejects the null hypothesis for FEIG and ARMA processes. For the 

remaining processes the power of the test uniformly improves with the sample 

size as one would expect.19 GARCH, ARCH, and NLMA processes pose some 

challenge to the test at sample size of 500 observations; the power of the test 

dramatically improves for ARCH and NLMA processes when samples of 1000 

and 2500 observations are used. An interesting picture emerges when the power of 

the test is compared among the three ranges of the proximity parameter. The 

power is lowest for interval (0.25σ, 1.0σ) but improves radically for intervals 

(0.5σ, 1.5σ) and (0.25σ, 2.0σ). For these two intervals the power of the test is 

extremely high, above 90% in most cases even for the small sample size of 500 

observations; an exception is the power in the GARCH process. The power of the 

test is highest for both wide intervals and large sample size (2500 observations) in 

all five processes; it is near 100% of correct rejections for the GARCH process 

and precisely 100% for remaining processes. 

 

5.3 Further power tests on chaotic data with noise 

For the sake of consistency the previous power tests were performed on the set of 

processes used in Barnett at al. (1997). We performed further power tests on other 

chaotic processes with additive noise. In order to keep the extent of work 

manageable we have chosen two standard non-univariate chaotic systems to 

generate the data; both were additively contaminated with noise (the results of 

these additional power tests are presented in Tables 10-12). 

 First, we have chosen the Hénon (1976) map, which is a bivariate chaotic 

system described by a pair of difference equations; for our purpose we used a 

collapsed version of the original system given by specification as in Lai and Chen 

(2003): 

 2
11 4.13.01 ttt yyy −+= −+  (5.6) 

which was further contaminated by noise. The new noisy chaotic series xt was 

constructed as ttt uyx +=  where yt satisfies (5.6) and ut is independently and 

                                                           
19 This finding is in line with results reported by Hsieh and LeBaron (1991) who have found that 
type I error is large with the BDS test when the sample size is small. 
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normally distributed with mean 0 and variance 0.04. 

 The test recorded a 100% rejection rate of the iid hypothesis correctly for 

both chaotic and noisy chaotic series for all three ε-ranges used. 

 Further, we opted for the Lorenz (1963) map, which is a trivariate chaotic 

system described by a system of differential equations. However, for our purpose 

we used a more intricate specification of the system of 10 differential equations 

suggested by Lorenz (1996) and Emanuel and Lorenz (1998). In general, it is a 

system of N differential equations with N variables specified as: 

 fxxxxx iiiii +−+−= −+− 112 )(& , where i = 1, 2, ..., N. (5.7) 

To make these equations meaningful, it was set x-1 = xN-1, x0 = xN and xN+1 = x1. 

The variables of the system are scaled so that the coefficients of the quadratic and 

linear terms are unity. For the purpose of our simulation we consider N = 10. Like 

the previous case of the Hénon map we contaminated data with noise by adding 

error process ut, where ut is independently and normally distributed with mean 0 

and variance 0.04 as in in Lai and Chen (2003). 

 The test recorded a 100% rejection rate of the iid hypothesis correctly for 

both chaotic and noisy chaotic series for all three ε-ranges used. 

 

5.4 Range selection recommendation 

The results of the power tests combined with the findings on sensitivity of the 

critical values to the ε-range choice enable us to formulate the following 

recommendations.  

 Unless assumptions of a research project dictate otherwise, the intervals 

(0.50σ, 1.50σ) and (0.25σ, 2.00σ) should be used. If no preferences associated 

with research motivations are set, we suggest avoiding the use of the (0.25σ, 

1.00σ) range since the power of the test is lower than for the other two intervals 

(negatively biased estimator). 

 For �short� data samples the (0.50σ, 1.50σ) range should be used as a 

preferred choice, especially in cases when a set of the lower embedding 

dimensions is used, as is common practice among researchers. Range (0.50σ, 

1.50σ) has slightly better power over embedding dimensions m = 2-5 than the 
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range (0.25σ, 2.00σ), which has better power over dimensions m = 6-9. Thus, 

range (0.50σ, 1.50σ) should be used for tests carried over embedding dimensions 

m = 2-5 and the range (0.25σ, 2.00σ) for tests carried over the whole set of 

dimensions, e.g. m = 2-9. However, since testing at high levels of embedding 

dimension m (when m is higher than 5) is often questionable due to reasons 

articulated earlier, the range (0.50σ, 1.50σ) may be used as a convenient template 

option. 

 

5.5 The bootstrap method 

The critical values in Section 3 were tabulated under the assumption of a standard 

normal distribution. This is a sensible assumption when real data are meant to be 

scrutinized by the test. The two kinds of most widely used data exploited in the 

literature on nonlinear dynamics are exchange rates and stock prices (see Hsieh, 

1989 and 1991 for comprehensive assessments); further typical data are returns on 

bonds and treasury as well as inflation rates (see Hiemstra and Kramer, 1997). 

The residuals coming from models aiming to capture nonlinear dynamics in such 

data are usually subject to testing for being iid since most frequently they are 

normally distributed but often still exhibit nonlinearities (e. g. they are not 

independent). 

