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Abstract

In this paper we  investigate in detail the relationship between models of cointegration
between the current spot exchange rate, st, and the current forward rate, ft, and models of
cointegration between the future spot rate, st+1, and ft and the implications of this relationship for tests
of the forward rate unbiasedness hypothesis (FRUH).  We argue that simple models of cointegration
between st and ft more easily capture the stylized facts of typical exchange rate data than simple
models of cointegration between st+1 and ft and so serve as a natural starting point for the analysis of
exchange rate behavior.  We show that simple models of cointegration between st  and ft imply rather
complicated models of  cointegration between st+1 and ft.  As a result, standard methods are often not
appropriate for modeling the cointegrated behavior of (st+1, ft)N and we show that the use of such
methods can lead to erroneous inferences regarding the FRUH. 
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1.  Introduction

There is an enormous literature on testing if the forward exchange rate is an unbiased

predictor of future spot exchange rates.  Engel (1996) provides the most recent review.  The earliest

studies, e.g. Cornell (1977), Levich (1979) and  Frenkel (1980), were based on the regression of the

log of the future spot rate, st+1, on the log of the current forward rate, ft.  The results of these studies

generally support the forward rate unbiasedness hypothesis (FRUH). Due to the unit root behavior

of exchange rates and the concern about the spurious regression phenomenon illustrated by Granger

and Newbold (1974), later studies, e.g. Bilson (1981),  Fama (1984) and Froot and Frankel (1989),

concentrated on the regression of the change in the log spot rate, )st+1, on the forward premium, ft -

st. Overwhelmingly, the results of these studies reject the FRUH.  The most recent studies, e.g.,

Hakkio and Rush (1989), Barnhart and Szakmary (1991), Naka and Whitney (1995), Hai, Mark and

Yu (1997), Norrbin and Reffett (1996), Newbold, et. al. (1996), Clarida and Taylor (1997), Barnhart,

McNown and Wallace (1998) and Luintel and Paudyal (1998) have focused on  the relationship

between cointegration and tests of the FRUH. The results of these studies are mixed and depend on

how cointegration is modeled.

Since the results of Hakkio and Rush (1989), it is well recognized that the FRUH requires

that st+1 and ft be cointegrated and that the cointegrating vector be (1,-1) and much of the recent

literature has utilized models of cointegration between st+1 and ft. It is also true that the FRUH

requires st and ft to be cointegrated with cointegrating vector (1,-1) and only a few authors have based

their analysis on models of cointegration between st and ft . In this paper we  investigate in detail the

relationship between models of cointegration between st and ft and models of cointegration between

st+1 and ft and the implications of this relationship for tests of the FRUH.  We argue that simple

models of cointegration between st and ft more easily capture the stylized facts of typical exchange

rate data than simple models of cointegration between st+1 and ft and so serve as a natural starting

point for the analysis of exchange rate behavior.  Simple models of cointegration between st  and ft

imply rather complicated models of  cointegration between st+1 and ft.  In particular, starting with a

first order bivariate vector error correction model for (st, ft)N we show that the implied cointegrated

model for (st+1, ft)N is nonstandard and does not have a finite VAR representation.  As a result,

standard VAR methods are not appropriate for modeling (st+1, ft)N and we show that the use of such
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methods can lead to erroneous inferences regarding the FRUH.  In particular, we show that tests of

the null of no-cointegration based on common cointegrated models for (st+1, ft)N are likely to be

severely size distorted. In addition, using the implied triangular cointegrated representation for (st+1,

ft)N we can explicitly characterize the OLS bias in the levels regression of   st+1 on ft.  Based on this

representation, we can show that the OLS estimate of the coefficient on ft  in the levels regression is

downward biased (away from one) even if the FRUH is true. Finally, we show that the results of

Naka and Whitney (1995) and Norrbin and Reffett (1996) supporting the FRUH are driven by the

specification of the cointegration model for (st+1, ft)N.

The plan of the paper is as follows.  In section 2, we discuss the relationship between

cointegration and the tests of the forward rate unbiasedness hypothesis.  In section 3 we present some

stylized facts of exchange rate data typically used in investigations of the FRUH. In section 4, we

discuss some simple models of cointegration between st and ft that capture the basic stylized facts

about the data and we show the restrictions that the FRUH places on these models.  In section 5, we

consider models of cointegration between st+1 and ft that are implied by models of cointegration

between st and ft.  In section 6, we use our results to reinterpret some recent findings concerning the

FRUH reported by Naka and Whitney (1995) and Norrbin and Reffett (1996).  Our concluding

remarks are given in section 7.

2.  Cointegration and the Forward Rate Unbiasedness Hypothesis: An

Overview

The relationship between cointegration and the forward rate unbiasedness hypothesis has been

discussed by several authors starting with Hakkio and Rush (1987).  Engel (1996) provides a

comprehensive review of this literature and serves as a starting point for the analysis in this paper.

Following Engel (1996),  the forward exchange rate unbiasedness hypothesis (FRUH) under rational

expectations and risk neutrality is given by

Et[st+1] = ft, (1)

where Et[@] denotes expectation conditional on information available at time t.  Using the terminology

of Baillie (1989), FRUH is an example of the “observable expectations” hypothesis.  The FRUH is

usually expressed as the levels relationship
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st+1 = ft + >t+1, (2)

where >t+1 is a random variable (rational expectations forecast error) with Et[>t+1] = 0. It should be

kept in mind that rejection of the FRUH can be interpreted as a rejection of the model underlying Et[@]

or a rejection of the equality in (1) itself.

Two different regression equations have generally been used to test the FRUH.  The first is

the “levels regression”

st+1 = µ + $f ft + ut+1 (3)

and the null hypothesis that FRUH is true imposes the restrictions µ = 0, $f = 1 and Et[ut+1] = 0.  In

early empirical applications authors generally focused on testing the first two conditions and either

ignored the latter condition or informally tested it using the Durbin-Watson statistic.  Most studies

using (3) found estimates of $f very close to 1 and hence supported the FRUH.  Some authors, e.g.

Barnhart and Szakmary (1991), Liu and Maddala (1992), Naka and Whitney (1995) and Hai, Mark

and Wu (1997),  refer to testing  µ = 0, $f = 1 as testing  the forward rate unbiasedness condition

(FRUC).  Testing the orthogonality condition Et[ut+1] = 0, conditional on not rejecting FRUC,  is then

referred to as testing forward market efficiency under rational expectaions and risk neutrality.

Assuming st and ft have unit roots, i.e., st, ft ~ I(1),  (see, for example, Messe and Singleton (1982),

Baillie and Bollerslev (1989), Mark (1990), Liu and Maddala (1992), Crowder (1994), or Clarida and

Taylor (1997) for empirical evidence), then the FRUH requires that st+1 and ft be cointegrated with

cointegrating vector (1, -1) and that the stationary, i.e., I(0), cointegrating residual, ut+1, satisfy

Et[ut+1] = 0. Notice that testing FRUC is then equivalent to testing for cointegration between st+1 and

ft and that the cointegrating vector is (1,-1) and testing forward market efficiency is equivalent to

testing that the forecast error, st+1 - ft, has conditional mean zero.  

The FRUH assumes rational expectations and risk neutrality.  Under rational expectations,

if agents are risk averse then a stationary time-varying risk premium exists and the relationship

between st+1 and  ft  becomes

st+1 = ft - rpt
re + >t+1, (4)

where rpt
re  = ft - Et[st+1] represents the stationary rational expectations risk premium. As long as rpt

re

is stationary st+1 and ft will be cointegrated with cointegrating vector (1, -1) but ft will be a biased

predictor of st+1 provided rpt
re  is predictable using information available at time t. In this regard, the
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FRUC is a misleading acronym since if the FRUC is true forward rates are not necessarily unbiased

predictors of future spot rates.  Since the FRUC is equivalent to cointegration between st+1 and ft and

that the cointegrating vector is (1,-1), which implies that st+1 and ft trend together in the long-run but

may deviate in the short-run,  it is more appropriate to call this the long-run forward rate

unbiasedness condition (LRFRUC).

