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Abstract

The predictive capability of a modification of Rissanen’s accumulated predic-

tion error (APE) criterion, APEδn , is investigated in infinite-order autoregressive

(AR(∞)) models. Instead of accumulating squares of sequential prediction errors

from the beginning, APEδn is obtained by summing these squared errors from stage

nδn, where n is the sample size and 0 < δn < 1 may depend on n. Under certain

regularity conditions, an asymptotic expression is derived for the mean-squared pre-

diction error (MSPE) of an AR predictor with order determined by APEδn . This ex-

pression shows that the prediction performances of APEδn can vary dramatically de-

pending on the choice of δn. Another interesting finding is that when δn approaches

1 at a certain rate, APEδn can achieve asymptotic efficiency in most practical situa-

tions. An asymptotic equivalence between APEδn and an information criterion with

a suitable penalty term is also established from the MSPE point of view. It offers a

new perspective for comparing the information- and prediction-based model selec-

tion criteria in AR(∞) models. Finally, we provide the first asymptotic efficiency

result for the case when the underlying AR(∞) model is allowed to degenerate to a

finite autoregression.
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1. INTRODUCTION

In the past two decades, investigations on the accumulated prediction error (APE)

(Rissanen, 1986) and its variations have attracted considerable attention among

researchers from various disciplines. Prior to the early 1990s, a large number of

studies focused on its consistency in selecting regression or time series models (e.g.,

Wax, 1988, Hannan et al., 1989, Hemerly and Davis, 1989, Wei, 1992, and Speed

and Yu, 1993). However, since proving consistency requires assuming that the true

model is included among the family of candidate models (which is rather difficult to

justify in practice), recent research has focused more on understanding its statistical

properties under possible model misspecification (e.g., Kavalieris, 1989, Wei, 1992,

West, 1996, McCracken, 2000, Findley, 2005, Inoue and Kilian, 2005, among others).

While a much deeper understanding of APE in cases of a misspecified model has

been gained from these recent efforts, APE’s prediction performance after model

selection still remains unclear. This motivated the present study.

To select a model for the realization of a stationary time series, it is common to

assume that the realization comes from an autoregressive moving-average (ARMA)

process whose AR and MA orders are known to lie within prescribed finite intervals.

Then a model selection procedure is used to select orders within these intervals and

thereby determine a model for the data. However, as pointed out by Shibata (1980),

Goldenshluger and Zeevi (2001) and Ing and Wei (2005), this assumption can rarely

be justified in practice, and the less stringent assumption is that the time series data

are observations from a linear stationary process. Following this idea, we assume

in the sequel that observations x1, · · · , xn are generated by an AR(∞) process {xt},
where

xt +
∞
∑

i=1

aixt−i = et, t = 0,±1,±2, · · · , (1.1)

with the characteristic polynomial A(z) = 1 +
∑∞

i=1 aiz
i 6= 0 for all |z| ≤ 1 and {et}

being a sequence of independent random noises satisfying E(et) = 0 and E(e2
t ) = σ2

for all t. To predict future observations, we consider a family of approximation

models {AR(1), · · · , AR(Kn)}, where the maximal order Kn is allowed to tend ∞ as

n does in order to reduce approximation errors. In this framework, the APE value

of model AR(k), 1 ≤ k ≤ Kn, is given by

APE(k) =
n−1
∑

i=m

(xi+1 − x̂i+1(k))2, (1.2)
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where x̂i+1(k) = −x′i(k)âi(k), xi(k) = (xi, · · · , xi−k+1 )′, âi(k) satisfies

−R̂i(k)âi(k) =
1

i−Kn

i−1
∑

j=Kn

xj(k)xj+1, (1.3)

with

R̂i(k) =
1

i−Kn

i−1
∑

j=Kn

xj(k)x′j(k), (1.4)

and m ≥ Kn + 1 is the first integer j such that âj(Kn) is uniquely defined. As

observed, APE(k) measures the performance of AR(k) when it is used for sequential

predictions. Recently, a modification of APE,

APEδn(k) =
n−1
∑

i=nδn

(xi+1 − x̂i+1(k))2, (1.5)

with 0 < δn < 1 depending on n, has also been considered by several authors, e.g.,

West (1996), McCracken (2000) and Inoue and Kilian (2005). Since APEδn includes

the original APE as a special case, this paper focuses on APEδn . As will be shown

later, the performance of APEδn can vary dramatically depending on the choice of

δn.

In view of (1.5), it is natural to predict the next observation xn+1 using x̂n+1(k̂n,δn),

where

k̂n,δn = arg min
1≤k≤Kn

APEδn(k). (1.6)

This type of prediction, targeting future values of the observed time series, is re-

ferred to as a same-realization prediction. On the other hand, if the process used

in estimation (or model selection) and that for prediction are independent, then it

is called an independent-realization prediction (see Shibata, 1980, Bhansali, 1986,

Karagrigoriou, 1997, and Schorfheide, 2005). For differences between these two

types of predictions in various time series models, see Kunitomo and Yamamoto

(1985), Ing (2001, 2003) and Ing and Wei (2003, 2005). The prediction performance

of APEδn after order selection is assessed using the mean-squared prediction error

(MSPE) qn(k̂n,δn), where

qn(k) = E (xn+1 − x̂n+1(k))2 . (1.7)

There are three interrelated issues addressed in this paper. The first one focuses

on the asymptotic expression for qn(k̂n,δn). To deal with this problem, we derive
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an upper bound for the probability P (k̂n,δn = k) based on a new decomposition

of APEδn and some moment inequalities established in Appendix A; see (3.4) and

Lemmas A.6-A.9. Motivated by Ing and Wei (2005), a condition, (3.7), is also intro-

duced to handle the complicated dependent structures among the selected orders,

estimated parameters and future observations. (Note that this difficulty does not

exist for independent-realization predictions.) Consequently, an asymptotic expres-

sion for qn(k̂n,δn) is obtained in Theorem 1 when δn is bounded away from 1. A series

of examples is given after Theorem 1 to illustrate its implications. In particular,

it is shown in Example 1 that when the AR coefficients {ai} decay exponentially

(which includes, but is not limited to, the ARMA(p, q) model with q > 0 as a spe-

cial case) and δn satisfies log δ−1
n = o(log n), APEδn is asymptotically efficient in

the sense that its (second-order) MSPE, qn(k̂n,δn) − σ2, is ultimately not greater

than min1≤k≤Kn qn(k)− σ2, the (second-order) MSPE of the best predictor among

{x̂n+1(1), · · · , x̂n+1(Kn)}. For the exact definition of asymptotic efficiency, see (2.3).

However, if {ai} decay algebraically, Example 3 points out that APEδn is no longer

asymptotically efficient if δn is bounded away from 1. To alleviate this difficulty,

Theorem 2 (also in Section 3) allows δn to converge to 1 at a suitable rate and offers

a theoretical justification for the proposed modification. In light of Theorem 2, we

were able to find a δn such that the corresponding APEδn is asymptotically efficient

in both exponential- and algebraic-decay cases, as detailed in Examples 4 and 5.

The second issue concerns the performances of the information criterion and its

relation to APEδn from the same-realization prediction point of view. The value of

the information criterion for model AR(k) is defined by

ICPn(k) = log σ̂2
n(k) +

Pnk

n
, (1.8)

where Pn > 1 is a positive number (possibly) depending on n, log denotes the

natural logarithm,

σ̂2
n(k) =

1

N

n−1
∑

t=Kn

(

xt+1 + â′n(k)xt(k)
)2

, (1.9)

and N = n − Kn. Note that AIC (Akaike, 1974), BIC (Schwarz, 1978) and HQ

(Hannan and Quinn, 1979) correspond to ICPn with Pn = 2, log n and c log2 n,

respectively, where c > 2 and log2 n = log(log n). (1.8) is referred to as an AIC-

like criterion if Pn is independent of n, and as a BIC-like criterion if Pn → ∞ and

Pn = o(n). Theorem 3 (Section 4) gives an asymptotic expression for qn(k̂n,Pn),
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where

k̂n,Pn = arg min
1≤k≤Kn

ICPn(k). (1.10)

This result extends Corollary 1 if Ing and Wei (2005), which only focuses on the

MSPE of AIC-like criteria. An interesting implication of Theorem 3 is that HQ

is asymptotically efficient in the exponential-decay case whereas BIC is not; see

Examples 7 and 8 in Section 4. While both HQ and BIC are known to be consistent

in the finite-order AR model (Hannan and Quinn, 1979), these examples show that

their prediction performances can remarkably differ in the AR(∞) case. Based

on Theorems 1-3, an asymptotic equivalence between ICPn and APEδn , with δn

and Pn satisfying (4.15), is given at the end of Section 4; see (4.16). This type

of equivalence, which concentrates on the two criteria’s predictive capabilities, is a

somewhat-different idea from the one considered in Kavalieris (1989), Hannan et al.

(1989), and Wei (1992), which aimed to establish an algebraic connection between

the two criteria. For a more detailed discussion, see Section 4.

The third issue we are interested in is a long-standing unresolved problem con-

cerning time series model selection. When (1.1) does not degenerate to an AR model

of finite order, Ing and Wei (2005) recently showed that AIC satisfies (2.3), and hence

is asymptotically efficient for same-realization predictions. (For a related result in

independent-realization settings, see Shibata, 1980.) However, if the truly infinite

order assumption is violated, then, as mentioned previously, the BIC-like criteria

(e.g., HQ and BIC) are consistent, but AIC, which tends to choose an overfitting

model, does not possess this property (Shibata, 1976). Moreover, since Theorem 4

(Section 5) shows that BIC-like criteria can achieve (2.3) in the finite-order case, it

becomes very challenging to determine a criterion for an optimal prediction when

(1.1) is allowed to degenerate to a finite autoregression. To tackle this dilemma, in

Section 5, we first consider an important special case where {ai} either decay expo-

nentially or are zero for all but a finite number of i. Theorem 5 of Section 5 obtains

an interesting result that ICPn(k), with Pn →∞ and Pn = o(log n) and APEδn(k),

with δ−1
n → ∞ and log δ−1

n = o(log n), can simultaneously achieve asymptotic effi-

ciency over these two types of AR processes. However, if the case where {ai} decay

algebraically is also included, then the criteria proposed by Theorem 5 fail to pre-

serve the same optimality. A two-stage procedure, (5.1), which is a hybrid between

AIC and a BIC-like criterion, is provided as a remedy. Its validity is justified theo-

retically in Theorem 6 of Section 5. Concluding remarks are given in Section 6. For
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ease of reading, the proofs of the results in Sections 3-5 are deferred to Appendices

A-C, respectively.

2. PRELIMINARY RESULTS

In this section, some preliminary results on the MSPE of AIC (and its variants) are

introduced. We begin with a list of assumptions which are used throughout this

paper.

(K.1) Let {xt } be a linear process satisfying (1.1) with A(z) = 1+a1z+a2z
2+· · · 6= 0

for | z | ≤ 1. Furthermore, let coefficients { ai } obey
∑∞

i=1 |i1/2ai| < ∞.

(K.2) Let the distribution function of et be denoted by Ft. There are two arbitrarily

small positive numbers, α and δ∗0 , and one arbitrarily large positive number,

C0, such that for all t = · · · ,−1, 0, 1, · · · and |x− y | < δ∗0 ,

|Ft(x)− Ft(y) | ≤ C0 | x− y |α .

(K.3) sup
−∞<t<∞

E | et |s < ∞, s = 1, 2, · · ·.

(K.4) The maximal order Kn satisfies

Cl ≤
K

2+δ∗1
n

n
≤ Cu,

where δ∗1 , Cl, and Cu are some prescribed positive numbers.

(K.5) an 6= 0 for infinitely many n.