 To illustrate the point we present histograms of several series of residuals 

from nonlinear models of exchange rates as well as stock prices. For exchange 

rates we use several standardized residual series from models by Kugler and Lenz 

(1990, 1993) and Brock, Hsieh, and LeBaron (1993).20 The histograms of 

                                                           
20 Kugler and Lenz (1990) analyzed the nonlinear dependence of weekly exchange rate changes for 
four currencies against the US (the rate of change of the log exchange rate tt Sx log∆= ). The data 
were corrected to account for the present ARCH process by transformation into the ARCH 
corrected rate of changes in the form 5.0

6

1

2
0 )log��(loglog −

=
−∑ ∆+∆=∆

τ
τταα tt

h
t SSS . 

Kugler and Lenz (1993) analyzed the nonlinear dependence of weekly exchange rate changes for 
ten currencies against the US dollar. They estimated the GARCH-M model as 

∑
=

− ++∆+=∆
3

1
40 loglog

τ
ττ ηβββ tttt hSS , where 12

2
110 −− ++= ttt hh αηαα  and ttt hεη = . 

Brock, Hsieh, and LeBaron (1993) analyzed the daily closing bids for the five major currencies in 
US dollars. They estimated the GARCH model specified as 
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distributions of particular residuals are presented in Figure 2. 

 For stock prices we use standardized residuals from models using stock 

price indices from Standard & Poors 500 Index and Dow Jones Industrial Average 

Index.21 These stock indices represent two of the most commonly used 

benchmarks of overall stock market developments and were used in numerous 

studies; to name just a few, S&P500 stock index was used in studies of Harris 

(1989), Brorsen and Yang (1994) or Bollerslev and Mikkelsen (1999); likewise, 

the Dow Jones stock index was used by Hiemstra and Jones (1994), Andersen et 

al. (2001) or Engle and Patton (2001), among others. Histograms in Figure 3 show 

the distribution of standardized residuals coming from the EGARCH model used 

by Hsieh (1991) for weekly S&P500 returns and from the GARCH model used by 

Engle and Patton (2001) for daily Dow Jones returns.22 

 The histograms of residuals for both exchange rates and stock indices 

clearly show that series approximate standard normal distribution and do not 

exhibit any significant departures or distortions. Yet we know that many of the 

real economic series are not iid, similar to artificial nonlinear data. Still their 

distributions may look perfectly normal, as is the case of four processes used in 

the study of Barnett et al. (1997) whose distributions are presented in Figure 4. 

 Hence, for the real economic data that we just introduced for illustrative 

purposes, the use of tabulated critical values is wholly appropriate. However, this 

does not need to be the case if data exhibit excessive departure from standard 

                                                                                                                                                               

tHHtRRtWWtTTtMM

j

i
iit uDDDDDrr +++++++= ∑

=
− βββββββ ,,,,

1
10

, where, ),,0(~1 ttt hDu −Ω  and 

variance equation is HHtRRtWWtTTtMMttt DDDDDhuh φφφφφφψφ +++++++= −− ,,,,1
2

10 , where tr  is the 
rate of change of the nominal exchange rate at time t, tMD , , tTD , , tWD , , and tRD , , are dummy 
variables for Monday, Tuesday, Wednesday, and Thursday; and HD  is the number of holidays 
between two successive trading days excluding weekends. 
21 Historical series of the Standard & Poors 500 Index (SPC) are available at 
http://www.investmenttool.com/. Historical series of The Dow Jones Industrial Average Index 
(DJI) are available at http://averages.dowjones.com/. 
22 Hsieh (1991) analyzed whether ARCH-type models are able to capture all the nonlinear 
dependencies in the stock returns. He used EGARCH model specified as 

11
2
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Engle and Patton (2001) considered GARCH model to forecast volatility of return on the asset 

tttt hmR ε+= , opting for GARCH (1,1) specification ∑ ∑
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normal. Belaire-Franch (2003) has shown that if there is a large excess kurtosis in 

the data (α=1.2), the iid hypothesis would be erroneously rejected by the test very 

frequently. He argues that the bootstrapping method (the random shuffle) should 

be used to generate particular critical values for each series analyzed to avoid 

asymptotically biased critical values. Specifically, the given sample of size T is 

taken as the population and samples of size T are drawn from the �population� 

with replacement. The samples are used to obtain an estimate, called the bootstrap 

distribution of the true population distribution. By replacing the true population 

distribution by the bootstrap distribution we may obtain an estimate of the 

distribution of an estimator or test statistic of interest. 

 The departure from normality due to a large kurtosis (as in Belaire-Franch, 

2003) or contaminated normal distribution with a very large contaminating 

variance (e. g. K2=100 as in Ronchetti and Trojani, 200323), surely justifies using 

the bootstrap to generate custom-made critical values in the case of artificial, 

computer-generated time series. Such radical departures from normality are not 

typical for real economic data or the residuals coming from nonlinear models that 

use such economic data. For that reason, the significance of Kočenda�s statistic 

should be evaluated on quantiles generated from the standard normal distribution 

only when the departure of tested time series from the normal distribution is very 

small (as in the ample examples given above). In other cases we suggest using the 

bootstrap method as discussed in Belaire-Franch (2003). 

 

6. Software 

In order to facilitate running the test we provide fast and user-friendly software to 

calculate values of the test statistics. In line with the previous exposition, a 

researcher has three choices for range of epsilons: (0.25σ; 1.00σ), (0.50σ; 1.50σ) 

or (0.25σ; 2.00σ). This is done at nine embedding dimensions m = 2, ..., 10. The 

program automatically suggests the optimal set of critical values based on the 

                                                           
23 They used data generated from contaminated normal distribution CN(ε, K2) given by distribution 
function )()()1()(

K
xxxF Φ+Φ−= εε , where Φ(x) is a cumulative distribution function of a 

standard normal random variable. 