Several authors, e.g. Messe and Singleton (1982), Meese (1989) and Isard (1995),  have

stated that since st and ft have unit roots the levels regression (3) is not a valid regression equation

because of the spurious regression problem described in Granger and Newbold (1974).  However,

this is not true if st+1 and ft are cointegrated.  What is true is that if st+1 and ft are cointegrated with

cointegrating vector (1, -1), which allows for the possibility of a stationary time varying risk premium

so that ut+1 in (3) is I(0), then the OLS estimates from (3) will be super consistent (converge at rate

T instead of rate T½) for the true value $f = 1 but generally not efficient and biased away from 1 in

finite samples so that the asymptotic distributions of t-tests and F-tests on µ  an $f  will follow non-

standard distributions, see Corbae, Lim and Ouliaris (1992).  Hence, even if the FRUH is not true due

the existence of a stationary risk premium so that (3) is a misspecified regression, OLS on (3) still

gives a consistent estimate of $f = 1. More importantly, there are simple modifications to OLS that

yield asymptotically unbiased and efficient estimates of the parameters of (3) in the presence of

general serial correlation and heteroskedasticity and these modifications should be used to make

inferences about the parameters in the levels regression1. In this sense, the levels regression (3) under

cointegration is asymptotically immune to the omission of a stationary risk premium. Hai, Mark and

Wu (1997) use Stock and Watson’s (1993) dynamic OLS estimator on the levels regression (3) and

provide evidence that st+1 and ft are cointegrated with cointegrating vector (1, -1).

The second regression equation used to test the FRUH is the “differences equation”

)st+1 = µ* + "s(ft - st) + u*t+1 (5)

and the null hypothesis that FRUH is true imposes the restrictions µ* = 0, "s = 1 and Et[u*t+1] = 0.

Empirical results based on (5), surveyed in Engel (1996), overwhelmingly reject the FRUH. In fact,

typical estimates of "s across a wide range of currencies and sampling frequencies are significantly

negative. This result is often referred to as the forward discount anomaly, forward discount bias or

forward discount puzzle and seems to contradict the results based on the levels regression (3). Given
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that st, ft ~ I(1), for (5) to be a “balanced regression” (i.e., all variables in the regression are integrated

of the same order) the forward premium,  ft - st, must be I(0) or, equivalently, ft and st must be

cointegrated with cointegrating vector (1,-1).  Assuming that covered interest rate parity holds, the

forward premium is simply the interest rate differential between the respective countries and there are

good economic reasons to believe that such differentials do not contain a unit root.  Hence,  tests of

the FRUH based on (5) implicitly assume that the forward premium is I(0) and so such tests are

conditional on ft and st  being cointegrated with cointegrating vector (1,-1).  In this respect, (5) can

be thought of as one equation in a particular vector error correction model (VECM) for (ft, st)N.
2

Horvath and Watson (1995) and Clarida and Taylor (1997) use VECM-based tests and provide

evidence that ft and st are cointegrated with cointegrating vector (1,-1).

As noted by Fama (1984), the negative estimates of "s are consistent with rational

expectations and market efficiency and imply certain restrictions on the risk premium. To see this,

note that under rational expectations we may write

)st+1=(ft - st) - rpt
re +>t+1, (6)

so that the difference regression (5) is misspecified if risk neutrality fails. Since all variables in (6) are

I(0), if the risk premium is correlated with the forward premium then the OLS estimate of "s in the

standard differences regression (5), which omits the risk premium, will be biased away from the true

value of 1. Hence the negative estimates of "s from (5) can be interpreted as resulting from omitted

variables bias.  As discussed in Fama (1984), for omitted variables bias to account for negative

estimates of "s it must be true that cov(Et[st+1] - st, rpt
re) < 0 and var(rpt

re ) > Var(Et[st+1] - st). Hence,

as Engel (1996) notes,  models of the foreign exchange risk premium should be consistent with these

two inequalities.

The tests of the FRUH based on (3) and (5) involve cointegration either between st+1 and ft

or ft and st.  As Engel (1996) points out, since 

st+1 - ft = )st+1 - (ft - st) 

it is trivial to see under the assumption that ft and st are I(1) that (i) if st and ft are cointegrated with

cointegrating vector (1,-1) then st+1 and ft must be cointegrated with cointegrating vector (1,-1); and

(ii) if  st+1 and ft are cointegrated with cointegrating vector (1,-1) then st and ft must be cointegrated

with cointegrating vector (1,-1).  Cointegration models for (st, ft)N and (st+1, ft)N can both be used to
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describe the data and test the FRUH but the form of the models used can have a profound impact on

the resulting inferences. For example, we show that a simple first order vector error correction model

for (st, ft)N describes monthly data well and leads naturally to the differences regression (5) from which

the FRUH is easily rejected. In contrast, we show that some simple first order vector error correction

models for (st+1, ft)N, which are used in the empirical studies of Naka and Whitney (1995) and Norrbin

and Reffett (1996),  miss some important dynamics in monthly data and as a result indicate that the

FRUH appears to hold. Hence, misspecification of the cointegration model for (st+1, ft)N can explain

some of the puzzling empirical results concerning tests of the FRUH.

In the next section, we describe some stylized facts of monthly exchange rate data that are

typical in the analysis of the FRUH. In the remaining sections  we use these facts to motivate certain

models of cointegration for (st, ft)N and (st+1, ft)N to support our claims regarding misspecification and

tests of the FRUH.

3. Some Stylized Facts of Typical Exchange Rate Data

Let ft denote the log of the forward exchange rate in month t and st denote the log of the spot

exchange rate.  We focus on monthly data for which the maturity date of the forward contract is the

same as the sampling interval to avoid modeling complications created by overlapping data. For our

empirical examples, we consider forward and spot rate data (all relative to the U.S. dollar) on the

pound, yen and Canadian dollar taken from Datastream3. Figure 1 shows time plots of st+1, ft - st

(forward premium), and st+1 - ft (forecast error) for the three currencies and Table 1 gives some

summary statistics of the data. Spot and forward rates behave very similarly and exhibit random walk

type behavior. The forward premiums are all highly autocorrelated but the forecast errors show very

little autocorrelation. The variances of )st+1 and )ft+1 are roughly ten times larger than the variance

of ft - st and are similar to the variance of st+1 - ft. For all currencies, )st+1,  )ft+1 and st+1 - ft are

negatively correlated with ft - st. Any model of cointegration with cointegrating vector (1, -1) for (st,

ft)N or (st+1, ft)N should capture these basic stylized facts.

4.  Models of Cointegration between ft and st

4.1  Vector error correction representation
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The stylized facts of the monthly exchange rate data reported in the previous section can be

captured by a simple cointegrated VAR(1) model for yt = (ft, st)N . This simple model has also recently

been used by Godbout and van Norden (1996).  Before presenting the empirical restults, we begin

this section with a review of the properties of such a model. The general bivariate VAR(1) model for

yt is

yt = µ + Myt-1 + ,t,

where ,t ~ iid (0,E) andE  has elements Fij (i,j = f,s), and can be reparameterized as

)yt = µ + Ayt-1+ ,t (7)

where A = M - I .  Under the assumption of cointegration, A has rank 1 and there exist 2 × 1 vectors

" and $ such that A = "$N.  Using the normalization $ = (1, -$s)N, (7) becomes the vector error

correction model (VECM)

)ft = µ f + "f(ft-1 - $sst-1) + ,ft, (8a)

)st = µ s + "s(ft-1 - $sst-1) + ,st. (8b)

Since spot and forward rates often do not exhibit a systematic tendency to drift up or down it may

be more appropriate to restrict the intercepts in (8) to the error correction term.  That is, µ f = -"f µ c

and µ s = -"sµ c .  Under this restriction st and ft are I(1) without drift and the cointegrating residual,

ft - $sst, is allowed to have a nonzero mean µ c
4.