First note that the MSPE of x̂n+1(k), qn(k) (see (1.7)), can be expressed as

σ2 + E ( f(k) + S(k) )2 , (2.1)

where

f(k) = x′n(k) R̂−1
n (k)

1

N

n−1
∑

j=Kn

xj(k) ej+1,k,

ej+1,k = xj+1 +
k
∑

l=1

al(k)xj+1−l,

( a1(k), · · · , ak(k) )′ = a(k) = arg min
(c1,···,ck)′∈Rk

E

(

xk+1 +
k
∑

l=1

cl xk+1−l

)2

,
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and

S(k) =
∞
∑

i=1

( ai − ai(k) ) xn+1−i

with ai(k) = 0 for i > k. To simplify the notation, a(k) is sometimes viewed as an

infinite-dimensional vector with undefined entries set to zero. Ing and Wei (2003,

Theorem 3) obtained an asymptotic expression for qn(k)−σ2, which holds uniformly

for all 1 ≤ k ≤ Kn. This result is summarized in the following proposition.

Proposition 1. Assume that (K.1)–(K.4) hold. Then,

lim
n→∞

max
1≤k≤Kn

∣

∣

∣

∣

∣

qn(k)− σ2

Ln(k)
− 1

∣

∣

∣

∣

∣

= 0, (2.2)

where

Ln(k) =
kσ2

N
+ ‖a− a(k) ‖2

R,

and for an infinite-dimensional vector d = ( d1, d2, · · · )′,

‖d‖2
R =

∑

i≤i,j≤∞
didjγi−j

with γi−j = E(xixj). We also note that ‖a − a(k) ‖2
R = E(S2(k)) decreases as k

increases.

If one attempts to find an order k whose corresponding predictor, x̂n+1(k), has

the minimal MSPE, then some data-driven order selection criteria are needed. An

order selection criterion, k̂n, is said to be asymptotically efficient if x̂n+1(k̂n) satisfies

lim sup
n→∞

qn(k̂n)− σ2

min
1≤k≤Kn

qn(k)− σ2 ≤ 1, (2.3)

where 1 ≤ k̂n ≤ Kn. Inequality (2.3) says that the (second-order) MSPE of the

predictor with order determined by an asymptotically efficient criterion is ultimately

not greater than that of the best predictor among {x̂n+1(1), · · · , x̂n+1(Kn)}. In view

of (2.2), (2.3) is equivalent to

lim sup
n→∞

qn(k̂n)− σ2

Ln(k∗n)
≤ 1, (2.4)

where Ln(k∗n) = min1≤k≤Kn Ln(k).
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When k̂n is determined by FPE (Akaike, 1969), Mallow’s Cp (Mallows, 1973),

Sp (Hocking, 1976), AIC or Sn(k) (Shibata, 1980), Ing and Wei (2005, Theorem 2)

gave an asymptotic expression for qn(k̂n)−σ2; see, also, Proposition 2 below. Values

of Sn, FPE, Sp and Cp for model AR(k) are defined by

Sn(k) = (N + 2k)σ̂2
n(k),

FPE(k) =

(

n + k

n− k

)

σ̂2
n(k),

Sp(k) = (1 +
k

N − k − 1
)ˆ̂σ

2
n(k)

and

Cp(k) = Nσ̂2
n(k)− (N − 2k)ˆ̂σ

2

n(Kn),

respectively, where σ̂2
n(k) is defined in (1.9) and

ˆ̂σ
2

n(k) =

(

N

N − k

)

σ̂2
n(k).

For later reference, we also define

k̂S
n = arg min

1≤k≤Kn

Sn(k),

k̂A
n = arg min

1≤k≤Kn

IC2(k),

k̂F
n = arg min

1≤k≤Kn

FPE(k),

k̂Sp
n = arg min

1≤k≤Kn

Sp(k),

and

k̂C
n = arg min

1≤k≤Kn

Cp(k).

It is worth noting that the main difficulty in analyzing the same-realization MSPE

after order selection is that one must face the complicated dependent structures

among the selected orders, estimated parameters and future observations. To tackle

this difficulty, Ing and Wei (2005) imposed the following assumption on Ln(k).

(K.6). For every exponent ξ > 0, there is a nonnegative exponent θ = θ(ξ),

0 ≤ θ < 1, such that for all large n and all k ∈ An,θ = { k : 1 ≤ k ≤ Kn, | k− k∗n | ≥
k∗

θ

n },

k∗
ξ

n

N (Ln(k)− Ln ( k∗n ) )

| k − k∗n |
≥ C̄ > 0, (2.5)
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where C̄ is some positive number independent of n and ξ.

If {xt} is an AR process of finite order, then (2.5) automatically holds . When

ai 6= 0 for infinitely many i, Examples 1 and 2 of that same paper (Ing and Wei,

2005) also show that (2.5) is fulfilled in the following cases: (a) the exponential-decay

case,

C1k
−θ1e−βk ≤ ‖a− a(k) ‖2

R ≤ C2k
θ1e−βk, (2.6)

where C2 ≥ C1 > 0, θ1 ≥ 0, and β > 0 (note that (K.1) yields that (2.6) is

equivalent to C∗
1k−θ1e−βk ≤

∑

i≥k

a2
i ≤ C∗

2kθ1e−βk for some C∗
2 ≥ C∗

1 > 0); and (b)

the algebraic-decay case,

(C3 −M1k
−ξ1 )k−β ≤ ‖ a− a(k) ‖2

R ≤ (C3 + M1k
−ξ1 )k−β , (2.7)

where C3,M1 > 0, ξ1 ≥ 2 and β > 1 + δ∗1 (note that δ∗1 is defined in (K.4)).

These facts reveal that (2.5) is quite reasonable from both practical and theoretical

points of view, since it includes the ARMA model (which is the most used short-

memory time series model by far) and the AR(∞) model with algebraically decaying

coefficients (which is of much theoretical interest in the context of model selection)

as special cases. Now, Proposition 2 is stated as follows.

Proposition 2. Assume that (K.1)–(K.6) hold. Then

lim
n→∞

qn(k̂n)− σ2

Ln(k∗n)
= 1,

where k̂n = k̂S
n , k̂A

n , k̂F
n , k̂

Sp
n , or k̂C

n .

As an immediate consequence of Proposition 2, we obtain that AIC, FPE, Sn(k),

Sp(k) and Cp are all asymptotically efficient in the sense of (2.3).

3. MSPE of APEδn in AR(∞) processes

This section provides asymptotic expressions for qn(k̂n,δn)−σ2, where k̂n,δn is defined

in (1.6). Without loss of generality, in the rest of this paper, nδn is assumed to be

a positive integer. First note that for 0 < δn < 1,

APEδn(k) =
n−1
∑

i=nδn

(xi+1 + x′i(k)âi(k))2 =
n−1
∑

i=nδn

{ei+1 + êi,k + (ei+1,k − ei+1)}2, (3.1)
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where êi,k = x′i(k)(âi(k)− a(k)) and ei+1,k is defined after (2.1). Following Lai and

Wei (1982, (2.7)),

n−1
∑

i=nδn

ê2
i,k =

n−1
∑

i=nδn

hi(k)e2
i+1,k + Qnδn(k) −Qn(k) +

n−1
∑

i=nδn

hi(k)ê2
i,k

− 2
n−1
∑

i=nδn

(1− hi(k))êi,kei+1,k, (3.2)

where

hi(k) = x′i(k)(
i
∑

j=Kn

xj(k)x′j(k))−1xi(k)

and

Qi(k) = (
i−1
∑

j=Kn

xj(k)ej+1,k)
′(

i−1
∑

j=Kn

xj(k)x′j(k))−1(
i−1
∑

j=Kn

xj(k)ej+1,k).

On substituting (3.2) into (3.1), one obtains

APEδn(k) =
n−1
∑

i=nδn

e2
i+1 +

n−1
∑

i=nδn

hi(k)e2
i+1,k + Qnδn(k)−Qn(k) +

n−1
∑

i=nδn

hi(k)ê2
i,k

+ 2
n−1
∑

i=nδn

hi(k)êi,kei+1,k +
n−1
∑

i=nδn

(ei+1,k − ei+1)
2 + 2

n−1
∑

i=nδn

(ei+1,k − ei+1)ei+1. (3.3)

Define

L(δn)
n (k) =

kσ2 log δ−1
n

N(1− δn)
+ ‖a− a(k)‖2

R,

and

k∗n,δn
= arg min

1≤k≤Kn

L(δn)
n (k).

(Note that (log δ−1
n )/(1 − δn) > 1 as 0 < δn < 1.) As one of the main technical

contributions of this paper, we obtain for k 6= k∗n,δn
,

P (k̂n,δn = k)

≤ P

(

1

N(1− δn)L
(δn)
n (k)

APEδn(k) ≤ 1

N(1− δn)L
(δn)
n (k)

APEδn(k∗n,δn
)

)

≤
12
∑

l=1

P

(

|Nl(k)| ≥ 1

12
Vn,δn

)

, (3.4)
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where

|N1(k)| =

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

hi(k)e2
i+1,k − kσ2 log δ−1

n

∣

∣

∣

∣

∣

∣

N(1− δn)L
(δn)
n (k)

,

|N2(k)| =

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

hi(k
∗
n,δn

)e2
i+1,k∗

n,δn
− k∗n,δn

σ2 log δ−1
n

∣

∣

∣

∣

∣

∣

N(1− δn)L
(δn)
n (k)

,

|N3(k)| =
∣

∣Qnδn(k)− kσ2
∣

∣

N(1− δn)L
(δn)
n (k)

, |N4(k)| =
|Qnδn(k∗n,δn

)− k∗n,δn
σ2|

N(1− δn)L
(δn)
n (k)

,

|N5(k)| = |Qn(k)− kσ2|
N(1− δn)L

(δn)
n (k)

, |N6(k)| =
|Qn(k∗n,δn

)− k∗n,δn
σ2|

N(1− δn)L
(δn)
n (k)

,

|N7(k)| =

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

hi(k)ê2
i,k

∣

∣

∣

∣

∣

∣

N(1− δn)L
(δn)
n (k)

, |N8(k)| =

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

hi(k
∗
n,δn

)ê2
i,k∗

n,δn

∣

∣

∣

∣

∣

∣

N(1− δn)L
(δn)
n (k)

,

|N9(k)| =
2

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

hi(k)êi,kei+1,k

∣

∣

∣

∣

∣

∣

N(1− δn)L
(δn)
n (k)

, |N10(k)| =
2

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

hi(k
∗
n,δn

)êi,k∗
n,δn

ei+1,k∗
n,δn

∣

∣

∣

∣

∣

∣

N(1− δn)L
(δn)
n (k)

,

|N11(k)| =

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

{

(ei+1,k − ei+1)
2 − (ei+1,k∗

n,δn
− ei+1)

2 − ‖a− a(k)‖2
R + ‖a− a(k∗n,δn

)‖2
R

}

∣

∣

∣

∣

∣

∣

N(1− δn)L
(δn)
n (k)

,

|N12(k)| =

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

(ei+1,k − ei+1,k∗
n,δn

)ei+1

∣

∣

∣

∣

∣

∣

N(1− δn)L
(δn)
n (k)

, and Vn,δn(k) =
L

(δn)
n (k)− L

(δn)
n (k∗n,δn

)

L
(δn)
n (k)

.

By (3.4), Chebyshev’s inequality, and moment bounds for |Ni|, i = 1, · · · , 12 (to

be established in Appendix A), an upper bound for P (k̂n,δn = k) can be obtained.

This upper bound plays an important role in verifying the main results of this

section, Theorems 1 and 2. When δn is bounded away from 1, Theorem 1 below

provides an asymptotic expression for qn(k̂n,δn)− σ2.