 20

sample size, compares the computed values with built-in critical values (those 

reported in Tables 2-4), and notes statistical significance as well reject/no reject 

result. 

 There is also a built-in data diagnostic table, which provides description of 

the data: number of observations, mean, standard deviation, spread and the 

standard deviation divided by the spread. For an even more detailed view of the 

series tested, one can use the histogram button: a new pop-up window opens and a 

histogram (up to 50 dividing bins) is plotted. 

 An advanced menu in the program allows one to compute a test statistic 

for arbitrary values of ε-range. Please note that in this case the built-in critical 

values should not be used and it is suggested to proceed with the bootstrapping 

method in order to generate an appropriate set of critical values. For more 

experienced users and those interested in doing simulations, a fast engine was 

compiled separately and can be used to perform Monte Carlo studies or can be 

built in as a part of some other program. 

 The program is user friendly with a self-explanatory design. Although 

personal computers at the present time are very fast, computation on slower 

computers with a large number of observations can take several minutes. For 

illustration, the values of the test statistic with a sample of 500 observations are 

computed within seconds even for a slow computer; computation of the test 

statistics for nine embedding dimensions and 2500 observations takes 

approximately 50 seconds for 2GHz Pentium4 processor. 

 The program requires a Windows 98/2000/NT/XP environment. It is 

posted on our webpage as freeware, subject to appropriate citation. No warranty of 

any kind is expressed or implied. More information can be found in a �readme� 

file that is part of the program. 

 

7. Conclusion 

In this paper we tabulated new sets of critical values for the test of Kočenda 

(2001) to allow for better selection of proximity parameters interval. We also 

provided a sensitivity check to the robustness of critical values with respect to the 
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choice of range of proximity parameters. Further, we performed a series of power 

tests. 

 The results of the power tests combined with the findings on sensitivity of 

the critical values to the ε-range choice suggest that unless assumptions of a 

research project dictate otherwise, the intervals (0.50σ, 1.50σ) and (0.25σ, 2.00σ) 

should be used. If no preferences associated with research motivations are set, we 

suggest avoiding the use of the (0.25σ, 1.00σ) range since the power of the test is 

lower than for the other two intervals (negatively biased estimator). For �short� 

data samples the (0.50σ, 1.50σ) range should be used as a preferred option. Range 

(0.50σ, 1.50σ) has slightly better power over embedding dimensions m = 2-5 than 

the range (0.25σ, 2.00σ), which has better power over dimensions m = 6-9. Thus, 

range (0.50σ, 1.50σ) should be used for tests carried over embedding dimensions 

m = 2-5 and the range (0.25σ, 2.00σ) for tests carried over the whole set of 

dimensions, e.g. m = 2-9. However, since testing at high levels of embedding 

dimension m (when m is higher than 5) is often questionable due to reasons 

articulated earlier, the range (0.50σ, 1.50σ) may be used as a convenient template 

option. 

 Further, we introduced a new compact program to run the test as well as 

simulations. The software is very fast, user-friendly, and may be downloaded from 

http://home.cerge-ei.cz/kocenda/software/ as freeware, subject to appropriate 

citation. 
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Appendix 

Proposition: Slope coefficient estimates mβ  are smaller than or equal to 
respective embedding dimension m, i.e. mm ≤β . 
Proof: We assume in (2.1) that under the null hypothesis the series xt is randomly 
generated according to density function f . Then for small ε 
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By the virtue of equation (2.1) for sufficiently small ε it holds that 
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By Jensen�s inequality 

 ( ) ( )( ))(ln))(ln( ,, εε TmTm CECE ≤ . (A.5) 

Combining previous results, namely (A.3), (A.4), and (A.5), it follows that for 
large T and small ε 
    ( ) ( )( ) ( ) )ln()ln(ln)(ln))(ln( ,, εεεε mkmxxPCECE stTmTm +≅<−≅≤ .24 (A.6) 

As in the regression 

 ( ) eC Tm ++= )ln()(ln , εβαε , (A.7) 

the left hand variable has a negative bias from 

 )ln()ln( εmkm + . (A.8) 

Therefore, the smaller ε, the smaller the bias, so that the estimated coefficient 
satisfies 
 [ ] .mE ≤β  (A.9) 

QED 

                                                           
24 Equality holds in linear cases. 
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Table 1
Summary of εεεε -ranges used in selected studies

Year The author of the study Used values of proximity parameter ε
(ε as a fraction of standard deviation)