With the intercepts in (8) restricted to the error correction term, the VECM can be solved to

give a simple AR(1) model for the cointegrating residual $Nyt - µ c = ft - $sst - µ c.  Premultiplying (7)

by $N and rearranging gives

ft - $sst - µ c = N(ft-1 - $sst-1 - µ c) + 0t, (9)

where N = 1 + $N" = 1 + ("f - $s"s) and 0t = $N,t = ,ft - $s,st.  Since (9) is simply an AR(1) model,

the cointegrating residual is stable and stationary if *N* = *1 + ("f - $s"s)* < 1.  Notice that if "f =

$s"s then the cointegrating residual is I(1) and ft and st are not cointegrated.

The exogeneity status of spot and forward rates with regard to the cointegrating parameters

" and $ was the focus of attention in Norrbin and Reffett (1996) so it is appropriate to discuss this

issue in some detail.  Exogeneity issues in error correction models are discussed at length in Johansen

(1992, 1995), Banerjee et. al. (1993), Urbain (1993), Ericsson and Irons (1994) and Zivot (1998).

For our purposes weak exogeneity of spot or forward rates for the cointegrating parameters " and
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$ places restrictions on the parameters of the VECM (8).  In particular, if ft is weakly exogenous with

respect to ("s, $s)N then "f = 0 and efficient estimation of the cointegrating parameters can be made

from the single equation conditional error correction model

)st = µ s + "s(ft-1 - $sst-1) + (s)ft + <st, (10a)

where (s = Fs
-
s
1 Ffs and <st is uncorrelated with ,ft.  Similarly, if st is weakly exogenous with respect

to ("f, $s)N then "s = 0 and efficient estimation of the cointegrating parameters can be made from the

single equation conditional error correction model

)ft = µ f + "f(ft-1 - $sst-1) + (f)st + <ft (10b)

where (f = Ff
-

f
1 Ffs and <ft is uncorrelated with ,st. 

If $s = 1 then the forward premium is I(0) and follows an AR(1) process and the VECM (8)

becomes

)ft = µ f + "f(ft-1 - st-1) + ,ft, (11a)

)st = µ s + "s(ft-1 - st-1) + ,st. (11b)

Notice that (11b) is simply the standard differences regression (5) used to test the FRUH. Further,

if "f and "s are of the same sign and magnitude then the implied value of N in (9) is close to 1 and this

corresponds to the stylized fact that the forward premium is stationary but very highly autocorrelated.

Also, the implied variance of the of the forward premium from (9) is F00 = Fff + Fss - 2Dfs(FffFss)
½ and

will be very small relative to the variances of )ft and )st given the stylized facts that Fff . Fss and Dfs

. 1.

The FRUH places testable restrictions on the VECM (8).  Necessary conditions for the FRUH

to hold are (i) st and ft are cointegrated (ii) $s = 1 and (iii) µ c = 0.  In addition, the FRUH requires that

"s = 1 in order for the forecast error in (2) to have conditional mean zero.  It is important to stress

that, together, these two restrictions limit both the long-run and short-run behavior of spot and

forward rates.  Applying these restrictions,  (8), led one period, becomes

)ft+1 = "f(ft - st) + ,f,t+1, (12a)

)st+1 = (ft - st) + ,s,t+1. (12b)

Notice that the FRUH requires that the expected change spot rate is equal to the forward premium

or, equivalently, that the adjustment to long-run equilibrium occurs in one period.  The change in the

forward rate, on the other hand, is directly related to the persistence of interest rate differentials now
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measured by "f since N = 1 + ("f - 1) = "f .  Stability of the VECM under the FRUH requires that*"f*

< 1.  Thus, the FRUH is consistent with a highly persistent forward premium. 

The representation in (12) shows that weak exogeneity of spot rates with respect to the

cointegrating parameters is inconsistent with the FRUH because  if spot rates are weakly exogenous

then "s = 0 and the FRUH cannot hold.  In addition if the FRUH is true and forward rates are weakly

exogenous then (12) cannot capture the dynamics of typical data.  To see this, suppose that forward

rates are weakly exogenous so that "f = 0.  Since Fss . Fff . Fsf = F² it follows that (s . (f . 1.   If

µ s = 0, "s = 1 and $s = 1, then (10a) becomes 

st = ft-1 + )ft + <t = ft + <t

which simply states that the current spot rate is equal to the current forward rate plus a white noise

error.  This result is clearly inconsistent with the data since it implies that the forward premium is

serially uncorrelated.

4.2  Phillips’ triangular representation.

Another useful representation of a cointegrated system is Phillips’ (1991) triangular

representation, which is similar to the triangular representation of a limited information simultaneous

equations model.  This representation is most useful for studying the asymptotic properties of

cointegrating regressions and Baillie (1989) has advocated its use for testing rational expectations

restrictions in cointegrated VAR models. This representation is also used by Naka and Whitney

(1995) to test the FRUH. The general form of the triangular representation for yt is

ft = µ c + $sst + uft, (13a)

st = st-1 + ust, (13b)

where the vector of errors ut = (uft, ust)N = (ft - $sst - µ c, )st)N has the stationary moving average

representation ut = R(L)et where and et is  i.i.d.  with mean zero andR(L) ' j
4

k'0

RkL
k, j

4

k'0

|k|Rk < 4

covariance matrix V. Equation (13a) models the (structural) cointegrating relationship and (13b) is

a reduced form relationship describing the stochastic trend in the spot rate.  For a given VECM

representation, the triangular representation is simply a reparameterization. For the VECM (8) with

the restricted constant, the derived triangular representation is given by (13a)-(13b) with

uft = Nuf,t-1 + 0t, (13c)
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ust = "suft-1 + ,st, (13d)

and N, "s, 0t and ,st are as previously defined.   Equation (13c) models the disequilibrium error

(which equals the forward premium if $s = 1) as an AR(1) process and (13d) allows the lagged error

to affect the change in the spot rate.  Let et = (0t, ,st)N.  Then the vector ut = (uft, ust)N = (ft - $sst - µ c,

)st)N has the VAR(1) representation ut = Cut-1 + et where 

C '
N 0

"s 0
, V '

F00 F0s

Fs0 Fss

,

Hence, R(L) = (I - CL)-1. As noted previously, F00 is very small relative to Fss and F0s = Ffs - Fss. 

Phillips and Loretan (1991) and Phillips (1991) show how the triangular representation of a

cointegrated system can be used to derive the asymptotic properties of the OLS estimates of the

cointegration parameters.  For our purposes, the most important result is that the OLS estimate of

$s from (13a) is asymptotically unbiased and efficient only if  uft and ust are contemporaneously

uncorrelated and there is no feedback between uft and ust (i.e, st is weakly exogenous for $s and  uft

does not Granger cause ust and vise-versa).  These correlation and feedback effects can be expressed

in terms of specific components of the long-run covariance matrix of ut.  The long-run covariance

matrix of ut is defined as = (I - C)-1V(I - C)-1N and this matrix can beS ' j
4

k'&4
E[u0u

)

k] ' R(1)VR(1))

decomposed into S = ) + 'N where ) = '0 + ', '0 = E[u0u0N] and .   Let S and' ' j
4

k'1

E[u0u
)

k]

) have elements Tij and )ij (i,j = 0,s), respectively.  Using these matrices it can be shown that the

elements that contribute to the bias and nonnormality of OLS estimates are the quantities 2 = Ts0/Tss

and )s0, which measure the long-run correlation and endogeneity between uft and ust.   If these

elements are zero then the OLS estimates are asymptotically (mixed) normal, unbiased and efficient5.

Using the triangular system (13) some tedious calculations show (see Zivot (1995))

2 = ("sF00/(1 - N) + F0,/(1 - N))@("s²F00/(1 - N) + 2"sF0s/(1 - N) + Fss)
-1,

)s0 = "sF00N[(1 - N)(1 - N²)]-1 + F0s/(1 - N),

and these quantities are zero if "s = 0 (spot rates are weakly exogenous for $s)  and F0s = 0.  In

typical exchange rate data, however, F0s . 0 and F00 is much smaller than Fss which implies that 2 .

0 and )s0 . 0 so the OLS bias is expected to be very small. 