Theorem 1. Assume that (K.1)–(K.5) hold and δn satisfies

lim sup
n→∞

δn < 1 (3.5)

10



and

lim inf
n→∞

nθ3δn > 0, (3.6)

where 0 < θ3 < δ∗1/(2 + δ∗1) (recall that δ∗1 is defined in (K.4)). Moreover, assume

that the following conditions hold:

(i) for every exponent ξ > 0, there is a nonnegative exponent 0 ≤ θ = θ(ξ) < 1

and a positive number M = M(ξ) > 0 such that

lim inf
n→∞ min

k∈A
(δn)
n,θ,M

(

k∗n,δn

)ξ N
(

L
(δn)
n (k)− L

(δn)
n (k∗n,δn

)
)

log δ−1
n

1−δn

∣

∣

∣ k − k∗n,δn

∣

∣

∣

> 0, (3.7)

where

A
(δn)
n,θ,M =

{

k : 1 ≤ k ≤ Kn,
∣

∣

∣ k − k∗n,δn

∣

∣

∣ ≥ M
(

k∗n,δn

)θ
}

; and

(ii)

lim
n→∞

log δ−1
n

(k∗n,δn
)η

= 0, (3.8)

where η is some positive number satisfying η = 1 if θ = 0 and 0 < η < 1− θ if

0 < θ < 1, and 0 ≤ θ = θ(ξ) < 1 is obtained from (i) when ξ is limited to the

open interval (0,min{1/2, {(2 + δ∗1)(1− θ3)/2} − 1}).

Then,

lim
n→∞

qn(k̂n,δn)− σ2

Ln(k∗n,δn
)

= 1. (3.9)

Remark 1. If for any ξ > 0, (3.7) holds for θ = 0 and M = 1, then it can be

shown that (3.9) is still valid without condition (3.8). When δn decreases to 0 at

a polynomial rate, this finding can be used to illustrate the deficiency of APEδn in

situations where the AR coefficients decay exponentially fast; see Example 2 below

for more details. 2

Remark 2. Since (K.5) is assumed, it is not difficult to see that k∗n,δn
→∞ as

n → ∞. Therefore, when 0 < δn = δ < 1 is independent of n, (3.8) automatically

holds. 2

11



The following examples help gain further insights into Theorem 1.

Example 1. Assume that the AR coefficients satisfy

C1e
−βk ≤ ‖a− a(k)‖2

R ≤ C2e
−βk, (3.10)

where 0 < C1 ≤ C2 < ∞ and β > 0. (3.10) is fulfilled by any causal and invertible

ARMA(p, q) model with q > 0. In this example, we shall show how to choose δn to

attain (2.3) under (3.10).

Let δn satisfy (3.5) and

log δ−1
n = o(log n), (3.11)

which guarantees (3.6). It is easy to see that (3.5) and (3.11) are satisfied by

0 < δn = δ < 1, or δ−1
n → ∞, with δ−1

n /nν → 0 for any ν > 0. (3.10) implies that

for some C1 > 0,

1

β
log n− 1

β
log

(

log δ−1
n

1− δn

)

− C1 ≤ k∗n,δn
≤ 1

β
log n− 1

β
log

(

log δ−1
n

1− δn

)

+ C1, (3.12)

and for any ξ > 0, (3.7) holds for θ = 0 and some M > 0. Therefore, condition (i)

of Theorem 1 follows and θ in condition (ii) of Theorem 1 can be chosen to be 0.

Moreover, since (3.11) and (3.12) yield log δ−1
n /k∗n,δn

→ 0, condition (ii) of Theorem

1 is ensured. Consequently, (3.9) holds for those values of δn which satisfy (3.5) and

(3.11). This result, Proposition 2 and the fact that

lim
n→∞

Ln(k∗n)

Ln(k∗n,δn
)

= 1 (3.13)

(which is guaranteed by (3.10)-(3.12)) lead to the conclusion that APEδn , with δn

satisfying (3.5) and (3.11), is asymptotically efficient under (3.10). 2

Example 2. This example is given to indicate that if δn decays to 0 at a poly-

nomial rate, then APEδn cannot be asymptotically efficient even in the exponential-

decay case. More specifically, assume that

δn = C1n
−θ3 , (3.14)

where C1 > 0 and 0 < θ3 < δ∗1/(2 + δ∗1), and the AR coefficients obey a special case

of (3.10),

‖a− a(k)‖2
R = C2e

−βk(1 + O(k−1)), (3.15)

12



where C2 and β are some positive numbers. These assumptions yield that for any

ξ > 0, (3.7) holds for θ = 0 and M = 1, and hence, by Remark 1, (3.9) follows.

Since under (3.14) and (3.15),

lim inf
n→∞

Ln(kn,δn)

Ln(k∗n)
> 1, (3.16)

APEδn , with δn satisfying (3.14), fails to achieve (2.3) in the exponential-decay case.

2

Example 3. This example investigates prediction performances of APEδn in

the algebraic-decay case (2.7). When (2.7), (3.5) and (3.6) are assumed, the same

argument as the one in Example 2 of Ing and Wei (2005) yields that

k∗n,δn
=

(

(1− δn)NC3β

(log δ−1
n )σ2

)1/(β+1)

+ O(1), (3.17)

and for any ξ > 0, (3.7) holds for 1 −min{ξ, 1} < θ < 1 and some M > 0. These

facts, together with (3.6), guarantee that conditions (i) and (ii) of Theorem 1 hold.

As a result, (3.9) is ensured by Theorem 1. Moreover, since (2.7), (3.5) and (3.6)

also imply (3.16), APEδn is not asymptotically efficient in this case. 2

While Example 3 shows that APEδn with δn bounded away from 1 cannot be

asymptotically efficient in the algebraic-decay case, we have found that as δn → 1,

lim
n→∞

Ln(k∗n,δn
)

Ln(k∗n)
= 1 (3.18)

is always true. This observation and Theorem 1 led us to ask whether the difficulty

of APEδn mentioned in Example 3 can be alleviated by letting δn → 1 at a suitable

rate. This question is answered in Theorem 2 and some examples following it.

Theorem 2. Assume that (K.1)–(K.5) hold and δn satisfies 0 < δn < 1 and

limn→∞ δn = 1. Also assume that condition (i) of Theorem 1 holds. Moreover, (3.9)

follows if k∗n,δn
and δn meet one of the following conditions:

(i) limn→∞ k∗n,δn
/nθ3 = 0 for any θ3 > 0 and (1 − δn)−1 = O(k∗

ξ2

n,δn
) for some

0 < ξ2 < 1/2; or

(ii) (1− δn)−1 = O(k∗
ξ2

n,δn
) for some 0 < ξ2 < min{1/2, δ∗1/2}.

This result, (3.18) and Proposition 2 together imply that APEδn is asymptotically

efficient and equivalent to AIC.

13



In light of Theorem 2, the following examples demonstrate how to choose δn

such that the resulting APEδn is asymptotically efficient in both exponential- and

algebraic-decay cases.

Example 4. Assume that the AR coefficients obey (2.6). Although Example

1 shows that when θ1 in (2.6) is equal to 0, APEδn , with δn satisfying (3.5) and

(3.11), is asymptotically efficient, it is unclear whether this result still holds for

θ1 > 0. Fortunately, this difficulty can be bypassed by letting

δn = 1− C1(log n)−r, (3.19)

with C1 > 0 and 0 < r < 1/2. First note that when (2.6) is true, the same argument

as in Example 1 of Ing and Wei (2005) yields that for some C2 > 0,

1

β
log n− C2 log2 n ≤ k∗n,δn

≤ 1

β
log n + C2 log2 n, (3.20)

and for any ξ > 0, (3.7) holds for any 0 < θ < 1 and some M > 0. Therefore,

condition (i) of Theorem 1 follows. Moreover, since condition (i) of Theorem 2 is

ensured by (3.19) and (3.20), (3.9) is now guaranteed by Theorem 2. Consequently,

APEδn , with δn satisfying (3.19), attains asymptotic efficiency under (2.6). 2

Example 5. This example shows that if

δn = 1− C3(log n)−r, (3.21)

where C3 and r are any positive numbers, then the corresponding APEδn is asymp-

totically efficient under the algebraic-decay case (2.7). To see this, first note that

following the same line of reasoning as in Example 2 of Ing and Wei (2005), (3.17)

is still valid here and for any ξ > 0, (3.7) holds for 1−min{ξ, 1} < θ < 1 and some

M > 0. In addition, since condition (ii) of Theorem 2 is ensured by (3.17) and

(3.21), the desired result follows from Theorem 2. 2

Examples 4 and 5 suggest that to achieve asymptotic efficiency through APEδn

in both exponential- as well as algebraic-decay cases, δn can be chosen to satisfy

(3.19). However, the question of how to determine C1 and r in (3.19) seems difficult

to answer from a finite sample point of view. Further investigations in this direction

are still needed. We close this section with two remarks concerning the performances

of APEδn in finite-order AR models and for independent-realization predictions.

Remark 3. When (1.1) degenerates to an AR(p0) model with 1 ≤ p0 < ∞,

it can be shown that k̂n,δn , with lim infn→∞ δn > 0, which tends to choose an
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overfitting model, is not a consistent estimator of p0 (see, e.g., Inoue and Kilian,

2005). On the other hand, if δn → 0 at a certain rate, then (C.5) of Appendix C

yields that the corresponding APEδn is consistent. Since these results and Theorem

2 offer totally different suggestions for choosing δn, it becomes very challenging to

achieve asymptotic efficiency through APEδn when (1.1) is allowed to degenerate to

a finite autoregression. In Section 5, some selection criteria to remedy this difficulty

are proposed. 2

Remark 4. The APEδn described in Theorem 2 is also asymptotically efficient

for independent-realization predictions (for the definition of asymptotic efficiency in

independent-realization settings, see Shibata, 1980, Bhansali, 1986, and Karagrigo-

riou, 1997). As argued in Ing and Wei (2005, (5.37)), this property can be ensured

by showing that

p-limn→∞
Ln(k̂n,δn)

Ln(k∗n)
− 1 = 0. (3.22)

To obtain (3.22), first note that Lemmas A.6-A.9 of Appendix A ensure that for

i = 1, · · · , 12

p-limn→∞ max
1≤k≤Kn

|Ni(k)| = 0,

which further implies that

p-limn→∞
L

(δn)
n (k̂n,δn)

L
(δn)
n (k∗n,δn

)
− 1 = 0. (3.23)

Since as δn → 1,

max
1≤k≤Kn

L
(δn)
n (k)

Ln(k)
→ 1, (3.24)

(3.22) follows from (3.18), (3.23) and (3.24). 2

4. MSPE of ICPn in AR(∞) processes.

In this section, prediction performances of the information criterion, ICPn(k)

(see (1.8)), are investigated. When Pn > 1 is independent of n, Ing and Wei (2005,

Corollary 1) obtained an asymptotic expression for qn(k̂n,Pn)− σ2, where k̂n,Pn (see

(1.9)) is the minimizer of ICPn(k), with 1 ≤ k ≤ Kn and Kn satisfying (K.4).
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Theorem 3 below extends Ing and Wei’s result to the case where Pn is allowed to

tend to ∞ with n. To introduce Theorem 3, we need to define

k∗n,Pn
= arg min

1≤k≤Kn

Ln,Pn(k), (4.1)

where

Ln,Pn(k) =
(Pn − 1)kσ2

N
+ ‖a− a(k)‖2

R. (4.2)

Theorem 3. Let (K.1)–(K.5) hold and Pn satisfy

lim inf
n→∞

Pn > 1, (4.3)

and

Pn = O(nθ3), (4.4)

where 0 < θ3 < δ∗1/(4 + 2δ∗1). Moreover, assume that the following conditions hold:

(i) for every exponent ξ > 0, there is a nonnegative exponent 0 ≤ θ = θ(ξ) < 1

and a positive number M = M(ξ) > 0 such that

lim inf
n→∞

min
k∈APn,θ,M

(k∗n,Pn
)ξ

N
(

Ln,Pn(k)− Ln,Pn(k∗n,Pn
)
)

(Pn − 1)|k − k∗n,Pn
| > 0, (4.5)

where APn,θ,M = {k : 1 ≤ k ≤ Kn, |k − k∗n,Pn
| ≥ M(k∗n,Pn

)θ}; and

(ii)

lim
n→∞

Pn − 1

(k∗n,Pn
)η

= 0, (4.6)

where η is some positive number satisfying η = 1 if θ = 0 and 0 < η < 1− θ if

θ > 0, and 0 ≤ θ = θ(ξ) < 1 is obtained from (i) when ξ is limited to the open

interval (0, {δ∗1/(4 + 2δ∗1)} − θ3).