1989 Hsieh 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 2.00
1990 Kugler and Lenz 0.50, 0.75, 1.00, 1.50
1991 Hsieh 0.25, 0.50, 1.00, 1.50, 2.00
1992 Rothman 0.50, 1.00, 1.25, 1.50, 2.00
1993 Kugler and Lenz 1.00
1993 Hsieh 0.50, 1.00, 1.50, 2.00
1996 Brock, Dechert, Scheinkman, and LeBaron 0.50
1996 Cecen and Erkal 0.50
1996 de Lima 1.00, 1.25
1996 Chappell, Padmore, and Ellis 0.40, 0.625, 1.00, 1.60
1996 Kočenda 0.50, 1.00
1997 Krämer and Runde 1.00
1997 Serletis and Gogas 0.50, 1.00, 1.50, 2.00
1998 Johnson and McClelland 1.00
1998 Brock, Hsieh, and LeBaron 0.50, 0.75, 1.00, 1.25, 1.50
1998 Chwee 0.50, 1.00, 1.50, 2.00
1998 de Lima 0.50, 0.75, 1.00, 1.25, 1.50
1999 Mahajan and Wagner 0.50, 0.75, 1.00, 1.25, 1.50
1999 Opong, Mulholland, Fox, and Farahmand 0.50,1.00, 1.50, 2.00
1999 Brooks 1.00, 1.50
1999 Brooks and Heravi 0.50, 1.00, 1.50, 2.00
2000 Brooks and Henry 1.00, 1.50
2000 Andreou, Pavlides, and Karytinos 0.50, 1.00, 1.50, 2.00
2000 Aguirre and Aguirre 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
2001 McKenzie 0.50, 1.00, 1.50, 2.00
2001 Bodman 1.00
2002 Díaz, Grau-Carles, and Mangas 1.50
2002 Chen and Kuan 0.75, 1.00
2003 Diks several values between 0.50 and 1.50
2003 Panagiotidis 0.50, 1.00, 2.00
2004 Muckley 0.50, 1.00
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Table 2
Quantiles of the slope coefficients ββββm for εεεε -range (0.25σ – 1.00σ)

A. Quantiles of the slope coefficients ββββm for a sample size of 500 observations

Quantile β2 β3 β4 β5 β6 β7 β8 β9 β10

0,5% 1,850 2,736 3,547 4,252 4,897 5,418 5,787 5,934 5,531
1,0% 1,857 2,749 3,570 4,293 4,952 5,506 5,909 6,092 5,829
2,5% 1,865 2,767 3,610 4,353 5,036 5,629 6,092 6,354 6,185
5,0% 1,872 2,782 3,639 4,407 5,109 5,742 6,241 6,572 6,540

95,0% 1,929 2,923 3,955 4,909 5,885 6,895 8,006 9,322 11,209
97,5% 1,933 2,936 3,987 4,957 5,965 7,017 8,202 9,660 11,997
99,0% 1,938 2,952 4,019 5,010 6,050 7,167 8,435 10,087 13,026
99,5% 1,941 2,963 4,041 5,046 6,107 7,279 8,611 10,425 13,747

Note: "m " denotes an embedding dimension. Based on 20,000 replications.

B. Quantiles of the slope coefficients ββββm for a sample size of 1000 observations

Quantile β2 β3 β4 β5 β6 β7 β8 β9 β10

0,5% 1,875 2,793 3,669 4,464 5,192 5,844 6,420 6,870 7,208
1,0% 1,878 2,799 3,682 4,486 5,225 5,898 6,501 6,996 7,358
2,5% 1,882 2,808 3,701 4,521 5,279 5,984 6,620 7,149 7,579
5,0% 1,886 2,816 3,718 4,557 5,329 6,051 6,715 7,293 7,765

95,0% 1,916 2,888 3,893 4,890 5,826 6,770 7,747 8,777 9,905
97,5% 1,918 2,895 3,911 4,922 5,870 6,834 7,849 8,917 10,148
99,0% 1,921 2,902 3,931 4,960 5,927 6,908 7,966 9,096 10,458
99,5% 1,922 2,906 3,945 4,985 5,970 6,953 8,041 9,242 10,695

Note: "m " denotes an embedding dimension. Based on 20,000 replications.

C. Quantiles of the slope coefficients ββββm for a sample size of 2500 observations

Quantile β2 β3 β4 β5 β6 β7 β8 β9 β10

0,5% 1,889 2,826 3,745 4,625 5,418 6,183 6,897 7,544 8,121
1,0% 1,890 2,828 3,751 4,638 5,443 6,221 6,940 7,618 8,212
2,5% 1,892 2,832 3,759 4,656 5,483 6,269 7,006 7,698 8,331
5,0% 1,894 2,836 3,767 4,671 5,513 6,309 7,067 7,775 8,436

95,0% 1,909 2,868 3,840 4,842 5,819 6,737 7,655 8,590 9,539
97,5% 1,910 2,871 3,846 4,856 5,847 6,779 7,711 8,666 9,657
99,0% 1,911 2,874 3,855 4,878 5,881 6,826 7,782 8,755 9,786
99,5% 1,912 2,876 3,859 4,892 5,898 6,857 7,825 8,818 9,880

Note: "m " denotes an embedding dimension. Based on 20,000 replications.
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Table 3
Quantiles of the slope coefficients ββββm for εεεε -range (0.50σ – 1.50σ)

A. Quantiles of the slope coefficients ββββm for a sample size of 500 observations

Quantile β2 β3 β4 β5 β6 β7 β8 β9 β10

0,5% 1,678 2,503 3,310 4,093 4,831 5,447 6,011 6,489 6,959
1,0% 1,686 2,517 3,332 4,124 4,876 5,506 6,072 6,592 7,086
2,5% 1,696 2,534 3,360 4,163 4,931 5,581 6,164 6,717 7,228
5,0% 1,704 2,548 3,382 4,195 4,979 5,642 6,245 6,822 7,361

95,0% 1,766 2,659 3,566 4,498 5,430 6,220 7,003 7,788 8,577
97,5% 1,770 2,667 3,581 4,525 5,467 6,274 7,075 7,878 8,699
99,0% 1,774 2,676 3,598 4,560 5,511 6,340 7,153 7,984 8,835
99,5% 1,777 2,682 3,609 4,583 5,543 6,387 7,219 8,061 8,936

Note: "m " denotes an embedding dimension. Based on 20,000 replications.