To illustrate the expected magnitude of the OLS bias we conducted a simple Monte Carlo
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experiment where data was generated by (13) with $s = 1, "s = 1, -3, N = 0.9, Fss = (0.035)²,  F00 =

(0.001)², and D0s = 06.  When "s = 1 the FRUH is true and when "s = -3 it is not. In both cases the

forward premium is highly autocorrelated.  Table 2 gives the results of OLS applied to the levels

regression (12a) for samples of size T=100 and T=250. In both cases the magnitude of the OLS bias

is negligible.  The OLS standard errors, however, are biased which cause the size distortions in the

nominal 5% t-tests of the hypothesis that $s = 1.

4.3 Empirical Example

Table 3 presents estimation results for the VAR model (7) and Table 4 gives the results for

the triangular model (13) imposing $s = 1 for the pound, yen and Canadian dollar  monthly exchange

rate series.  The VAR(1) model was selected for all currencies by likelihood ratio tests for lag lengths

and standard model selection criteria. For all currencies,  ft and st behave very similarly: the estimated

intercepts and error variances are nearly identical and the estimated correlation between ,ft and ,st,

Dfs, is 0.99. The estimated coefficients from the triangular model essentially mimic the corresponding

coefficients from the VAR(1).   Table 5 gives the results of Johansen’s likelihood ratio test for the

number of cointegrating vectors for the three exchange rate series based on the estimation of (7).  If

the intercepts are restricted to the error correction term then the Johansen rank test finds one

cointegrating vector in all cases.  If the intercept is unrestricted then the rank tests finds that spot and

forward rates for the pound and Canadian dollar are I(0).  However, for each series, the likelihood

ratio statistic does not reject the  hypothesis that the intercepts be restricted to the error correction

term. Table 5 also reports the results of the Engle-Granger (1987) two-step residual based ADF t-test

for no cointegration based on estimating $s by OLS.  For long lag lengths the null of no-cointegration

between forward and spot rates is not rejected at the 10% level but for short lag lengths the null is

rejected at the 5% level7.  Table 6 reports estimates of $s using OLS, Stock and Watson’s (1993)

dynamic OLS (DOLS) and dynamic GLS (DGLS) lead-lag estimator and Johansen’s (1995) reduced

rank MLE 8.  The latter three estimators are asymptotically efficient estimators and yield

asymptotically valid standard errors.  Notice that all of the estimates of $s are extremely close to 1

and the hypothesis that $s = 1 cannot be rejected using the asymptotic t-tests based on DOLS/DGLS

and MLE. Table 7 shows the MLEs of the parameters of the VECM (8) where the intercepts are
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restricted to the error correction term. Notice also that the estimates of "f and "s are both significantly

negative and of about the same magnitude indicting that the error correction term, which is essentially

the forward premium since $^ s . 1, is very highly autocorrelated.  Further, since the estimates of "f

and "s are significantly different from zero neither spot nor forward rates appear to be weakly

exogenous with respect to the cointegrating parameters.

The above empirical results are based on a two-step procedure of first testing for

cointegration between ft and st and then testing if the cointegrating vector is (1,-1).  Alternatively, one

can use a one-step procedure to test the null of no-cointegration against the joint hypothesis of

cointegration with a prespecified cointegrating vector.  The advantage of using tests that impose a

prespecified cointegrating vector is that if the cointegrating vector is true then the test can have

substantially higher power than tests that implicitly estimate the cointegrating vector9. The most

commonly used one-step procedure to test the joint hypothesis of cointegration between ft and st with

the prespecified cointegrating vector (1,-1) is to run either a unit root test (e.g. ADF t-test) or a

stationarity test (e.g KPSS test) on the forward premium ft - st. Table 5 also reports the ADF unit root

tests and KPSS stationarity tests on the forward premia for the three exchange rate series.  For short

lag lengths the ADF tests indicate that the forward premia are I(0) whereas for long lags the series

appear I(1).  The KPSS tests give mixed results10.

Use of the ADF test as a test for no-cointegration against the alternative of cointegration with

a prespecified cointegrating vector, however, has been criticized by Kremers, Ericsson and Dolado

(1992) and Zivot (1998) as having low power since the ADF test places unrealistic parametric

restrictions on the short-run dynamics of the data.  They show that a single equation conditional ECM

test, based on models similar to (10a) and (10b), can have substantially higher power than the ADF

test.  A limitation of the conditional ECM test, however, is that it assumes weak exogeneity of one

variable with respect to the cointegration parameters.  In the context of testing the stationarity of the

forward premium it is hard to argue a priori that either forward rates or spot rates are weakly

exogenous, and the empirical results of table 5 indicate they are not,  and so it appears that the

conditional ECM test is not appropriate.  Horvath and Watson (1995), however, develop a

multivariate procedure to test for cointegration with a prespecified cointegrating vector within a

VECM that does not require any exogeneity assumptions.  The Horvath and Watson test statistic in
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the present context is simply the Wald statistic for testing the joint hypothesis "f = "s = 0 where the

parameters are estimated by OLS from the VECM (11)11.  Under the null of no-cointegration the

Wald test has a nonstandard asymptotic distribution and Horvath and Watson (1995) supply the

appropriate critical values.  They show that their test can have considerably higher power than

Johansen’s rank test, which is based on implicitly estimating the cointegrating vector.  Additionally,

they show that their test has good power even if the cointegrating vector is moderately misspecified.

The estimates of the VECMs imposing the cointegrating vector (1,-1) are presented in Table 8 and

the Horvath-Watson Wald statistics are reported in Table 5. Using the Horvath-Watson Wald test,

the null of no-cointegration is rejected at the 5% level in favor of the alternative of cointegration with

cointegrating vector (1,-1) for all three exchange rates.  

Based on the results from Table 8, the FRUH is clearly rejected for all three exchange rate

series since the null hypothesis that "s = 1 can be rejected at any reasonable level of significance using

an asymptotic t-test.  As discussed in Engel (1996),  a rejection of the FRUH is usually interpreted

as evidence for the existence of a time varying risk premium or a peso problem. Using (11b), it is easy

to see that the risk premium implied by the VECM (11) is rpt
re = (1 - "s)(ft - st) and so the forward

premium is perfectly correlated with the risk premium.

5.  Models of Cointegration between st+1 and ft implied by cointegration between

ft and st 

As discussed earlier, cointegration between ft and st with cointegrating vector (1,-1) implies

cointegration between st+1 and ft with cointegrating vector (1,-1).  However, the implied VECM and

triangular representations for st+1 and ft based on the simple models of cointegration between ft and

st presented in the previous section are somewhat nonstandard.  To see this, consider first the

derivation of the VECM for )ft and )st+1.   By adding and subtracting "sft-1 from the right hand side

of (11b), led one period,  and adding and subtracting "fst from the right hand side of (11a), we get

the VECM for ()ft, )st+1)N

)ft = µ f  - "f(st - ft-1) + "f)st + ,ft, (14a)

)st+1 = µ s  - "s(st - ft-1) + "s)ft + ,s,t+1. (14b)

Notice that in (14) the error correction term is now the lagged forecast error, st - ft-1, and not the
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lagged forward premium and that the error terms are separated by one time period and are thus

contemporaneously uncorrelated.  The errors, however, are not independent due to the correlation

between  ,ft and ,st. Consequently, the representation in (14) is not a VECM that can be derived from

a finite order VAR model for (st+1, ft)N. In addition, since the error correction term enters both

equations   neither the forward rate nor the future spot rate is weakly exogenous for the cointegration

parameters.   

Although )st is on the right hand side of (14a) and )ft is on the right hand side of (14b) these

models should not be interpreted as conditional models since they are derived by simple algebraic

manipulation of (11).  In particular, since the time index is shifted by one period between the two

equations it is more appropriate to interpret )ft in (14b) as a predetermined variable.   Estimation of

(14b) by OLS will yield consistent but not necessarily efficient estimates of "s 
12.  However,

estimation of (14a) by OLS is problematic since both st - ft-1 and )st are correlated with ,ft.