Then,

lim
n→∞

qn(k̂n,Pn)− σ2

Ln(k∗n,Pn
)

= 1. (4.7)
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Remark 5. If in (4.6), θ = 0 and M = 1, then it can be shown that (4.7) is

still valid without condition (4.6). This result can be applied to verify that BIC is

not asymptotically efficient in the exponential-decay case; see Example 7 for more

details. 2

Remark 6. Since (K.5) implies that k∗n,Pn
→∞ as n →∞, (4.6) is not needed

when lim supn→∞ Pn < ∞. 2

The following examples illustrate implications of Theorem 3. Special emphasis

is placed on comparing the predictive capabilities of three well-known information

criteria, AIC, HQ and BIC, in various situations.

Example 6. Assume that the AR coefficients satisfy (3.10). As mentioned

previously, (3.10) is fulfilled by any causal and invertible ARMA(p, q) model with

q > 0. We shall show in this example that when Pn satisfies (4.3) and Pn = o(log n),

then the corresponding information criterion (including AIC and HQ as special

cases) is asymptotically efficient. By the same reasoning as in Example 1, it follows

that

k∗n,Pn
=

log n + log(Pn − 1)

β
+ O(1), (4.8)

and for any ξ > 0, (4.5) holds for θ = 0 and some M > 0. These results and

the restriction, Pn = o(log n), further imply (4.6). According to Theorem 3, (4.7)

follows. Moreover, the claimed result is ensured by observing that (3.13) is still valid

if k∗n,δn
in the denominator is replaced by k∗n,Pn

. 2

Example 7. This example illustrates that an information criterion cannot be

asymptotically efficient in the exponential-decay case when the weight for penalizing

the number of regressors in the model is ”too strong”. To see this, let (3.15) hold

and

Pn = C1(log n)C2 , (4.9)

for some C1, C2 > 0. Under these assumptions, we obtain (4.8) and that for any

ξ > 0, (4.5) holds true for θ = 0 and M = 1. By Remark 5, (4.7) follows. Moreover,

since (3.15), (4.8) and (4.9) yield

lim inf
n→∞

Ln(k∗n,Pn
)

Ln(k∗n)
> 1, (4.10)

it is concluded that ICPn(k), with Pn satisfying (4.9), is not asymptotically efficient.

One important implication of this example is that BIC is not asymptotically efficient

in the algebraic-decay case. 2
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Example 8. Consider the algebraic-decay case (2.7). Let Pn satisfy (4.3) and

Pn = O
(

(log n)C1

)

, (4.11)

for some C1 > 0. By an argument similar to that used in Example 3, it follows that

k∗n,Pn
=

(

NC3β

(Pn − 1)σ2

)1/(β+1)

+ O(1), (4.12)

and for any ξ > 0, (4.5) holds for 1−min{ξ, 1} < θ < 1 and some M > 0. In addition,

(4.6) is ensured by (4.11) and (4.12). As a result, (4.7) follows from Theorem 3.

Moreover, it can be shown that under (2.7),

lim
n→∞

Ln(k∗n,Pn
)

Ln(k∗n)
= 1 (4.13)

if limn→∞ Pn = 2, and

lim sup
n→∞

Ln(k∗n,Pn
)

Ln(k∗n)
> 1 (4.14)

if limn→∞ Pn 6= 2. (4.7), (4.13) and (4.14) imply that AIC is asymptotically efficient

in the algebraic-decay case (2.7), whereas HQ, BIC and any information criterion

with limn→∞ Pn 6= 2 are not. 2

Before leaving this section, we note that when the conditions imposed by Theo-

rems 1 and 3 (or Theorems 2 and 3) hold and

lim
n→∞

log δ−1
n

(1− δn)(Pn − 1)
= 1, (4.15)

then

lim
n→∞

E
(

xn+1 − x̂n+1(k̂n,Pn)
)2
− σ2

E
(

xn+1 − x̂n+1(k̂n,δn)
)2
− σ2

= 1 (4.16)

is obtained. As observed, (4.16) leads to an asymptotic equivalence between APEδn

and ICPn from a same-realization prediction point of view. For a related result, Wei

(1992, Theorem 4.2.2), under (1.1) and certain moment conditions on et (which can

be verified for the normal distribution), established an algebraic connection between

BIC and APE,

log

(

APE(k)

n

)

= BIC(k) + o(
log n

n
) a.s., (4.17)
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where k is a positive integer and fixed with n. Therefore, except for the o(log n/n)

term, the logarithm of APE(k)/n is (a.s.) identical to BIC(k). Hannan et al. (1989)

also obtained (4.17) in a stationary AR(p0) model with p0 < ∞ and k ≥ p0 (the

correctly specified case). However, the equivalence introduced by (4.16) seems to

be more relevant in situations where the two criteria’s predictive capabilities after

order selection are compared.

5. Optimal prediction for possibly degenerate AR(∞) processes

This section deals with optimal prediction problems in situations where the

underlying AR(∞) process can degenerate to an AR process of finite order. We first

adopt (K.5′) to replace the truly infinite-order assumption (K.5).

(K.5′): The AR coefficients satisfy either

(i) ap0 6= 0 for some unknown 1 ≤ p0 < ∞ and al = 0 for all l ≥ p0 + 1; or

(ii) (3.10).

(Note that (K.1) guarantees that (3.10) is equivalent to C1e
−βk ≤∑i≥k a2

i ≤ C2e
−βk

for some 0 < C1 ≤ C2 < ∞.) From a practical point of view, (K.5′) is reasonably

flexible because it contains any causal and invertible ARMA(p, q) model, with p +

q ≥ 1, as a special case. Before tackling order selection problems under (K.5 ′), a

preliminary result is needed, which shows that APEδn and ICPn , with δn and Pn

satisfying certain conditions, are asymptotically efficient in finite-order cases.

Theorem 4. Assume that (K.1)–(K.4) and (i) of (K.5′) hold. Then, (2.3) holds

for k̂n = k̂n,δn and k̂n,Pn , where δn satisfies δ−1
n → ∞ and (3.6), and Pn satisfies

Pn →∞ and Pn/n → 0.

Remark 7. Since Theorem 4 adopts {AR(1), · · · ,AR(Kn)} as the set of candi-

date models, where Kn → ∞ at a certain rate, the true model AR(p0) is included

asymptotically. Zheng and Loh (1997) also took this approach and showed that

k̂0 = arg min1≤k≤Kn ICPn(k) is a consistent estimator of p0 under the assumptions

that K2
n/n → 0, Pn/Kn → ∞ and Pn/n → 0. While their conditions on et were

weaker than those in Theorem 4, they did not evaluate the (same-realization) pre-

diction efficiencies of the proposed information criteria. Moreover, the limitation

of Pn/Kn → ∞ is cumbersome when (ii) of (K.5′) is simultaneously taken into ac-

count. To achieve optimal prediction in this latter situation, one needs to justify the

validity of ICPn , with Pn tending to infinity more slowly than Kn; see the discussion
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below for details. It seems difficult to attain this goal based on Zheng and Loh’s

result due to the limitation mentioned above. 2

When (ii) of (K.5′) holds, Example 6 points out that ICPn , with Pn = o(log n),

possesses asymptotic efficiency. (Note that in this case, the orders of the optimal

prediction models tend to infinity at a log n rate (see, e.g., Goldenshluger and Zeevi,

2001, and Ing and Wei, 2005. (K.4), requiring Kn to grow faster than log n, guaran-

tees that these models are ultimately included among the candidate family.) On the

other hand, if (i) of (K.5′) is true, then Theorem 4 shows that ICPn , with Pn →∞
and Pn/n → 0, is asymptotically efficient under (K.1)-(K.4). These results suggest

that ICPn , with Pn →∞, Pn = o(log n) and Kn satisfying (K.4), can simultaneously

achieve (2.3) over the two types of AR processes defined in (i) and (ii) of (K.5 ′). Ac-

cording to Example 1 and Theorem 4, APEδn , with δ−1
n →∞, log δ−1

n = o(log n) and

Kn satisfying (K.4), also has this property. These discussions are now summarized

in the following theorem.

Theorem 5. Assume that (K.1)-(K.4) and (K.5′) hold. Then, (2.3) holds for

k̂n = k̂n,δn and k̂n,Pn, where δn satisfies δ−1
n → ∞ and log δ−1

n = o(log n), and Pn

satisfies Pn →∞ and Pn = o(log n).

While Theorem 5 seems satisfactory for practical purposes, the question of how

(2.3) is achieved in a more general case that allows the AR coefficients to decay

algebraically still attracts much theoretical interest. As can be seen in Examples 3

and 8, the criteria given by Theorem 5 fail to preserve asymptotic efficiency when

(2.7) is added into (K.5′). Therefore, we propose using an alternative criterion that

chooses order k̂
(ι)
n :

k̂(ι)
n = k̂n,2I{k̂n,Pn 6=k̂nι,Pnι } + k̂n,PnI{k̂n,Pn=k̂nι,Pnι }, (5.1)

where 0 < ι < 1, Pn →∞, k̂nι,Pnι = arg min1≤k≤Knι ICPnι (k) and

ICPnι (k) = log σ̂2
nι(k) +

Pnιk

nι
,

with σ̂2
nι(k) = (1/Nι)

∑nι−1
j=Knι

(xj+1 + â′nι(k)xj(k))2, Nι = nι −Knι ,

ânι(k) = −R̂−1
ι,nι(k)(1/Nι)

nι−1
∑

j=Knι

xj(k)xj+1,

and R̂ι,nι(k) = (1/Nι)
∑nι−1

j=Knι
xj(k)x′j(k) (note that without loss of generality, nι

and Knι are assumed to be positive integers). As observed, (5.1) is a hybrid selection
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procedure that combines together AIC and a BIC-like criterion. If the true order

is finite, then it is expected that the orders selected by the BIC-like criterion at

stages nι and n will ultimately be the same due to consistency. On the other hand,

when the true order is infinite, an interesting result is derived for which it is nearly

impossible for the BIC-like criterion to choose the same order at these different

stages; see Appendix C for more details. Therefore, it is reasonable to adopt k̂n,2

(the order selected by AIC) if ICPn and ICPnι determine different orders, and k̂n,Pn

(the order selected by the BIC-like criterion) otherwise. Theorem 6 justifies the

validity of k̂
(ι)
n .

Theorem 6. Let (K.1)–(K.4) and (K.6) hold and ι and Pn in (5.1) satisfy

0 < ι < 1, Pn → ∞, Pn = O(nι1), with 0 < ι1 < δ∗1/(2 + δ∗1), and Pn/P ν
nι = O(1)

for some ν > 0. Further, assume that the AR coefficients meet one of the following

conditions:

(i) (i) of (K.5′); or

(ii) For every exponent ξ > 0, there is a nonnegative exponent 0 ≤ θ = θ(ξ) < 1

and a positive number M = M(ξ) > 0 such that

lim inf
n→∞

min
k∈APn,θ,M

(k∗n,Pn
)ξ

Ln,Pn(k)− Ln,Pn(k∗n,Pn
)

Ln,Pn(k∗n,Pn
)

> 0, (5.2)

with APn,θ,M (defined in Theorem 3) satisfying

AC
Pnι ,θ,M ∩AC

Pn,θ,M = ∅ (5.3)

for all sufficiently large n. Here, ∅ denotes the empty set,

AC
Pn,θ,M = {k : 1 ≤ k ≤ Kn, k ∈/APn,θ,M}

and

AC
Pnι ,θ,M = {k : 1 ≤ k ≤ Knι , k ∈/APnι ,θ,M},

with APnι ,θ,M = {k : 1 ≤ k ≤ Knι , |k − k∗nι,Pnι
| ≥ (k∗nι,Pnι

)θ}. (Note that (5.3)

implies that al 6= 0 for infinitely many l.)

Then, (2.3) holds for k̂
(ι)
n .

As an application of Theorem 6, it is shown in Example 9 below that k̂
(ι)
n ,

0 < ι < 1, is asymptotically efficient when the true model is: (i) an AR pro-

cess of finite order, (ii) an AR(∞) process with coefficients satisfying (3.10) (the
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exponential-decay case); or (iii) an AR(∞) process with coefficients satisfying (2.7)

(the algebraic-decay case). To simplify the discussion, let

Pn = C1(log n)C2 , (5.4)

for some C1, C2 > 0. Note that (5.4) satisfies all requirements for Pn imposed by

Theorem 6.