B. Quantiles of the slope coefficients ββββm for a sample size of 1000 observations

Quantile β2 β3 β4 β5 β6 β7 β8 β9 β10

0,5% 1,698 2,540 3,372 4,189 4,987 5,736 6,391 6,992 7,543
1,0% 1,703 2,548 3,386 4,209 5,011 5,770 6,438 7,041 7,610
2,5% 1,709 2,559 3,402 4,233 5,047 5,821 6,501 7,120 7,709
5,0% 1,715 2,567 3,415 4,253 5,076 5,868 6,555 7,186 7,792

95,0% 1,756 2,639 3,528 4,428 5,351 6,278 7,063 7,826 8,594
97,5% 1,759 2,644 3,537 4,443 5,378 6,314 7,107 7,893 8,672
99,0% 1,762 2,649 3,546 4,460 5,406 6,355 7,156 7,964 8,758
99,5% 1,764 2,653 3,552 4,471 5,426 6,378 7,193 8,003 8,813

Note: "m " denotes an embedding dimension. Based on 20,000 replications.

C. Quantiles of the slope coefficients ββββm for a sample size of 2500 observations

Quantile β2 β3 β4 β5 β6 β7 β8 β9 β10

0,5% 1,715 2,568 3,418 4,262 5,095 5,914 6,702 7,416 8,045
1,0% 1,717 2,572 3,423 4,270 5,108 5,935 6,728 7,448 8,091
2,5% 1,721 2,578 3,433 4,283 5,127 5,958 6,763 7,498 8,156
5,0% 1,724 2,583 3,440 4,294 5,142 5,978 6,793 7,537 8,203

95,0% 1,748 2,625 3,504 4,387 5,277 6,181 7,117 7,938 8,696
97,5% 1,750 2,628 3,509 4,394 5,290 6,200 7,151 7,974 8,742
99,0% 1,752 2,632 3,515 4,403 5,303 6,222 7,188 8,014 8,797
99,5% 1,754 2,634 3,518 4,409 5,313 6,237 7,221 8,048 8,837

Note: "m " denotes an embedding dimension. Based on 20,000 replications.
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Table 4
Quantiles of the slope coefficients ββββm for εεεε -range (0.25σ – 2.00σ)

A. Quantiles of the slope coefficients ββββm for a sample size of 500 observations

Quantile β2 β3 β4 β5 β6 β7 β8 β9 β10

0,5% 1,720 2,561 3,369 4,024 4,624 5,158 5,677 6,155 6,600
1,0% 1,726 2,572 3,387 4,053 4,655 5,208 5,728 6,209 6,679
2,5% 1,734 2,588 3,412 4,086 4,701 5,271 5,800 6,302 6,781
5,0% 1,741 2,599 3,433 4,110 4,734 5,319 5,860 6,378 6,864

95,0% 1,794 2,706 3,612 4,360 5,066 5,742 6,398 7,029 7,649
97,5% 1,798 2,715 3,629 4,381 5,095 5,782 6,444 7,080 7,714
99,0% 1,802 2,725 3,646 4,404 5,127 5,823 6,493 7,140 7,783
99,5% 1,804 2,733 3,660 4,420 5,152 5,856 6,523 7,185 7,834

Note: "m " denotes an embedding dimension. Based on 20,000 replications.

B. Quantiles of the slope coefficients ββββm for a sample size of 1000 observations

Quantile β2 β3 β4 β5 β6 β7 β8 β9 β10

0,5% 1,737 2,597 3,437 4,217 4,876 5,478 6,056 6,596 7,099
1,0% 1,740 2,603 3,449 4,233 4,897 5,502 6,088 6,634 7,150
2,5% 1,746 2,612 3,465 4,256 4,924 5,546 6,135 6,695 7,219
5,0% 1,750 2,619 3,477 4,274 4,948 5,580 6,176 6,743 7,278

95,0% 1,785 2,684 3,598 4,448 5,179 5,877 6,547 7,196 7,827
97,5% 1,787 2,689 3,609 4,465 5,200 5,903 6,578 7,238 7,875
99,0% 1,790 2,695 3,623 4,483 5,222 5,932 6,612 7,283 7,926
99,5% 1,792 2,698 3,630 4,494 5,238 5,952 6,635 7,313 7,961

Note: "m " denotes an embedding dimension. Based on 20,000 replications.