Next consider the derivation of the triangular representation.   Using (8b) and  ft - st - µ c = uft

the triangular model for st+1 and ft becomes

st+1 = µ c + ft + <s,t+1, (15a)

)ft =<ft, (15b)

where 

<s,t+1 = ("s - 1)uft + ,s,t+1 (15c)

<ft = "fuf,t-1 + ,ft .   (15d)

From (15a,c), we see that the demeaned forecast error, st+1 - ft - µ c  is an AR(1) process with additive

noise. The serial correlation in the forecast error will disappear if the FRUH is true or if the forward

premium is not autocorrelated.   Moreover, if the FRUH is not true the large variance of ,s,t+1 relative

to uft will make it difficult to detect the serial correlation in the forecast error.  Consequently, tests

of FRUH based on testing serial correlation in the forecast error or in the residuals from the levels

regression (3) are bound to have low power.   Although it may be difficult to detect serial correlation

in the forecast error, the representation in (15a) shows that the forward premium can be used to help

predict the forecast error unless the FRUH is true.  Since uft and ,s,t+1 are essentially uncorrelated the

AR(1) plus noise process can be given an ARMA(1,1) representation and this implies that the system

(st+1 - ft  - µ c, )ft )N cannot be given a simple VAR representation. 
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The representation in (15) has important implications for testing for cointegration between

st+1 and ft as well as for estimating the cointegrating vector from the levels regression (3).  Suppose

that st and ft are not cointegrated so that µ c = "s = 0, N = 1 and so uft ~ I(1).  Then (15a) shows that

the forecast error can be decomposed into a random walk component, uft, and an independent

stationary component, ,s,t+1.  Further, the variance of the random walk component is considerably

smaller than the variance of the stationary component.  In this case, it will be very difficult to detect

the random walk component using standard unit root tests on the forecast error.  It follows that unit

root tests on the forecast error will likely suffer from size distortions and stationarity tests will suffer

from low power13.  Unit root tests on the forward premium, however, do not suffer from such size

distortions although they generally will have low power due to the large persistence in the forward

premium. To illustrate, Table 9 reports unit root and stationarity tests on the forecast error st+1 - ft

for the three exchange rate series.  For short lags the unit root null is strongly rejected and for the

long lags the null is only weakly rejected.  The null of stationarity is not rejected for all series using

the KPSS test.

Now suppose that  st+1 and ft are cointegrated and (15a) is the correct representation given

that $f = 1. Then the OLS estimate of $f from the levels regression (3) will be consistent but

asymptotically biased and inefficient due to dynamic behavior and feedback between the elements of

vt+1 = (vs,t+1, vft)N.  Since the VECM (14) cannot be derived from a finite order cointegrated VAR

model for (st+1 ,ft), testing for cointegration and estimating the cointegrating vector using standard

VAR techniques is problematic.  In particular, since  st - ft-1 is correlated with ,ft, testing and

estimation methods based on naive VECMs for )st+1 and )ft, like the Horvath-Watson Wald test and

the Johansen MLE, are likely to suffer from biases.  The dynamic OLS/GLS estimator of Stock and

Watson (1993), however, should work well since it is designed to pick-up feedback effects through

the inclusion of leads and lags of )ft in the levels regression (3). The results of Table 10 show that

this is indeed the case for the pound, yen and Canadian dollar.  For all series, the OLS estimates of

$f are downward biased but the Stock-Watson DOLS and DGLS estimates are nearly one.

Somewhat surprisingly, the triangular representation (15) shows that the OLS estimate of  $f

will be biased even if "s = 1 (the FRUH is true). This result is due to the fact that the long-run

covariance matrix of vt+1 is not diagonal.  To illustrate, let the FRUH be true and suppose that "f =
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0 so that the forward premium is not autocorrelated (this assumption greatly simplifies the

calculations but does not qualitatively affect the end result).  Then the triangular representation (15)

simplifies to 

st+1 = ft + ,s,t+1,

ft = ft-1 + ,ft,

and vt+1 = et+1 = (,s,t+1, ,ft)N.  Then by straightforward calculations the long-run covariance matrix of

et+1 and its components are

so that 2 = Fsf/Fff and )fs = 0.  Further, since Fss . Fff and Dsf . 1 it follows that 2 . 1 and so OLS

on the levels regression (3) will suffer from bias even if the FRUH is true.  To illustrate the magnitude

of the bias, Table 2(c) reports OLS estimates of the levels regression (3) when data are generated

from (12).  The OLS estimate of $f is biased downward, to a similar degree observed in empirical

results,  and the finite sample distribution is heavily left-skewed.  The t-statistic for testing $f = 1 is

centered around -1.5 and a nominal 5% test rejects the null that $f = 1 about 30% of the time when

the null is true.  Table 2 also reports results for the Stock-Watson DOLS estimator.  In all cases, the

Stock-Watson estimator is essentially equal to the true value of unity and the t-statistic for testing $f

= 1 is roughly symmetric and centered around zero.  However, there is moderate size distortion in

the nominal 5% t-tests of $f = 1 for T=100 but the distortions dissipates as T increases.

6.  A Reinterpretation of Some Recent Results Regarding the FRUH.

The results of the previous sections can be used to reinterpret the results of Norrbin and

Reffett (1996), hereafter NR, and Naka and Whitney (1995), hereafter NW, who use particular

cointegrated models for (st+1, ft)N and find support for the FRUH. 

6.1 Norrbin and Reffett’s model

NR based their analysis on the following VECM for (st+1, ft)N
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)st+1 = µ s + *s(st - $f ft-1) + Hst+1, (16a)

)ft = µ f + *f(st - $f ft-1) + Hft, (16b)

which is based on a cointegrated VAR(1) model for (st+1, ft)N
14.  NR are primarily interested in directly

testing the LRFRUC, i.e., that (st+1, ft) are cointegrated with cointegrating vector (1, -1),  and not the

FRUH.  Their approach is to impose $f = 1, estimate (16) by OLS and test the significance of the

error correction coefficients *s and *f.  Table 11 presents the estimation results for (16) applied to

our data. They find that estimates of *s are not statistically different from zero, estimates of *f are not

statistically different from 1, the R²s from (16a) and (16b) are close to zero and one, respectively,

and the error term from (16b) is highly serially correlated15.   Our results are very similar. From these

results they conclude that st+1 and ft are cointegrated with cointegrating vector (1,-1) (since *f … 0)

and that spot rates are weakly exogenous for the cointegrating parameters (since *s = 0)16. Based on

their finding that spot rates are weakly exogenous they argue that tests of the LRFRUC constructed

from an error correction equation for )st+1 are bound to lead one to mistakenly reject the LRFRUC

and, therefore, reject the FRUH.

Using the cointegrated model for st+1 and ft implied by the cointegrated model for st and ft

presented in section 5 we can give alternative interpretations of NR’s results. Most importantly, our

results show that NR’s claim that spot rates are weakly exogenous is inconsistent with the FRUH.

To see how NR arrived at their results observe that (16) is a restricted version of (14) since )ft is

omitted from (16a) and )st is omitted from (16b).  Now, NR’s finding that estimates of *s are close

to zero can be explained by omitted variables bias.  For example, if (14) is the true model, with µ f =

µ s = 0, then straightforward calculations based on the stylized facts of the data show

 and so plim *^ s . 0.  Also, asplim T &1j
T

1

(st & ft&1))ft . F2, plim T &1j
T

1

(st & ft&1)
2 . F2

mentioned in the last section, estimation of (16b) by OLS is problematic due to the correlation

between *f(st - $f ft-1) and eft. Furthermore, the finding that *6 f = 1 with $f = 1 in (16b) implies that )ft

= st - ft-1 + H^ ft or, equivalently, that ft = st + H^ ft.  This combined with the result that R² = 1 and H^ ft is

highly autocorrelated  simply shows that the forward premium is highly autocorrelated and does not

provide evidence one way or another about the FRUH. Finally, consider NR’s Table 2 which gives

the results for the estimation of the error correction model

)st+1 = µ + "(st - ft-1) + *)ft + B)ft-1 + ()st + ut+1 (17)
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which mimics the ECM estimated by Hakkio and Rush (1989).  NR claim that this regression is

misspecified since it mistakenly assumes that forward rates are weakly exogenous (presumably due

to the presence of )ft ).  However (17) is in the form of (14b) which is not a conditional model and

does not make any assumptions about the weak exogeneity of forward rates so NR’s claim is not true.