Example 9. Assume that either (K.5′) or (2.7) holds. To show that k̂
(ι)
n ,

0 < ι < 1, is asymptotically efficient in this situation, in view of Theorem 6, it suffices

to show that (5.2) and (5.3) are satisfied by both (ii) of (K.5′) (or, equivalently,

(3.10)) and (2.7). First, assume that (3.10) is true. Then, by an argument similar

to that used in Example 6, we obtain (4.8) and that for any ξ > 0, (5.2) holds for

1 − min{ξ, 1} < θ < 1 and some M > 0. In addition, it is easy to see that (5.3)

follows from (4.8), (5.4) and the facts that 0 < ι < 1 and 0 ≤ θ < 1.

Next, let (2.7) hold. Reasoning as for Example 8, (4.12) is obtained and for any

ξ > 0, (5.2) holds for 1 − min{ξ, 1} < θ < 1 and some M > 0. Moreover, (5.3)

follows from (4.12), (5.4), 0 < ι < 1 and 0 ≤ θ < 1. Consequently, the desired result

is obtained. 2

Remark 8. To suggest a suitable combination of ι and Pn in finite samples, one

may rely on an extensive simulation study. This is the subject of ongoing research.

It is worth noting that based on APEδn , we can also construct a two-stage criterion

to achieve (2.3) universally over the three types of AR processes mentioned after

Theorem 6. However, this criterion seems relatively less attractive compared to

k̂
(ι)
n , since it gets involved in the trouble of determining twice the number of tuning

parameters, namely, ι, δn, C1 and r, where C1 and r are defined in (3.19). 2

6. Concluding remarks.

Recently, APEδn has become very popular among researchers from several disci-

plines, particularly those required to do a lot of forecasting. While it is of fundamen-

tal importance to realize the impact of APEδn on predictions after model selection,

discussions directly related to this issue still seem to be lacking. Theorems 1 and

2 of Section 3 are devoted to filling this gap. Under model (1.1), they provide an

asymptotic expression for the MSPE of the (least squares) predictor with the order

determined by APEδn , where δn can vary freely over (0,1), and is allowed to tend to

0 or 1 at a suitable rate. In light of this expression, we are able to assess APEδn ’s
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predictive performance after model (order) selection in various practical situations.

In particular, a series of examples in Section 3 shows that when δn is suitably chosen,

APEδn can achieve asymptotic efficiency in both exponential- and algebraic-decay

cases.

An asymptotic equivalence between APEδn and ICPn is established in Section

4 from a prediction point of view. Since this equivalence can be checked simply

through δn and Pn (see (4.15)), it offers a new and global perspective for comparing

information- and prediction-based model selection criteria in misspecified AR pro-

cesses. Section 5 provides the first asymptotic efficiency result for the case when

model (1.1) is allowed to degenerate to a finite autoregression. Two special features

are worth mentioning: (1) We show that some consistent criteria, such as HQ and

APEδn , with δn → 0 and log δ−1
n = o(log n), can simultaneously attain asymptotic

efficiency over finite-order AR models and AR(∞) models with exponentially decay-

ing coefficients, which constitute an important class of AR(∞) models. (2) A new

procedure (which is a hybrid between AIC and a BIC-like criterion) is constucted

to achieve asymptotic efficiency in more general AR models, which include finite-

order AR models and AR(∞) models with exponentially or algebraically decaying

coefficients as special cases. The success of this new procedure relies mainly on

a two-stage design that allows AIC and a BIC-like criterion to cover each other’s

weaknesses.

To verify the main results of the present article, (A.1) and (A.2) of Appendix A,

which provide qth moment bounds for the inverse of the sample covariance matrix

with an increasing dimension, are required to hold for sufficiently large q. By as-

suming (K.3) (among other conditions), Lemma A.1 of Appendix A (see, also, Ing

and Wei, 2003, Theorem 2) guarantees that (A.1) and (A.2) hold for any q > 0, and

hence is used to meet this requirement. As a result, (K.3) appears in all theorems

of this paper because of Lemma A.1. Although (K.3) is rather stronger than is

necessary, it is convenient. Note that it is possible to slightly relax (K.3) at the

price of greatly reducing the number of candidate models; see Ing and Wei (2005,

Section 6) for a related discussion. However, since the benefits are rather limited,

the details are not pursued here in order to simplify the discussion. To substantially

loosen (K.3), it is necessary to verify (A.1) and (A.2) under much milder moment

conditions. Further efforts are still needed to achieve this goal.

As a final remark, we note that the popular fractional integrated ARMA process
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is excluded by (K.1). Extensions of these results to situations where some long-

memory time series models are included are currently being investigated by the

author.

Appendix A: Proofs of Theorems 1 and 2

This section begins with Lemma 2 of Wei (1987), which is frequently used later.

In the rest of this paper, C is used to denote a generic positive constant independent

of sample size n and of any index with an upper (or lower) limit dependent on n.

Lemma A.0. Let {εt,Ft} be a sequence of martingale differences such that for

some α ≥ 2,

sup
t

E{|εt|α|Ft−1} ≤ C a.s.

Let µt be Ft−1-measurable random variables, Sn1 =
∑n1

t=1 µtεt and

S∗n1
= max

1≤t≤n1

|St|.

Then,

E(S∗n1
)α ≤ KE(

n1
∑

t=1

µ2
t )

α/2,

where K depends only on α and C.

Lemmas 1-4 below, quoted from Proposition 1 and Lemmas 1-3 of Ing and Wei

(2005), respectively, also play important roles. To introduce these results, we need

(K.1′), a condition slightly weaker than (K.1).

(K.1′) Let {xt } be a linear process satisfying (1.1) with A(z) = 1+a1z+a2z
2+· · · 6= 0

for | z | ≤ 1. Furthermore, let coefficients { ai } obey
∑∞

i=1 |ai| < ∞.

Lemma A.1. Assume that (K.1′), (K.2), (K.3) and Kn = O(n(1/2)−r) hold for

some r > 0. Then, for any q > 0,

max
1≤k≤Kn

E
∥

∥

∥ R̂−1
n (k)

∥

∥

∥

q
≤ C (A.1)

and

max
1≤k≤Kn

E
∥

∥

∥ R̂−1
n (k)−R−1(k)

∥

∥

∥

q

(

k2

N

)q/2
≤ C (A.2)
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hold for all sufficiently large n, where R̂n(k) is defined in (1.4), R(k) = E(xn(k)x′n(k))

and xn(k) is defined after (1.2).

Lemma A.2. Assume that (K.1′) holds and sup−∞<t<∞ E ( |et|2q ) < ∞ for

some q ≥ 2. Let {mi,n}, i=0, 1, 2, be sequences of positive integers satisfying

m2,n ≥ m1,n ≥ m0,n for all n ≥ 1. Then, for all 1 ≤ k ≤ m0,n,

E

∥

∥

∥

∥

∥

∥

1√
mn

m2,n
∑

j=m1,n

xj(k)(ej+1,k − ej+1)

∥

∥

∥

∥

∥

∥

q

≤ Ckq/2‖a− a(k)‖q
R, (A.3)

where mn = m2,n−m1,n + 1, ej+1,k is defined after (2.1), ‖a− a(k)‖2
R is defined in

Proposition 1 and for a k-dimensional vector v = (v1, · · · , vk)
′, ‖v‖2 =

∑k
i=1 v2

i .

Lemma A.3. Assume that (K.1′) holds and sup−∞<t<∞ E { |et|q } < ∞ for

some q ≥ 2. Let {mi,n}, i= 0, 1, 2, and {mn} be defined as in Lemma A.2. Then,

max
1≤k≤m0,n

(k−q/2)E

∥

∥

∥

∥

∥

∥

1√
mn

m2,n
∑

j=m1,n

xj(k)ej+1

∥

∥

∥

∥

∥

∥

q

≤ C. (A.4)

Lemma A.4. Assume that (K.1), sup−∞<t<∞E | et |2q < ∞, for some q ≥ 2,

and Kn = O(n1/2) hold. Then, for all 1 ≤ k ≤ Kn,

E

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

1√
N

n−1
∑

j=Kn

xj(k)ej+1

∥

∥

∥

∥

∥

∥

2

R−1(k)

− kσ2

∣

∣

∣

∣

∣

∣

∣

q

≤ Ckq/2, (A.5)

where for the k×k symmetric matrix A and k-dimensional vector y, ‖y‖2
A = y′Ay.

We also need a modification of Lemma 6 of Ing and Wei (2005).

Lemma A.5. Assume (K.1′) and sup−∞<t<∞E | et |2q < ∞ for some q ≥ 2.

Let {mi,n}, i= 0, 1, 2, and {mn} be defined as in Lemma A.2. Then, for all

1 ≤ k, j ≤ m0,n,

E
∣

∣

∣S2
m1,n,m2,n

(k)− σ2
k −

(

S2
m1,n,m2,n

(j)− σ2
j

) ∣

∣

∣

q
≤ Cm−q/2

n ‖a(j) − a(k) ‖q
R , (A.6)

where S2
m1,n,m2,n

(k) = (1/mn)
∑m2,n

t=m1,n
e2
t+1,k, a(j) and a(k) in (A.6) are viewed as

infinite-dimensional vectors with undefined entries set to zero, and σ2
k = E( e2

1,k ).

Also note that ‖a(j) − a(k) ‖2
R = |‖a− a(j)‖2

R − ‖a− a(k)‖2
R|.

Since the proof of (A.6) is similar to that of Ing and Wei (2005, Lemma 6), the

details are omitted. Now, moment bounds for Ni(k), i = 1, · · · , 12 are established in

Lemmas A.6-A.9.
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Lemma A.6. Let the assumptions of Proposition 1 hold and 0 < δn < 1 satisfy

(3.6). Then, for q > 0, all 1 ≤ k ≤ Kn and all sufficiently large n,

E(|N1(k)|q)

≤ C

(L
(δn)
n (k))q(1− δn)q

{

k2q

(nδn)q/2nq
+

(log δ−1
n )qkq‖a− a(k)‖2q

R

nq

}

, (A.7)

and

E(|N2(k)|q)

≤ C

(L
(δn)
n (k))q(1− δn)q







k∗
2q

n,δn

(nδn)q/2nq
+

(log δ−1
n )qk∗

q

n,δn
‖a− a(k∗n,δn

)‖2q
R

nq







.(A.8)

proof. We only prove (A.7) because the proof of (A.8) is similar. First note

that

L(δn)
n (k)n(1 − δn)|N1(k)| ≤

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

x′i(k)(R̂−1
i+1(k)−R−1(k))xi(k)

i + 1−Kn
e2
i+1,k

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

x′i(k)R−1(k)xi(k)

i + 1−Kn
(e2

i+1,k − e2
i+1)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

x′i(k)R−1(k)xi(k)

i + 1−Kn
(e2

i+1 − σ2)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

x′i(k)R−1(k)xi(k) − k

i + 1−Kn
σ2

∣

∣

∣

∣

∣

∣

+ kσ2

∣

∣

∣

∣

∣

∣





n−1
∑

i=nδn

1

i + 1−Kn



− log δ−1
n

∣

∣

∣

∣

∣

∣

≡ I(k) + II(k) + III(k) + IV (k) + V (k). (A.9)

By (3.6) and Lemma A.1, we have for any q > 0, all nδn ≤ i ≤ n − 1, all

1 ≤ k ≤ Kn and all sufficiently large n,

E‖R̂−1
i+1(k)−R−1(k)‖q ≤ C

kq

(i + 1−Kn)q/2
. (A.10)

In addition, Lemma A.0 and Jensen’s inequality yield that for any r > 0, all nδn ≤
i ≤ n− 1 and all 1 ≤ k ≤ Kn,

E(‖xi(k)‖r) ≤ Ckr/2, (A.11)

and

E|ei+1,k|r) ≤ C. (A.12)
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According to (A.10)-(A.12), Minkowski’s inequality and Hölder’s inequality, we have

for q ≥ 1, all 1 ≤ k ≤ Kn and all sufficiently large n,

E(I(k))q ≤




n−1
∑

i=nδn

∥

∥

∥

∥

∥

x′i(k)(R̂−1
i+1(k)−R−1(k))xi(k)

i + 1−Kn
e2
i+1,k

∥

∥

∥

∥

∥

q





q

≤







n−1
∑

i=nδn

{

E(‖xi(k)‖6q)E(‖R̂−1
i+1(k)−R−1(k)‖3q)E(|e6q

i+1,k|)
}1/3q

i + 1−Kn







q

≤ Ck2q(
1

nδn
)q/2, (A.13)

where for random variable z and positive number s, ‖z‖s = E(|z|r)1/s.