C. Quantiles of the slope coefficients ββββm for a sample size of 2500 observations

Quantile β2 β3 β4 β5 β6 β7 β8 β9 β10

0,5% 1,750 2,622 3,487 4,336 5,110 5,790 6,425 7,025 7,594
1,0% 1,752 2,625 3,492 4,344 5,125 5,804 6,447 7,046 7,627
2,5% 1,755 2,630 3,500 4,356 5,144 5,826 6,475 7,085 7,668
5,0% 1,758 2,634 3,506 4,366 5,159 5,844 6,497 7,113 7,706

95,0% 1,778 2,670 3,567 4,477 5,309 6,034 6,736 7,399 8,055
97,5% 1,780 2,673 3,572 4,487 5,322 6,052 6,756 7,423 8,090
99,0% 1,781 2,676 3,577 4,499 5,339 6,073 6,779 7,454 8,127
99,5% 1,783 2,678 3,581 4,507 5,351 6,090 6,797 7,479 8,153

Note: "m " denotes an embedding dimension. Based on 20,000 replications.
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Table 5
Sensitivity of critical values with respect to εεεε -range choice

A. The sample size T = 500

Epsilon ranges β2 β3 β4 β5 β6 β7 β8 β9 β10

(0.25σ-1.00σ) vs (0.50σ-1.50σ) 0,169 0,233 0,250 0,190 0,105 0,048 -0,072 -0,363 -1,043
(0.25σ-1.00σ) vs (0.50σ-1.50σ) 0,163 0,269 0,406 0,432 0,498 0,743 1,127 1,782 3,298
(0.50σ-1.50σ) vs (0.25σ-2.00σ) -0,038 -0,054 -0,052 0,077 0,230 0,310 0,364 0,415 0,447
(0.50σ-1.50σ) vs (0.25σ-2.00σ) -0,028 -0,048 -0,048 0,144 0,372 0,492 0,631 0,798 0,985
(0.25σ-1.00σ) vs (0.25σ-2.00σ) 0,131 0,179 0,198 0,267 0,335 0,358 0,292 0,052 -0,596
(0.25σ-1.00σ) vs (0.25σ-2.00σ) 0,135 0,221 0,358 0,576 0,870 1,235 1,758 2,580 4,283

B. The sample size T = 1000

Epsilon ranges β2 β3 β4 β5 β6 β7 β8 β9 β10

(0.25σ-1.00σ) vs (0.50σ-1.50σ) 0,173 0,249 0,299 0,288 0,232 0,163 0,119 0,029 -0,130
(0.25σ-1.00σ) vs (0.50σ-1.50σ) 0,159 0,251 0,374 0,479 0,492 0,520 0,742 1,024 1,476
(0.50σ-1.50σ) vs (0.25σ-2.00σ) -0,037 -0,053 -0,063 -0,023 0,123 0,275 0,366 0,425 0,490
(0.50σ-1.50σ) vs (0.25σ-2.00σ) -0,028 -0,045 -0,072 -0,022 0,178 0,411 0,529 0,655 0,797
(0.25σ-1.00σ) vs (0.25σ-2.00σ) 0,136 0,196 0,236 0,265 0,355 0,438 0,485 0,454 0,360
(0.25σ-1.00σ) vs (0.25σ-2.00σ) 0,131 0,206 0,302 0,457 0,670 0,931 1,271 1,679 2,273

C. The sample size T = 2500

Epsilon ranges β2 β3 β4 β5 β6 β7 β8 β9 β10

(0.25σ-1.00σ) vs (0.50σ-1.50σ) 0,171 0,254 0,326 0,373 0,356 0,311 0,243 0,200 0,175
(0.25σ-1.00σ) vs (0.50σ-1.50σ) 0,160 0,243 0,337 0,462 0,557 0,579 0,560 0,692 0,915
(0.50σ-1.50σ) vs (0.25σ-2.00σ) -0,034 -0,052 -0,067 -0,073 -0,017 0,132 0,288 0,413 0,488
(0.50σ-1.50σ) vs (0.25σ-2.00σ) -0,030 -0,045 -0,063 -0,093 -0,032 0,148 0,395 0,551 0,652
(0.25σ-1.00σ) vs (0.25σ-2.00σ) 0,137 0,202 0,259 0,300 0,339 0,443 0,531 0,613 0,663
(0.25σ-1.00σ) vs (0.25σ-2.00σ) 0,130 0,198 0,274 0,369 0,525 0,727 0,955 1,243 1,567

Note: The entries are differences between critical values of two different ranges; for each interval the 
differences are computed for 2.5% quantile (the first row) and 97.5% quantile (the second row).
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Table 6
Computed Kočenda test statistics for five processes taken from Barnett et al. (1997)