6.2 Naka and Whitney’s model

NW are interested in testing the LRFRUC and the FRUH simultaneously using the following

cointegrated triangular representation for (st+1, ft)N

st+1 = µ + $f ft + vs,t+1, (18a)

)ft = vft, (18b)

where

vs,t+1 = Dvst + ws,t+1, (18c)

vft = wft, (18d)

and ws,t+1, wft are i.i.d. error terms. Notice that (18a) allows for serial correlation in the “levels

regression” but the restriction that ft is strictly exogenous is imposed in (18b). The VECM derived

from (18) is

)st+1 = (1 - D)µ - (1 - D)(st - $f ft-1) + $f)ft + ws,t+1, (19a)

)ft = wft. (19b)

In (19a) the speed of adjustment coefficient is directly related to the correlation in the forecast error

and the long-run impact of forward rates on future spot rates (the coefficient on ft) is restricted to be

equal to the short-run effect (the coefficient on )ft) .  In (19), the FRUH imposes the restrictions µ

= 0, D = 0 and $f = 1. NW estimate (19a) by nonlinear least squares (NLS) and report estimates of

µ  and D close to zero and estimates of $f close to one17.  Table 12 replicates NW’s analysis using our

data and we find very similar results. Based on these results, NW cannot reject the FRUH.

The triangular representation (18) used by NW is very similar to the triangular model (15) but

with some important differences.  In particular, since ft is assumed to be strictly exogenous and ws,t+1

and wft are assumed to be independent  NW’s model does not allow for feedback between )st and )ft

or for contemporaneous correlation between <st and <ft.  These assumptions imply that (19a) is a

properly derived conditional model and so efficient estimation of $f and D via nonlinear least squares
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can be made. These assumptions, however, place unrealistic restrictions on the dynamics of spot and

forward rates.  For example, suppose (18) is the correct model and that the FRUH is true so µ = 0,

$f = 1 and D = 0.  Then the derived VECM for (ft, st)N is 

)ft = wft

)st = (ft-1 - st-1) + wst

where wft and wst are independent.  This model implies that  ft-1 - st-1 = wf,t-1 - ws,t-1 , which is a white

noise process, and that )ft and )st are uncorrelated.  Clearly these results are at odds with the

observation that the forward premium is highly autocorrelated and that )ft and )st are highly

contemporaneously correlated.  In addition, NW fail to recognize  that assuming ft is strictly

exogenous and wst and wft are independent the results of Phillips and Loretan (1991) and Phillips

(1991) show that OLS on (18a) yields asymptotically efficient estimates of $f and so there is no

efficiency gain in estimating  the nonlinear error correction model (19a)18.   Indeed, the results of

Tables 10 and 12 show that the OLS and NLS estimates of $f are almost identical. Finally, since

NW’s estimates of $f are essentially unity, their tests for the significance of D in (19a) are  roughly

equivalent to tests for serial correlation in the forecast error st+1 - ft.  Given the remarks in section 5

we know that this test of the FRUH is bound to have low power. In sum, by starting with a simple

cointegrated model for st+1 and ft, NW fail to capture some important dynamics between st and ft that

provide information about the validity of the FRUH.

7.  Conclusion

In this paper we illustrate some potential pitfalls in modeling the cointegrated behavior of spot

and forward exchange rates and we are able to give explanations for some puzzling results that

commonly occur in exchange rate regressions used to test the FRUH. We find that a simple first order

VECM for st and ft captures the important stylized facts of typical monthly exchange rate data and

serves as a natural statistical model for explaining exchange rate behavior. We show that the

cointegrated model for st+1 and ft derived from the VECM for st and ft is not a simple finite order

VECM and that estimating a first order VECM for st+1 and ft can lead to mistaken inferences

concerning the exogeneity of spot rates and the unbiasedness of forward rates.
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1.Excellent discussions of efficient estimation of cointegrating vectors are given in Phillips and
Loretan (1991), Banerjee, Dolado, Galbraith and Hendry (1993), Hamilton (1993), Stock and
Watson (1993) and Watson (1995).

2.Given this interpretation of (5), the commonly reported estimates of "s less than -2 are troubling
since it indicates that the single equation error correction model is not stable.  This result
highlights the need to look at the vector error correction model for (st, ft)N.

3.The data are end of month, average of bid and ask rates. All data begin in January 1976, except
for forward rates for the Japanese yet which begin in June 1978. All data go through June 1996.
The exchange rates obtained are all in terms of British pounds, but were converted to dollar
exchange rates.

4.Baillie and Bollerslev (1994), Diebold, Gardeazabal and Yilmaz (1994), Barkoulas and Baum
(1995) and Luintel and Paudyal (1998) have stressed the importance of the treatment of the
constant term in cointegrated models for spot and forward exchange rates. The restriction on the
constant is easily tested with a likelihood ratio test using the Johansen methodology.

5.The Stock-Watson DOLS/DGLS and Johansen ML estimators of $s asymptotically remove the
effects of 2 and )s0 and so are asymptotically unbiased and efficient.

6.The parameters for the Monte Carlo experiment were calibrated from monthly data on UK spot
and forward rates quoted in US dollars.

7.This result has been observed by Crowder (1994).

8.The Stock-Watson dynamic OLS and GLS estimators have been used to estimate the
cointegrating vector in the levels regression (3) by Evans and Lewis (1993, 1995), Hai, Mark and
Wu (1996) and Godbout and van Norden (1996).  The Johansen reduced rank estimator has been
used by Baillie and Bollerslev (1989), Crowder (1994) and Godbout and van Norden (1996). 
Other efficient estimators of the cointegrating vector based on nonparametric corrections for
long-run correlation and endogeneity include Phillips and Hansen’s (1990) FM-OLS estimator and
Park’s (1992) CCR estimator.   Corbae, Lim and Ouliaris (1992) use Park’s CCR estimator to
investigate the FRUH.

9.See Horvath and Watson (1995) and Zivot (1998).

10. Engel (1996) surveys the empirical evidence on the stationarity of the forward premium and
the results are somewhat mixed and depend on the testing procedure, the data frequency and time
period.  In general, the high persistence and nonhomogeneity of the forward premium reduce the
power of unit root tests and distort the size of stationarity tests.  In addition, in daily data the
forward premium exhibits strong GARCH effects and nonnormality.  These problems have led
some authors to consider non-standard models of cointegration between ft and st.  For example,

Notes
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Baillie and Bollerslev (1994) consider fractional cointegration, Bekaert and Hodrick (1993),
Evans and Lewis (1993, 1995) consider Markov switching cointegration and Siklos and Granger
(1996) consider temporary cointegration.

11.Although not considered here, one may also use the Horvath-Watson (1995) test to perform a
joint test that the forward premia for all currencies are nonstationary.

12.The estimates will not be efficient because they ignore the restriction that the coefficient on the
st - ft-1  is the same as the coefficient on the )ft.

13.A similar point has been made recently by Engel (1998) with regard to testing for a unit root in
the real exchange rate.

14.The error term in NR’s equations (1b) and (4b) should be ,i2t-1 not ,i2t .

15.Norrbin and Reffett use quarterly data on exchange rates over the period 1973:1 - 1992:4 for
the German mark, Canadian dollar, Swiss franc, Japanese Yen and English pound quoted in terms
of US dollars.

16.Norrbin and Reffett claim that they do a test of the joint hypothesis that st+1 and ft are
cointegrated with cointegrating vector (1,-1) using the VECM for )st+1 and )ft.  The Horvath-
Watson Wald test of *s = *f = 0 would be the appropriate test statistic.  However, since they
claim that spot rates are weakly exogenous they base their results on Kremers, Ericsson and
Dolado’s (1992) single equation conditional error correction model test.  But they do not
correctly apply the test since they do not estimate a model for )ft conditional on )st+1.  