To deal with II(k), notice that the first moment bound theorem of Findley and

Wei (1993) and Jensen’s inequality yield for any r > 0, all Kn ≤ i ≤ n− 1 and all

1 ≤ k ≤ Kn,

E(|x′i(k)R−1(k)xi(k)− k|r) ≤ Ckr/2. (A.14)

Reasoning as for (A.12), we have for any r > 0, all Kn ≤ i ≤ n − 1 and all

1 ≤ k ≤ Kn,

E(|ei+1,k − ei+1|r) ≤ C‖a− a(k)‖r
R. (A.15)

Also observe that
{

x′i(k)R−1(k)xi(k)

i + 1−Kn
(ei+1,k − ei+1)ei+1,Mi+1

}

is a sequence of martingale differences, where Mi+1 is the σ-algebra generated by

{ei+1, ei, ei−1, · · ·}, and

E

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

x′i(k)R−1(k)xi(k)

i + 1−Kn
(ei+1,k − ei+1)ei+1

∣

∣

∣

∣

∣

∣

q

≤ E max
nδn≤m≤n−1

∣

∣

∣

∣

∣

∣

m
∑

i=nδn

x′i(k)R−1(k)xi(k)

i + 1−Kn
(ei+1,k − ei+1)ei+1

∣

∣

∣

∣

∣

∣

q

.

These facts, Lemma A.0, (A.14), (A.15) and an argument similar to that used for

obtaining (A.13) together imply that for q ≥ 2 and all 1 ≤ k ≤ Kn,

E(II(k))q
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≤ C







E

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

x′i(k)R−1(k)xi(k)

i + 1−Kn
(ei+1,k − ei+1)

2

∣

∣

∣

∣

∣

∣

q

+ E

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

x′i(k)R−1(k)xi(k)

i + 1−Kn
(ei+1,k − ei+1)ei+1

∣

∣

∣

∣

∣

∣

q




≤ C









n−1
∑

i=nδn

∥

∥

∥

∥

∥

x′i(k)R−1(k)xi(k)

i + 1−Kn
(ei+1,k − ei+1)

2

∥

∥

∥

∥

∥

q





q

+ E







n−1
∑

i=nδn

(

x′i(k)R−1(k)xi(k)

i + 1−Kn

)2

(ei+1,k − ei+1)
2







q/2






≤ C

{

(log δ−1
n )qkq‖a− a(k)‖2q

R +

(

k

nδn

)q/2

kq/2‖a− a(k)‖q
R

}

. (A.16)

Similarly, by Lemma A.0, (A.14) and the Minkowski inequality,

E(III(k))q ≤ CE







n−1
∑

i=nδn

(

x′i(k)R−1(k)xi(k)

i + 1−Kn

)2






q/2

≤ C(
k2

nδn
)q/2 (A.17)

holds for q ≥ 2 and all 1 ≤ k ≤ Kn.

To deal with IV(k), we have by some algebraic manipulations that

IV (k) = σ2

∣

∣

∣

∣

∣

∣

n−1
∑

i=nδn

Ti(k)− Ti−1(k)

i + 1−Kn

∣

∣

∣

∣

∣

∣

= σ2

∣

∣

∣

∣

∣

∣

Tn−1(k)

N
− Tnδn−1(k)

nδn −Kn
+

n−1
∑

i=nδn

Ti−1(k)

(i−Kn)(i + 1−Kn)

∣

∣

∣

∣

∣

∣

,

where Ti(k) =
∑i

j=Kn
x′i(k)R−1(k)xi(k) − k. By an argument similar to that given

in the proof of Lemma 3 of Ing and Wei (2005) and Jensen’s inequality, one has for

any q > 0, all nδn − 1 ≤ i ≤ n− 1, and all 1 ≤ k ≤ Kn,

E

∣

∣

∣

∣

Ti(k)

i + 1−Kn

∣

∣

∣

∣

q

≤ C
k3q/2

(i + 1−Kn)q/2
.

This and the Minkowski inequality yield that for q ≥ 1 and all 1 ≤ k ≤ Kn,

E(IV (k))q ≤ C
k3q/2

(nδn)q/2
. (A.18)

Moreover, it is also not difficult to see that for all 1 ≤ k ≤ Kn,

V (k) ≤ C(
1− δn

δn
)k(

Kn

n
). (A.19)
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Consequently, (A.7) follows from (A.9), (A.13), (A.16)-(A.19), Jensen’s inequality,

and the fact that for any r > 0,

lim
k→∞

kr‖a− a(k)‖2r
R = 0, (A.20)

which is ensured by (K.1). 2

Lemma A.7. Under the assumptions of Lemma A.6, we have for q > 0, all

1 ≤ k ≤ Kn and all sufficiently large n,

E(|N3(k)|q) ≤ C

(1− δn)q(L
(δn)
n (k))q

(

k2q

n3q/2δ
q/2
n

+
kq/2

nq

)

, (A.21)

E(|N4(k)|q) ≤ C

(1− δn)q(L
(δn)
n (k))q





k∗
2q

n,δn

n3q/2δ
q/2
n

+
k∗

q/2

n,δn

nq



 , (A.22)

E(|N5(k)|q) ≤ C

(1− δn)q(L
(δn)
n (k))q

(

k2q

n3q/2
+

kq/2

nq

)

, (A.23)

and

E(|N6(k)|q) ≤ C

(1− δn)q(L
(δn)
n (k))q





k∗
2q

n,δn

n3q/2
+

k∗
q/2

n,δn

nq



 . (A.24)

proof. We only prove (A.21) because the proofs of (A.22), (A.23) and (A.24)

are similar. Some algebraic manipulations give

|Qnδn(k)− kσ2|

≤ 1

nδn −Kn

∣

∣

∣

∣

∣

∣

nδn−1
∑

j=Kn

x′j(k)ej+1,k

(

R̂−1
nδn

(k)−R−1(k)
)

nδn−1
∑

j=Kn

xj(k)ej+1,k

∣

∣

∣

∣

∣

∣

+
1

nδn −Kn

∣

∣

∣

∣

∣

∣

nδn−1
∑

j=Kn

x′j(k)(ej+1,k − ej+1)R
−1(k)

nδn−1
∑

j=Kn

xj(k)ej+1,k

∣

∣

∣

∣

∣

∣

+
1

nδn −Kn

∣

∣

∣

∣

∣

∣

nδn−1
∑

j=Kn

x′j(k)ej+1R
−1(k)

nδn−1
∑

j=Kn

xj(k)(ej+1,k − ej+1)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

nδn −Kn





nδn−1
∑

j=Kn

x′j(k)ej+1R
−1(k)

nδn−1
∑

j=Kn

xj(k)ej+1



− kσ2

∣

∣

∣

∣

∣

∣

.
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This, Lemmas A.1-A.4, (3.6), (A.20) and Jensen’s inequality together imply that

for q > 0, all 1 ≤ k ≤ Kn and all sufficiently large n,

E|Qn(k)− kσ2|q ≤ C

(

k2q

(nδn)q/2
+ kq/2

)

,

and hence (A.21) follows. 2

Lemma A.8. Under the assumptions of Lemma A.6, we have for q > 0, all

1 ≤ k ≤ Kn and all sufficiently large n,

E(|N7(k)|q) ≤ Ck3q

(1− δn)q(L
(δn)
n (k))qnq(nδn)q

, (A.25)

E(|N8(k)|q) ≤
Ck∗

3q

n,δn

(1− δn)q(L
(δn)
n (k))qnq(nδn)q

, (A.26)

E(|N9(k)|q) ≤ Ck2q

(1− δn)q(L
(δn)
n (k))qnq(nδn)q/2

, (A.27)

and

E(|N10(k)|q) ≤
Ck∗

2q

n,δn

(1− δn)q(L
(δn)
n (k))qnq(nδn)q/2

. (A.28)

proof. By an analogy with (A.13), one has for q ≥ 1,

E|n(1− δn)L(δn)
n (k)N7(k)|q

≤







n−1
∑

i=nδn

{

E(‖xi(k)‖6q)E(‖R̂−1
i+1(k)‖3q)E(|êi,k|6q)

}1/3q

i−Kn + 1







q

. (A.29)

Since for r > 0,

E(|êi,k|r) ≤
{

E(‖xi(k)‖2r)E(‖âi(k)− a(k)‖2r)
}1/2

,

and

‖âi(k)− a(k)‖ ≤ ‖R̂−1
i (k)‖‖(i −Kn)−1

i−1
∑

j=Kn

xj(k)ej+1,k‖,

30



by (A.11), (3.6) and Lemmas A.1-A.3, one has for all nδn ≤ i ≤ n−1, all 1 ≤ k ≤ Kn

and all sufficiently large n,

E(|êi,k|r) ≤ C
kr

ir/2
. (A.30)

Consequently, (A.25) follows from (A.29), (A.30), (A.11), (A.1), and Jensen’s in-

equality. Since the proof of (A.26) is similar to that of (A.25), the details are

omitted. In addition, by (A.12) and an argument similar to that used for showing

(A.25), (A.27) and (A.28) follow. 2

Lemma A.9. Let the assumptions of Lemma A.5 hold. Then, for some q ≥ 2,

0 < δn < 1 and all 1 ≤ k ≤ Kn, with Kn ≤ nδn,

E(|N11(k)|q) ≤
C‖a(k)− a(k∗n,δn

)‖q
R

(1− δn)q/2(L
(δn)
n (k))qnq/2

, (A.31)

and

E(|N12(k)|q) ≤
C‖a(k)− a(k∗n,δn

)‖q
R

(1− δn)q/2(L
(δn)
n (k))qnq/2

. (A.32)

proof. First note that

E|L(δn)
n (k)N11(k)|q ≤ CE

∣

∣

∣

∣

∣

∣

1

n(1− δn)

n−1
∑

i=nδn

{

e2
i+1,k − e2

i+1,k∗
n,δn

− σ2
k + σ2

k∗
n,δn

}

∣

∣

∣

∣

∣

∣

q

+ CE

∣

∣

∣

∣

∣

∣

1

n(1− δn)

n−1
∑

i=nδn

(ei+1,k − ei+1,k∗
n,δn

)ei+1

∣

∣

∣

∣

∣

∣

q

≡ (I) + (II) (A.33)

According to (A.6), one has for all 1 ≤ k ≤ Kn,

(I) ≤
C‖a(k)− a(k∗n,δn

)‖q
R

(1− δn)q/2nq/2
. (A.34)

Lemma A.0 and the convexity of xq/2, x > 0, yield for all 1 ≤ k ≤ Kn,

(II) ≤ C

nq(1− δn)q
E













n−1
∑

i=nδn

(ei+1,k − ei+1,k∗
n,δn

)2







q/2






≤ C

nq/2(1− δn)q/2

1

n(1− δn)

n−1
∑

i=nδn

E(|ei+1,k − ei+1,k∗
n,δn

|q)

≤
C‖a(k)− a(k∗n,δn

)‖q
R

(1− δn)q/2nq/2
. (A.35)
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Consequently, (A.31) is ensured by (A.33)-(A.35). The proof is completed by noting

that (A.32) is an immediate consequence of (A.35). 2

Armed with Lemmas A.6-A.9, we have the following result.