FEIG β2 0,627 a 0,652 a 0,602 a 0,608 a 0,647 a 0,587 a

β3 0,629 a 0,736 a 0,590 a 0,606 a 0,733 a 0,571 a

β4 0,634 a 0,836 a 0,634 a 0,604 a 0,832 a 0,611 a

β5 0,609 a 0,873 a 0,653 a 0,573 a 0,863 a 0,627 a

β6 0,579 a 0,913 a 0,673 a 0,538 a 0,897 a 0,643 a

β7 0,584 a 0,913 a 0,691 a 0,544 a 0,894 a 0,660 a

β8 0,589 a 0,912 a 0,710 a 0,549 a 0,890 a 0,679 a

β9 0,614 a 0,914 a 0,728 a 0,577 a 0,889 a 0,696 a

β10 0,641 a 0,915 a 0,747 a 0,605 a 0,887 a 0,714 a

GARCH β2 1,840 a 1,685 b 1,709 a 1,894 1,712 a 1,749 a

β3 2,793 2,504 b 2,565 b 2,838 2,541 a 2,607 a

β4 3,673 3,318 b 3,359 a 3,754 c 3,362 a 3,446 a

β5 4,731 4,174 d 4,065 c 4,621 a 4,174 a 4,254 a

β6 5,650 5,027 4,596 a 5,451 c 4,989 a 5,018 a

β7 6,091 5,449 b 5,020 a 6,318 5,741 a 5,652 a

β8 6,505 5,954 a 5,520 a 6,983 c 6,511 a 6,193 a

β9 7,179 6,488 a 5,992 a 7,764 d 7,323 a 6,764 a

β10 8,835 7,110 c 6,416 a 8,308 c 7,887 a 7,288 a

NLMA β2 1,872 1,640 a 1,705 a 1,877 a 1,679 a 1,720 a

β3 2,795 2,418 a 2,529 a 2,794 a 2,470 a 2,542 a

β4 3,664 3,214 a 3,296 a 3,715 a 3,247 a 3,361 a

β5 4,345 c 3,941 a 3,862 a 4,571 a 3,999 a 4,137 a

β6 4,975 c 4,699 a 4,407 a 5,442 b 4,758 a 4,904 a

β7 5,791 5,409 a 4,993 a 6,126 a 5,498 a 5,417 a

β8 6,918 6,129 c 5,579 a 6,742 a 6,229 a 5,966 a

β9 7,974 6,723 d 5,994 a 7,365 a 6,944 a 6,495 a

β10 8,400 7,210 c 6,377 a 7,988 a 7,573 a 7,035 a

ARCH β2 1,799 a 1,609 a 1,653 a 1,852 a 1,628 a 1,679 a

β3 2,710 a 2,370 a 2,462 a 2,766 a 2,406 a 2,494 a

β4 3,549 b 3,181 a 3,252 a 3,663 a 3,186 a 3,301 a

β5 4,362 d 3,994 a 3,892 a 4,534 a 3,961 a 4,092 a

β6 5,141 4,758 a 4,426 a 5,335 a 4,741 a 4,848 a

β7 5,816 5,423 a 4,976 a 6,025 a 5,495 a 5,444 a

β8 6,643 6,010 a 5,411 a 6,747 a 6,254 a 5,980 a

β9 7,285 6,538 b 5,920 a 7,409 a 7,006 a 6,538 a

β10 7,076 7,104 c 6,365 a 8,125 b 7,704 a 7,117 a

ARMA β2 1,379 a 1,113 a 1,213 a 1,362 a 1,088 a 1,191 a

β3 1,830 a 1,355 a 1,544 a 1,796 a 1,311 a 1,504 a

β4 2,268 a 1,592 a 1,866 a 2,233 a 1,539 a 1,820 a

β5 2,704 a 1,830 a 2,188 a 2,673 a 1,771 a 2,138 a

β6 3,115 a 2,070 a 2,497 a 3,104 a 2,005 a 2,452 a

β7 3,570 a 2,301 a 2,828 a 3,530 a 2,239 a 2,764 a

β8 3,952 a 2,528 a 3,072 a 3,949 a 2,472 a 3,072 a

β9 4,223 a 2,743 a 3,288 a 4,362 a 2,702 a 3,376 a

β10 4,332 a 2,940 a 3,358 a 4,783 a 2,930 a 3,684 a

Note: Superscript denotes significance at levels of (a) 1%, (b) 2%, (c) 5% and (d) 10%.

The sample size T = 380 The sample size T = 2000
(0.25σ-1.00σ) (0.50σ-1.50σ) (0.25σ-2.00σ) (0.25σ-1.00σ) (0.50σ-1.50σ) (0.25σ-2.00σ)
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Table 7
Empirical power of Kočenda's test against five processes based on Barnett et al. (1997)
The sample size T = 500

Process Epsilon β2 β3 β4 β5 β6 β7 β8 β9 β10

FEIG (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

GARCH (0.25σ-1.00σ) 11,1% 10,0% 7,0% 6,0% 7,4% 6,6% 5,1% 2,7% 1,4%
(0.50σ-1.50σ) 28,4% 38,3% 43,2% 41,1% 33,3% 25,9% 26,5% 26,0% 25,5%
(0.25σ-2.00σ) 28,5% 35,3% 31,4% 36,7% 43,6% 47,9% 49,5% 51,6% 52,1%

NLMA (0.25σ-1.00σ) 28,1% 28,8% 17,0% 15,7% 16,0% 13,4% 9,4% 3,7% 0,4%
(0.50σ-1.50σ) 73,2% 90,2% 93,8% 91,8% 83,7% 70,5% 67,8% 62,2% 56,0%
(0.25σ-2.00σ) 71,2% 85,1% 80,7% 88,4% 91,9% 91,9% 91,3% 90,2% 88,9%

ARCH (0.25σ-1.00σ) 76,7% 60,4% 30,8% 19,2% 16,9% 12,7% 7,1% 3,1% 0,3%
(0.50σ-1.50σ) 97,6% 97,8% 97,1% 93,4% 85,9% 68,8% 67,2% 64,0% 57,1%
(0.25σ-2.00σ) 97,1% 96,7% 90,1% 89,0% 91,6% 91,4% 90,1% 88,9% 86,9%

ARMA (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 99,9%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Note: The entries are rejection rates in %, computed at the 5% level.