17.Naka and Whitney (1995) examine monthly exchange rate data covering the period 1974:01 -
1991:04 for the British pound, Canadian dollar, German mark, French franc, Italian lira, Japanese
yen and Swiss franc quoted in terms of US dollars.

18.Naka and Whitney (1995) specify that wft and ws,t+1 are i.i.d. error terms but they do not make
explicit if there is any correlation between wft and wst.  If there is no contemporaneous correlation
then OLS is efficient but if these terms are correlated then OLS is not efficient and is
asymptotically biased.  Moreover, even if wft and wst are correlated then estimation of Naka and
Whitney’s nonlinear ECM is not equivalent to maximum likelihood since the long-run covariance
matrix in the triangular model is not diagonal.
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Figure 1: Monthly Exchange Rate Data

Source: Datastream.
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Table 1: Summary Statistics for Exchange Rate Data

British Pound Japanese Yen Canadian Dollar

)st+1 )ft+1 ft - st st+1 - ft )st+1 )ft+1 ft - st st+1 - ft )st+1 )ft+1 ft - st st+1 - ft

mean -0.001 -0.001 -0.002 0.001 0.003 0.003 0.003 0.000 -0.001 -0.001 -0.001 0.000

sd 0.034 0.034 0.003 0.035 0.036 0.036 0.003 0.037 0.014 0.014 0.001 0.014

D1 0.087 0.089 0.904 0.111 0.079 0.053 0.926 0.091 -0.108 -0.109 0.786 -0.080

Q 1.859 1.961 201.9*** 3.037* 1.537 0.621 186.7*** 1.792 2.904* 2.909* 152.6*** 1.590

Correla
tion
Matrix

1.000 0.999 -0.135 0.997 1.000 0.999 -0.199 0.997 1.000 0.998 -0.148 0.995

1.000 -0.143 0.997 1.000 -0.205 0.997 1.000 -0.169 0.995

1.000 -0.212 1.000 -0.270 1.000 -0.249

1.000 1.000 1.000

Notes: D1 denotes the first order autocorrelation coefficient and Q denotes the modified Jarque-Berra Q-statistic. ***, ** and * denote
significance at the 1%, 5% and 10% level, respectively.
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Table 2 : Monte Carlo Estimates of Bias in Levels Regressions

ft = st + uft, uft = 0.9uft-1 + 0t

st = st-1 + ust, ust = "suft-1 + ,st

0t

,st

' iid N
0

0
,

0.001 0

0 0.05

(a) Estimated regression:  ft = a + bst + et

T = 100 T = 250

a ta=0 b tb=1 a ta=0 b tb=1

"s = 1 -0.000 -0.005
(.642)

1.000 -0.079
(.605)

0.000 0.023
(.653)

1.000 -0.122
(.629)

"s = -3 -0.000 -0.018
(.644)

1.000 -0.285
(.595)

-0.000 -0.065
(.644)

1.000 -0.303
(.622)

(b) Estimated regression: st+1 = a + bft + et+1

T = 100 T = 250

a ta=0 b tb=1 a ta=0 b tb=1

"s = 1 -0.000 -0.030
(.275)

0.948 -1.531
(.293)

-0.000 -0.016
(.267)

0.979 -1.518
(.301)

"s = -3 -0.000 -0.007
(.309)

0.955 -1.415
(.278)

-0.000 -0.014
(.303)

0.983 -1.388
(.265)

(c) Estimated regression:  st%1 ' a % bft % j
3

k'&3

(k)ft&k % et%1

T = 100 T = 250

a ta=0 b tb=1 a ta=0 b tb=1

"s = 1 -0.000 -0.001
(.171)

1.000 0.035
(.141)

0.000 0.006
(.108)

1.000 0.017
(.089)

"s = -3 -0.000 0.005
(.182)

0.999 -0.232
(.142)

-0.000 -0.020
(.115)

1.000 -0.205
(.088)

Notes: Number of simulations = 10,000.  Simulations were computed in GAUSS 3.2.14.  The values in
parentheses indicate the empirical rejection frequency of nominal 5% two-sided tests using asymptotic normal
critical values.  The standard errors for the Stock-Watson DOLS estimates were computed using an
autoregressive estimate of the long-run variance as described in Hamilton (1993) page 610.



Table 3: Bivariate VAR(1) Estimates

)yt = µ + Ayt-1 + ,t, yt = (ft, st)N, ,t = (,ft, ,st)N

Equation

Currency Variable/Statistic )ft )st

British Pound
1976.03 - 1996.06

T = 244

ft-1 -1.771
(0.794)

-1.676
(0.794)

st-1 1.744
(0.794)

1.649
(0.795)

constant 0.009
(0.008)

0.009
(0.008)

R² 0.034 0.033

F 0.034 0.034

Dfs 0.999

Japanese Yen
1978.08 - 1996.06

T = 215

ft-1 -3.250
(0.944)

-3.178
(0.946)

st-1 3.237
(0.941)

3.165
(0.943)

constant -0.053
(0.039)

-0.053
(0.039)

R² 0.054 0.052

F 0.035 0.035

Dfs 0.999

Canadian Dollar
1976.03 - 1996.06

T = 244

ft-1 -2.030
(0.609)

-1.810
(0.608)

st-1 2.001
(0.607)

1.782
(0.605)

constant -0.010
(0.003)

-0.010
(0.003)

R² 0.059 0.051

F 0.014 0.014

Dfs 0.998

Notes: Standard errors are in parentheses. Dfs denotes the correlation between ,f and ,s.
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Table 4: Bivariate Triangular Model Estimates With $$s = 1

ut = Cut-1 + et, ut = (uft, ust)N = (ft - st - µ c, )st)N, et = (0t, ,st)N

Equation

Currency Variable/Statistic uft ust

Pound
1976.03 - 1996.06

T = 244

uft-1 0.911
(0.028)

-1.572
(0.808)

ust-1 0.002
(0.002)

0.070
(0.065)

R² 0.822 0.022

F 0.001 0.034

D0s -0.055

Yen
1978.08 - 1996.06

T = 215

ft-1 0.916
(0.026)

-2.511
(0.911)

st-1 -0.004
(0.002)

0.048
(0.068)

R² 0.864 0.036

F 0.001 0.035

D0s -0.095

CA Dollar
1976.03 - 1996.06

T = 244

ft-1 0.794
(0.039)

-1.475
(0.600)

st-1 0.008
(0.004)

-0.116
(0.064)

R² 0.627 0.025

F 0.001 0.014

D0s 0.033

Notes: Standard errors are in parentheses. D0s denotes the correlation between ,0 and ,s.



Table 5: Cointegration Tests on ft and st

Test Statistics

Tests based on estimating $ Tests that impose 
$ = (1, -1)N

Currency CADF 8m
1

ax 8m
2

ax LR KPSS ADF HW

Pound -3.47** (0)
-2.74 (12)

21.98** 
5.16**

22.27** 
5.44

0.030 0.294 (5) -3.64*** (0)
-2.77* (12)

9.54* 

Yen -3.74** (2)
-2.42 (11)

21.08*** 
1.33

22.50*** 
1.96

0.044 1.319***
(5)

-3.09** (3)
-2.23 (11)

18.17*** 

CA
Dollar

-5.58*** (0)
-2.70 (10)

39.99*** 
4.35**

42.17*** 
6.24

0.366 0.380* (5) -5.36*** (0) 
-2.91** (5)

12.57** 

Notes: CADF denotes the Engle-Granger two-step residual-based ADF t-statistic; 8m
1

ax and 8m
2

ax

denote the Johansen maximum eigenvalue statistic with the intercept unrestricted and restricted,
respectively; ADF denotes the augmented Dickey-Fuller t-statistic; KPSS denotes the Kwiatkowski,
Phillips, Schmidt and Shin (1992) statistic and HW denotes the Horvath-Watson Wald statistic.  For
the maximum eigenvalue statistic, the first row tests the null of no-cointegration versus the alternative
of one cointegrating vector and the second row tests the null of one cointegrating vector versus the
alternative of two cointegrating vectors.  LR denotes the likelihood ratio statistic for testing the
hypothesis that intercepts are restricted to the error correction term.  The Johansen and Horvath
Watson tests are based on a VECM with one lag. The number of lags used for the CADF, KPSS and
ADF tests are given in parenthesis. ***, ** and * denote rejection at the 1%, 5% and 10% level,
respectively. 