Corollary A.1. Let (K.1)–(K.5), (3.5) and (3.6) hold. Then, for any r > 0,

lim
n→∞

E





L
(δn)
n (k̂n,δn)

L
(δn)
n (k∗n,δn

)
− 1





r

= 0. (A.36)

proof. Let ε > 0 be arbitrarily given. By (A.3), one has for r > 0,

E





L
(δn)
n (k̂n,δn)

L
(δn)
n (k∗n,δn

)
− 1





r

=
Kn
∑

k=1





L
(δn)
n (k)

L
(δn)
n (k∗n,δn

)
− 1





r

P
(

k̂n,δn = k
)

≤ εr +
∑

k∈A
(δn)
ε,n





L
(δn)
n (k)

L
(δn)
n (k∗n,δn

)
− 1





r

P
(

k̂n,δn = k
)

≤ εr +
12
∑

l=1











∑

k∈A
(δn)
ε,n





L
(δn)
n (k)

L
(δn)
n (k∗n,δn

)
− 1





r

P

(

Nl(k) ≥ 1

12
Vn,δn(k)

)











, (A.37)

where

A(δn)
ε,n =







k : 1 ≤ k ≤ Kn,
L

(δn)
n (k)

L
(δn)
n (k∗n,δn

)
− 1 > ε







.

In view of (A.37), (A.36) holds if for l = 1, · · · , 12,

lim
n→∞

∑

k∈A
(δn)
ε,n





L
(δn)
n (k)

L
(δn)
n (k∗n,δn

)
− 1





r

P

(

Nl(k) >
1

12
Vn,δn(k)

)

= 0. (A.38)

In the following, we only prove (A.38) for l = 1, 3, and 11 because the proofs for

l = 2, 7, 8, 9, and 10 are similar to that for l = 1, the proofs for l = 4, 5, and 6 are

similar to that for l = 3, and the proof for l = 12 is similar to that for l = 11.

By (A.7), Chebyshev’s inequality, (3.5), (3.6) and the facts that

L(δn)
n (k) ≥ ‖a− a(k)‖2

R, nL(δn)
n (k) ≥ C

k log δ−1
n

1− δn
(A.39)
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and L
(δn)
n (k)/L

(δn)
n (k∗n,δn

) ≤ C/L
(δn)
n (k∗n,δn

) if 1 ≤ k ≤ k∗n,δn
and L

(δn)
n (k)/L

(δn)
n (k∗n,δn

) ≤
Ck/k∗n,δn

if k∗n,δn
< k ≤ Kn, we have for sufficiently large q,

∑

k∈A
(δn)
ε,n





L
(δn)
n (k)

L
(δn)
n (k∗n,δn

)
− 1





r

P

(

N1(k) >
1

12
Vn,δn(k)

)

≤ C
∑

k∈A
(δn)
ε,n





L
(δn)
n (k)

L
(δn)
n (k∗n,δn

)





r

(Vn,δn(k))−(q−r)







kq

(log δ−1
n )q(nδn)q/2

+
( log δ−1

n
1−δn

)qkq

nq







≤ C

(

1 + ε

ε

)q−r




k∗
n,δn
∑

k=1







kq

(k∗n,δn
)r(log δ−1

n )q+r(nδn)(q/2)−r( δn
1−δn

)r
+

( log δ−1
n

1−δn
)q−rkq

(k∗n,δn
)rnq−r







+
Kn
∑

k=k∗
n,δn

+1







kq+r

(k∗n,δn
)r(log δ−1

n )q(nδn)q/2
+

( log δ−1
n

1−δn
)qkq+r

(k∗n,δn
)rnq












= o(1). (A.40)

Therefore, (A.38) holds for l = 1.

By (A.21), (A.31), an argument similar to that used for obtaining (A.40) and

the fact that k∗n,δn
→∞ as n →∞, we have for sufficiently large q,

∑

k∈A
(δn)
ε,n





L
(δn)
n (k)

L
(δn)
n (k∗n,δn

)
− 1





r

P

(

N3(k) >
1

12
Vn,δn(k)

)

≤ C

(

1 + ε

ε

)q−r






Kn
∑

k=1





L
(δn)
n (k)

L
(δn)
n (k∗n,δn

)





r

kq

(log δ−1
n )q(nδn)q/2

+

k∗
n,δn
∑

k=1

kq/2

nq(L
(δn)
n (k∗n,δn

))q(1− δn)q

+
Kn
∑

k=k∗
n,δn

+1

kq/2

nq(L
(δn)
n (k))q−r(L

(δn)
n (k∗n,δn

))r(1− δn)q











= o(1), (A.41)

and

∑

k∈A
(δn)
ε,n





L
(δn)
n (k)

L
(δn)
n (k∗n,δn

)
− 1





r

P

(

N11(k) >
1

12
Vn,δn(k)

)

≤ C

(

1 + ε

ε

)q−r






k∗n,δn
∑

k=1

1

nq/2(L
(δn)
n (k∗n,δn

))q/2(1− δn)q/2
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+
Kn
∑

k=k∗
n,δn

+1

1

nq/2(L
(δn)
n (k))(q/2)−r(L

(δn)
n (k∗n,δn

))r(1− δn)q/2











= o(1).(A.42)

In view of (A.40)-(A.42), the proof is complete. 2

Corollary A.2. Assume that (K.1)–(K.5) and condition (i) of Theorem 1 hold.

Also assume that δn satisfies (3.5) and (3.6). Then, for sufficiently large q,

E

∣

∣

∣

∣

∣

S(k̂n,δn)− S(k∗n,δn
)

(L
(δn)
n (k̂n,δn))1/2

∣

∣

∣

∣

∣

2q

= O((k∗n,δn
)−(1−θ)q+θ) + o((log δ−1

n )−q)

+ O((log δ−1
n )−q/2(k∗n,δn

)(−q/2)+θ), (A.43)

where S(k) is defined in Section 2 and 0 ≤ θ = θ(ξ) < 1 is obtained from condition

(i) of Theorem 1 with ξ being limited to the open interval (0,min{1/2, {(2 + δ∗1)(1−
θ3)/2} − 1}).

proof. Let 0 < ξ < min{1/2, {(2 + δ∗1)(1 − θ3)/2} − 1}. Then, by condition (i)

of Theorem 1, there are 0 ≤ θ = θ(ξ) < 1 and M = M(ξ) > 0 such that (3.7) is

satisfied. By Hölder’s inequality and the fact that for any h > 0,

E
∣

∣

∣S(k)− S(k∗n,δn
)
∣

∣

∣

2h
≤ C

∥

∥

∥a(k)− a(k∗n,δn
)
∥

∥

∥

2h

R

≤ C

(

L(δn)
n (k)− L(δn)

n (k∗n,δn
) +

log δ−1
n

1− δn

∣

∣

∣

∣

∣

k − k∗n,δn

N

∣

∣

∣

∣

∣

σ2

)h

(A.44)

(which follows from Lemma A.0, (K.3) and the definition of k∗n,δn
), we have for q > 0

and 1 < r < ∞,

E
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∣
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∣

∣
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∣

∣

∣

∣

∣

2q

≤
Kn
∑

k=1



E
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
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1
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∣

∣

q
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)
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




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
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V q
n,δn

(k)P
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r
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)

+
Kn
∑
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k∈/A(δn)
n,θ,M

∣

∣

∣

∣

∣

∣

log δ−1
n

1−δn
(k − k∗n,δn

)

NL
(δn)
n (k)

∣

∣

∣

∣

∣

∣

q

+
Kn
∑
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k∈A
(δn)
n,θ,M

∣

∣

∣

∣

∣

∣

log δ−1
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)


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≡ C{(I) + (II) + (III)}, (A.45)

where A
(δn)
n,θ,M is a set of positive integers defined in condition (i) of Theorem 1.

By the definitions of A
(δn)
n,θ,M , L

(δn)
n (k) and L

(δn)
n (k∗n,δn

), it is easy to see that

(II) ≤ C(k∗n,δn
)−(1−θ)q+θ. (A.46)

Since for a, b ≥ 0, (a + b)(r−1)/r ≤ a(r−1)/r + b(r−1)/r, we have by (3.4) that

(I) ≤
12
∑

l=1

{

Kn
∑

k=1

V q
n,δn

(k)P
r−1

r (Nl(k) ≥ (1/12)Vn,δn (k))

}

. (A.47)

In the following, we shall show that when q is sufficiently large,

Kn
∑

k=1

V q
n,δn

(k)P
r−1

r (Nl(k) ≥ (1/12)Vn,δn (k)) = o((log δ−1
n )−q), (A.48)

for l = 1, · · · , 10, and

Kn
∑

k=1

V q
n,δn

(k)P
r−1

r (Nl(k) ≥ (1/12)Vn,δn (k))

= O((log δ−1
n )−q/2(k∗n,δn

)(−q/2)+θ) + o((log δ−1
n )−q), (A.49)

for l = 11 and 12. As a result, (A.47)-(A.49) yield that for sufficiently large q,

(I) = O((log δ−1
n )−q/2(k∗n,δn

)(−q/2)+θ) + o((log δ−1
n )−q). (A.50)

By (A.7), (3.5), (3.6), (K.4) and (A.39), we have for sufficiently large q,

Kn
∑

k=1

V q
n,δn

(k)P
r−1

r (N1(k) ≥ (1/12)Vn,δn (k)) ≤ C
Kn
∑

k=1

[E{N1(k)}qr/(r−1)](r−1)/r

≤ C

(log δ−1
n )q

(

Kn
∑

k=1

kq

(nδn)q/2
+

(log δ−1
n )2qkq

(1− δn)qnq

)

= o((log δ−1
n )−q), (A.51)

which guarantees that (A.48) holds for l = 1. For l = 3, according to (3.6), (A.21),

(A.39) and the fact that k∗n,δn
→∞ as n →∞, we have for sufficiently large q,

Kn
∑
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V q
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(k)P
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∑
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




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





= o((log δ−1
n )−q). (A.52)
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The proofs of (A.48) for l = 2, 7, 8, 9, and 10 are similar to that of (A.51) and the

proofs of (A.47) for l = 4, 5 and 6 are similar to that of (A.52). We skip the details in

order to save space. The proof of (A.49) is a bit more complicated. By (3.7), Lemma

A.9, (A.44), (3.5), the arguments used in (A.51) and (A.52), and the restriction on

ξ, one has for sufficiently large q,
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)(−q/2)+θ) + o((log δ−1
n )−q), (A.53)

where l = 11 or 12.

Reasoning as for (A.47), we have
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.