Table 8
Empirical power of Kočenda's test against five processes based on Barnett et al. (1997)
The sample size T = 1000

Process Epsilon β2 β3 β4 β5 β6 β7 β8 β9 β10

FEIG (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

GARCH (0.25σ-1.00σ) 24,3% 21,8% 12,3% 7,1% 6,5% 8,1% 6,7% 5,8% 4,1%
(0.50σ-1.50σ) 49,5% 65,4% 71,5% 70,4% 66,9% 53,5% 40,4% 43,2% 42,6%
(0.25σ-2.00σ) 50,5% 60,6% 57,9% 46,2% 60,6% 66,7% 71,4% 74,8% 75,4%

NLMA (0.25σ-1.00σ) 70,0% 76,9% 57,0% 23,1% 27,9% 28,5% 26,8% 18,6% 10,5%
(0.50σ-1.50σ) 95,3% 99,8% 100,0% 100,0% 99,9% 99,0% 93,4% 92,9% 90,2%
(0.25σ-2.00σ) 95,9% 99,4% 99,2% 97,6% 98,9% 99,8% 99,9% 99,9% 100,0%

ARCH (0.25σ-1.00σ) 99,2% 96,3% 79,5% 38,2% 29,7% 26,6% 21,4% 12,4% 6,8%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 99,8% 98,0% 89,8% 87,8% 86,3%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 98,7% 99,1% 99,3% 99,6% 99,4% 98,7%

ARMA (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Note: The entries are rejection rates in %, computed at the 5% level.
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Table 9
Empirical power of Kočenda's test against five processes based on Barnett et al. (1997)
The sample size T = 2500

Process Epsilon β2 β3 β4 β5 β6 β7 β8 β9 β10

FEIG (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

GARCH (0.25σ-1.00σ) 65,4% 68,5% 53,8% 29,1% 11,7% 14,6% 15,0% 14,1% 11,6%
(0.50σ-1.50σ) 86,7% 96,6% 98,5% 98,8% 98,3% 97,5% 92,3% 76,7% 75,3%
(0.25σ-2.00σ) 86,6% 95,6% 96,9% 92,1% 84,3% 91,4% 94,9% 95,7% 96,9%

NLMA (0.25σ-1.00σ) 99,9% 100,0% 99,7% 94,6% 51,7% 60,9% 57,7% 55,1% 42,7%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 99,9%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

ARCH (0.25σ-1.00σ) 100,0% 100,0% 100,0% 98,1% 62,7% 53,8% 47,3% 41,0% 30,8%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 99,7% 99,1%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

ARMA (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Note: The entries are rejection rates in %, computed at the 5% level.
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Table 10
Empirical power of Kočenda's test against chaotic processes and chaotic processes with noise
The sample size T = 500

Process Epsilon β2 β3 β4 β5 β6 β7 β8 β9 β10

Henon (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Lorenz (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Henon (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
+noise (0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
Lorenz (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
+noise (0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
Note: The entries are rejection rates in %, computed at the 5% level.

Table 11
Empirical power of Kočenda's test against chaotic processes and chaotic processes with noise
The sample size T = 1000

Process Epsilon β2 β3 β4 β5 β6 β7 β8 β9 β10

Henon (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Lorenz (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Henon (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
+noise (0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
Lorenz (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
+noise (0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
Note: The entries are rejection rates in %, computed at the 5% level.

Table 12
Empirical power of Kočenda's test against chaotic processes and chaotic processes with noise
The sample size T = 2500

Process Epsilon β2 β3 β4 β5 β6 β7 β8 β9 β10

Henon (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Lorenz (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

Henon (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
+noise (0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
Lorenz (0.25σ-1.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
+noise (0.50σ-1.50σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%

(0.25σ-2.00σ) 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0% 100,0%
Note: The entries are rejection rates in %, computed at the 5% level.
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Figure 1a
Relative differences of critical values with respect to εεεε -range choice
(in absolute value)

A. Dispersion of 2.5% quantile for 500 observations 

B. Dispersion of 2.5% quantile for 1000 observations 

C. Dispersion of 2.5% quantile for 2500 observations 

(0.50σ-1.50σ) vs (0.25σ-2.00σ) (0.25σ-1.00σ) vs (0.50σ-1.50σ) (0.25σ-1.00σ) vs (0.25σ-2.00σ)

Note: The entries are relative changes of critical values; they are computed as appropriate quantile 
differences between two intervals over embedding dimension m.  For better understanding we picture 
them in absolute values.
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Figure 1b
Relative differences of critical values with respect to εεεε -range choice
(in absolute value)

A. Dispersion of 97.5% quantile for 500 observations 

B. Dispersion of 97.5% quantile for 1000 observations 

C. Dispersion of 97.5% quantile for 2500 observations 

(0.50σ-1.50σ) vs (0.25σ-2.00σ) (0.25σ-1.00σ) vs (0.50σ-1.50σ) (0.25σ-1.00σ) vs (0.25σ-2.00σ)

Note: The entries are relative changes of critical values; they are computed as appropriate quantile 
differences between two intervals over embedding dimension m.  For better understanding we picture 
them in absolute values.
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Figure 2
Histograms of standardized residuals from exchange rate models

Note: BHL91, KL90 and KL93 are standardized residuals for a particular exchange rate from Brock, Hsieh 
and Lebaron (1991), Kugler and Lenz (1990), and Kugler and Lenz (1993) respectively.
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Figure 3
Histograms of standardized residuals from models of stock indices

Note:

Figure 4
Histograms of non-linear processes based on Barnett et al. (1997)

S&P500 Index and DJ Index are standardized residuals of particular stock market index from Hsieh 
(1991) and Engle and Patton (2001) respectively.
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