Table 6: Estimates of the Cointegrating Vector for (ft, st)NN

OLS: ft = µ c + $sst + uft,  DOLS/DGLS: ft ' µ % $s@st % j
3

k'&3
(k)st&k % ,t

MLE: )yt = "($Nyt-1 - µd) + ,t

OLS Stock-Watson
DOLS

Stock-Watson
DGLS

Johansen MLE

Currency µ c $s µ c $s µ c $s µ c $s

Pound -0.002
(0.001)

1.000
(0.001)

-0.003
(0.001)

1.000
(0.002)

-0.003
(0.002)

1.002
(0.004)

0.003
(0.002)

1.000
(0.004)

Yen -0.012
(0.003)

0.997
(0.001)

-0.011
(0.005)

0.997
(0.001)

0.003
(0.013)

1.000
(0.003)

0.008
(0.009)

0.998
(0.002)

CA
Dollar

-0.002
(0.001)

0.996
(0.001)

-0.002
(0.001)

0.996
(0.002)

-0.002
(0.001)

0.996
(0.003)

0.003
(0.001)

0.994
(0.003)

Notes: Standard errors are in parentheses. The OLS standard errors are biased.  The DOLS standard
errors are computed using a Newey-West correction with lag truncation equal to four and the DGLS
estimaters are computed via first order Cochrane-Orcutt.  The number of leads and lags for the
DOLS/DGLS estimator is the same as in Hai, Mark and Wu (1997).

Table 7: ML Estimates of the VECM for (ft, st)NN

 )st+1 ="s(ft - $s st - µ c) + ,st+1

Currency µ c "s $s F s
½

s

Pound -0.003
(0.003)

-1.672
(0.797)

1.000
(0.004)

0.034

Yen -0.008
(0.009)

-3.220
(0.890)

0.998
(0.002)

0.036

CA
Dollar

-0.003
(0.001)

-1.975
(0.606)

0.994
(0.003)

0.014

)ft+1 = "f (ft - $s st - µ c) + ,ft+1

Currency µ c "f $s F f
½

f

Pound -0.003
(0.003)

-1.766
(0.797)

1.000
(0.004)

0.034

Yen -0.008
(0.009)

-3.291
(0.919)

0.998
(0.002)

0.035

CA
Dollar

-0.004
(0.001)

-2.187
(0.607)

0.994
(0.003)

0.014



Table 8: Estimates of the VECM for (ft, st)NN imposing $$  = (1, -1)

 )st+1 = µ s + "s(ft - st) + ,st+1

Currency µ s "s F s
½

s R² JB LM ARCH

Pound -0.005
(0.003)

-1.696
(0.799)

0.034 0.018 43.51
(0.000)

0.611
(0.655)

4.894
(0.001)

Yen 0.010
(0.003)

-2.642
(0.890)

0.035 0.040 8.133
(0.017)

0.121
(0.017)

0.526
(0.716)

CA
Dollar

-0.003
(0.001)

-1.386
(0.596)

0.014 0.022 70.58
(0.000)

0.909
(0.459)

0.562
(0.690)

)ft+1 = µ f + "f (ft - st) + ,ft+1

Currency µ f "f F f
½

f R² JB LM ARCH

Pound -0.005
(0.003)

-1.790
(0.798)

0.034 0.020 45.07
(0.000)

0.624
(0.646)

4.791
(0.001)

Yen 0.010
(0.003)

-2.716
(0.888)

0.035 0.042 8.852
(0.012)

0.089
(0.986)

0.539
(0.707)

CA
Dollar

-0.004
(0.001)

-1.598
(0.597)

0.014 0.029 87.76
(0.000)

0.859
(0.489)

0.563
(0.689)

Notes: Standard errors for estimates and p-values for test statistics are in parentheses.  JB denotes
the Jacques-Bera statistic, LM denotes the LM test for up to 4th order serial correlation and ARCH
denotes the LM statistic for up to 4th order ARCH effects.

Table 9: Cointegration Tests on st+1 and ft

Test Statistics

Tests based
on estimating

$

Tests that impose $ = (1, -1)

Currency CADF KPSS ADF

Pound -13.73 (0)
-3.69* (10)

0.091 (5) -13.85*** (0)
-3.91*** (10)

Yen -13.42*** (0)
-3.30 (10)

0.212 (5) -13.40*** (0)
-3.30** (10)

CA Dollar -16.81*** (0)
-2.72 (12)

0.309 (5) -16.85*** (0)
-2.82* (12)

    Notes: See the notes for Table 5.
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Table 10: Estimates of the Cointegrating Vector for (st+1, ft)NN
OLS:  st+1 = µ c + $f ft + ust

DOLS/DGLS: st%1 ' µ % $f@ft % j
3

k'&3
(k)ft&k % ,t%1

OLS Stock-Watson DOLS Stock-Watson DGLS

Currency µ c $f µ c $f µ c $f

Pound 0.016
(0.008)

0.971
(0.015)

0.003
(0.001)

0.999
(0.002)

0.004
(0.002)

0.997
(0.004)

Yen -0.004
(0.039)

0.999
(0.008)

0.009
(0.005)

1.002
(0.001)

-0.006
(0.013)

0.999
(0.003)

CA Dollar -0.003
(0.002)

0.983
(0.010)

0.002
(0.001)

1.004
(0.002)

0.002
(0.001)

1.003
(0.003)

Notes: Seet notes for Table 6.

Table 11:  Norrbin and Reffett’s Model

 )st+1 = µ s + *s(st - ft-1) + Hst+1

Currency µ s *s F s
½

s R² JB LM ARCH

Pound -0.001
(0.002)

0.094
(0.063)

0.034 0.01 28.41
(0.000)

1.071
(0.371)

2.565
(0.039)

Yen 0.003
(0.002)

0.070
(0.070)

0.036 0.010 3.473
(0.176)

0.168
(0.954)

0.475
(0.754)

CA
Dollar

-0.001
(0.001)

-0.100
(0.063)

0.014 0.010 63.41
(0.000)

0.646
(0.630)

0.470
(0.758)

)ft = µ f + *f (st - ft-1) + Hft

Currency µ f *f F f
½

f R² JB LM ARCH

Pound -0.002
(0.000)

0.983
(0.005)

0.003 0.994 32.11
(0.000)

221.4
(0.000)

50.02
(0.000)

Yen 0.003
(0.000)

0.979
(0.005)

0.003 0.995 19.26
(0.000)

163.76
(0.000)

29.97
(0.000)

CA
Dollar

-0.001
(0.000)

0.980
(0.007)

0.001 0.989 12.91
(0.002)

92.62
(0.000)

22.11
(0.000)

Notes: See the notes for Table 8.
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Table 12: Naka and Whitney’s Model

 )st+1 = µ(1-D) - (1-D)(st - $fft-1) + $f)ft + wst+1

Currency µ s D $f F s
½

s R² JB LM ARCH

Pound 0.020
(0.009)

0.131
(0.067)

0.963
(0.017)

0.034 0.004 9.920
(0.008)

0.417
(0.229)

2.838
(0.025)

Yen -0.008
(0.043)

0.092
(0.069)

0.999
(0.008)

0.036 -0.029 1.978
(0.372)

0.922
(0.452)

0.491
(0.742)

CA
Dollar

-0.003
(0.002)

-0.075
(0.065)

0.983
(0.010)

0.014 -0.023 38.67
(0.000)

0.303
(0.876)

0.801
(0.525)

Notes: See the notes for Table 8. The nonlinear least squares estimates are computed using Eviews
3.1. The correlation coefficient D is not constrained to lie between -1 and 1.