Since 0 < ξ < min{1/2, {(2 + δ∗1)(1 − θ3)/2} − 1}, by arguments similar to those

used to prove (A.51) and (A.52), one obtains for sufficiently large q,
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and
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
= o((log δ−1

n )−q),

respectively. Similarly, it can be shown that for l = 2, 4, 5, 6, 7, 8, 9 and 10,
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By analogy with (A.53), we have
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where l = 11 and 12. Hence,

(III) = o((log δ−1
n )−q) (A.54)

holds for sufficiently large q. Consequently, (A.43) follows from (A.45), (A.46),

(A.50) and (A.54). 2

Corollary A.3. Assume that the assumptions of Corollary A.2 hold. Then, for

sufficiently large q,

lim
n→∞
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proof. Define
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(Note that f1(k) can be used to approximate f(k) as defined after (2.1).) Since

Lemma 8 of Ing and Wei (2005) shows that for q > 0,
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by Hölder’s inequality and (A.56), one obtains for q > 0 and 1 < r < ∞,
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Let 0 < ξ < min{1/2, {(2 + δ∗1)(1 − θ3)/2} − 1}. Then, condition (i) of Theorem

1 guarantees that there are 0 ≤ θ = θ(ξ) < 1 and M = M(ξ) > 0 such that (3.7)

holds. By arguments similar to those used to verify (A.45), (A.46), (A.50) and

(A.54), we have for sufficiently large q,
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where A
(δn)
n,θ,M is a set of positive integers defined in condition (i) of Theorem 1. This,

together with (A.57), yields

E
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f1(k̂n,δn)− f1(k
∗
n,δn

)
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(δn)
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2q

= o((log δ−1
n )−q). (A.58)

Moreover, by the same argument as in the proof of Ing and Wei (2005, Lemma 7),

we have for q > 0,
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)
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Consequently, (A.55) follows from (A.58) and (A.59). 2

We are now ready to prove Theorem 1.

proof of theorem 1. First observe that
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)

]

.(A.60)

By Corollary A.2, (A.43) follows. Let q > 1 if the θ on the right-hand side of (A.43)

equals 0, and q > max{θ/(1− θ− η), 2θ/(1− η), 1} otherwise, where η is defined in

(3.8). Then,
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where the inequality follows from the fact that L
(δn)
n (k∗n,δn

) ≤ Ln(k∗n,δn
) log δ−1

n (1−
δn)−1 and Hölder’s inequality, the second equality follows from (3.5), Corollaries
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A.1 and A.2 and Jensen’s inequality and the last equality is ensured by (3.8). By

Corollaries A.1 and A.3 and an argument similar to that used to prove (A.61),

E

[{f(k̂n,δn)− f(k∗n,δn
)}2

Ln(k∗n,δn
)

]

= o(1). (A.62)

Consequently, the desired result is ensured by (A.60)-(A.62), Proposition 1 and the

Cauchy-Schwarz inequality. 2

proof of theorem 2. First note that when limn→∞ δn = 1 and condition (i)

(or (ii)) of Theorem 2 are assumed instead of (3.5) and (3.6), the left-hand sides of

(A.40), (A.41) and (A.42) still converge to 0. Therefore, (A.36) follows. Let 0 < ξ <

(1/2)−ξ2 if condition (i) of Theorem 2 holds, and 0 < ξ < min{(1/2)−ξ2, (δ
∗
1/2)−ξ2}

if condition (ii) of Theorem 2 holds. Since condition (i) of Theorem 1 is given, there

are 0 ≤ θ = θ(ξ) < 1 and M = M(ξ) > 0 such that (3.7) holds. By the same

reasoning used in the proof of Corollary A.2 and Jensen’s inequality, we have for

any q > 0,

lim
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and
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respectively. Consequently, the claimed result follows from (A.36), (A.63), (A.64),

limn→∞ δn = 1 and an argument similar to the one given in the proof of Theorem

1. 2

Appendix B: Proof of Theorem 3

Instead of verifying (4.7) directly, we will first show that (4.7) holds with k̂n,Pn

replaced by k̂S
n,Pn

, where k̂S
n,Pn

= arg min1≤k≤Kn S
(Pn)
n (k) and S

(Pn)
n (k) = (N +

Pnk)σ̂2
n(k). By an analogy with (4.1) of Shibata (1980),

S(Pn)
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(

σ̂2
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+
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kσ2 −N ‖â(k)− a(k) ‖2
R̂n(k)

)

+Nσ2 + N
(

S2
Kn,n−1(k)− σ2

k

)

, (B.1)
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where the definition of S2
Kn,n−1(k) can be found in Lemma A.5. Based on (B.1) and

an argument similar to that used in (5.34) of Ing and Wei (2005), we have

P (k̂S
n,Pn

= k) ≤
5
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where
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,

and

Un(k) =
Ln,Pn(k)− Ln,Pn(k∗n,Pn

)

Ln,Pn(k)
.

(Note that k∗n,Pn
and Ln,Pn(k) are defined in (4.1) and (4.2), respectively.)

Theorem B.1. Let the assumptions of Theorem 3 hold. Then,

lim
n→∞

qn(k̂S
n,Pn

)− σ2

Ln(k∗n,Pn
)

= 1.

proof. By an analogy with (5.43) of Ing and Wei (2005), we have for q > 0, all

1 ≤ k ≤ Kn and all sufficiently large n,

EU q
1,n(k) ≤ C

(

P q
nkq

N q
+ N−q/2

)

, (B.3)

and

EU q
2,n(k) ≤ C

(

P q
nk∗

q

n,Pn

N q
+ N−q/2

)

. (B.4)
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The same reasoning as in (5.47) of Ing and Wei (2005) yields for q > 0, all 1 ≤ k ≤
Kn and all sufficiently large n,

EU q
3,n(k) ≤ C

(

kq

N q/2
+

kq/2

N qLq
n,Pn

(k)

)

, (B.5)

and

EU q
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
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N qLq
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(k)



 . (B.6)

As an immediate consequence of Lemma A.5 and Jensen’s inequality,

EU q
5,n(k) ≤ C

‖a(k)− a(k∗n,Pn
)‖q

R

N q/2Lq
n,Pn

(k)
(B.7)

holds for q > 0 and all 1 ≤ k ≤ Kn. Using (B.3)-(B.7) and an argument similar to

that used to verify Corollary A.1, we have for q > 0,

lim
n→∞

E

(

Ln,Pn(k̂S
n,Pn

)

Ln,Pn(k∗n,Pn
)
− 1

)q

= 0. (B.8)

Let 0 < ξ < {δ∗1/(4+2δ∗1)}−θ3}. (Recall that θ3 is some positive number less than

δ∗1/(4 + 2δ∗1); see (4.4).) By condition (i) of Theorem 3, there are 0 ≤ θ = θ(ξ) < 1

and M = M(ξ) > 0 such that (4.5) holds. With helps of (4.3)-(4.5), (B.3)-(B.7)

and the restriction on ξ, we can follow the ideas of the proofs given in Corollaries

A.2 and A.3 and obtain for q > 0,
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and
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2q
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Consequently, Theorem B.1 is guaranteed by (4.6), (B.8)-(B.10) and the same ar-

gument that we used in the proof of Theorem 1. 2

proof of theorem 3. In view of the proof of Theorem B.1, (4.7) is ensured

by showing that (B.8)-(B.10) hold with k̂S
n,Pn

replaced by k̂n,Pn . Define

Gn(k) = N exp{ICPn(k)} − S(Pn)
n (k)
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and
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|Gn(k) −Gn(k∗n,Pn

)|
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.

First note that
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In addition, Taylor’s expansion and (5.42) of Ing and Wei (2005) give for q > 0,

EU q
6,n(k) ≤ C

(

P 2
nK2

n
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. (B.12)

By (B.3)-(B.7), (B.11), (B.12) and the same reasoning used in the proof of Theorem

B.1, the desired results follow. 2

Appendix C: Proofs of Theorems 4-6

proof of theorem 4. First note for sufficiently large n, we have p0 ≤ Kn and
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N
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Thus, for r > 1,
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P
r−1

r (k̂n,δn = k)

+
Kn
∑

k=p0+1



E

∣

∣

∣

∣

∣

f(k)

(p0σ2

N )1/2

∣

∣

∣

∣

∣

2r




1/r

P
r−1

r (k̂n,δn = k) + E

(

N f2(k)

p0σ2

)

≡ (I) + (II) + (III). (C.2)

By Lemmas A.1-A.3, (A.11) and the fact that E(S(k))2r ≤ C‖a − a(k)‖2r
R (see

(A.15)), we have for 1 ≤ k ≤ p0 − 1,

E

∣

∣

∣

∣

∣

f(k) + S(k)

(p0σ2

N )1/2

∣

∣

∣

∣

∣

2r

≤ CN r, (C.3)

and for p0 + 1 ≤ k ≤ Kn

E

∣

∣

∣

∣

∣

f(k)

(p0σ2

N )1/2

∣

∣

∣

∣

∣

2r

≤ Ckr. (C.4)

43



According to (C.3), (C.4), Lemmas A.6-A.9, the fact that for 1 ≤ k ≤ Kn and

k 6= p0, V −1
n,δn

(k) ≤ C and the conditions imposed on δn, we can modify the argument

given in the proof of Corollary A.1 to obtain that for any s > 0,

(I) = O(n−s) and (II) = o((log δ−1
n )−s). (C.5)

In addition, since by Proposition 1, (III) = 1 + o(1), this, together with (C.5) and

(C.2), yields that k̂n,δn satisfies (2.3). In addition, using arguments given above and

in the proof of Theorem 3, it can be shown that (2.3) holds for k̂n = k̂n,Pn with Pn

satisfying Pn → ∞ and Pn/n → 0. The details are omitted in order to save space.

2

proof of theorem 5. When (ii) of (K.5′) holds, we have showed in Examples

1 and 6 that APEδn and ICPn , with δn and Pn satisfying the conditions imposed in

this theorem, are asymptotically efficient. This and Theorem 4 together yield the

claimed result. 2

proof of theorem 6. Our goal is to show that

lim sup
n→∞

qn(k̂
(ι)
n )− σ2

Ln(k∗n)
≤ 1. (C.6)

To verify (C.6), first assume that condition (ii) holds. Choose ξ in condition (ii) to

satisfy

0 < ξ < min{δ∗1/2, 1/2}. (C.7)

Then, there are 0 ≤ θ = θ(ξ) < 1 and M = M(ξ) > 0 such that (5.2) is fulfilled.

Define

Bn,M∗ = AC
Pn,θ,M ∩ {k : 1 ≤ k ≤ Kn,

Ln,Pn(k)− Ln,Pn(k∗n,Pn
)

Ln,Pn(k∗n,Pn
)

< M∗},

where M ∗ is some positive constant. Then,

qn(k̂
(ι)
n )− σ2

Ln(k∗n)
= E

{

(f(k̂n,2) + S(k̂n,2))
2

Ln(k∗n)
I{k̂n,Pn 6=k̂nι,Pnι }

}

+ E

{

(f(k̂n,Pn) + S(k̂n,Pn))2

Ln(k∗n)
I{k̂

n,Pn
=k̂

nι,Pnι
}

(

I{k̂
n,Pn

∈Bn,M∗} + I{k̂
n,Pn

∈/Bn,M∗}

)

}

≡ (I) + (II). (C.8)
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Observe that for r > 1,

(II) ≤ E

{

(f(k̂nι ,Pnι
) + S(k̂nι,Pnι

))2

Ln(k∗n)
I{k̂

nι,Pnι
∈Bn,M∗}

}

+ E

{

(f(k̂n,Pn
) + S(k̂n,Pn

))2

Ln(k∗n)
I{k̂

n,Pn
∈/Bn,M∗}

}

=
Knι
∑

k=1

k∈Bn,M∗

E

{

(f(k) + S(k))2

Ln(k∗n)
I{k̂

nι,Pnι
=k}

}

+
Kn
∑

k=1

k∈/Bn,M∗

E

{

(f(k) + S(k))2

Ln(k∗n)
I{k̂n,Pn

=k}

}

≤ C















Knι
∑

k=1

k∈Bn,M∗

Ln(k)

Ln(k∗n)
P (r−1)/r(k̂nι,Pnι = k)

+
Kn
∑

k=1

k∈/Bn,M∗

Ln(k)

Ln(k∗n)
P (r−1)/r(k̂n,Pn

= k)



















≡ C{(III) + (IV )}, (C.9)

where the second inequality follows from Hölder’s inequality and the fact that for

all 1 ≤ k ≤ Kn, E|f(k) + S(k)|2r ≤ CLr
n(k), which is ensured by Lemmas A.0-A.3

and (A.20).

In the following, we shall show that both (III) and (IV) converge to 0. To deal

with (III), notice that by (5.3) the definition of Bn,M∗,

Bn,M∗ ∩ {1, 2, · · · ,Knι} ⊆ APnι ,θ,M

holds eventually in n. Hence, when Bn,M∗ ∩ {1, 2, · · · ,Knι} is nonempty and n is

sufficiently large, we have for all k ∈ Bn,M∗ ∩ {1, 2, · · · ,Knι},

Lnι,Pnι (k)

Lnι,Pnι (k)− Lnι,Pnι (k∗nι,Pnι
)
≤ C(k∗nι,Pnι )

ξ . (C.10)

The definition of Bn,M∗ also yields for all k ∈ Bn,M∗ and Pn ≥ 1,

Ln(k)

Ln(k∗n)
≤ PnLn,Pn(k)

Ln,Pn(k∗n,Pn
)
≤ CPn. (C.11)
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According to (B.3)-(B.7), (B.11), (B.12), (C.10) and (C.11), we have for q > 0 and

all sufficiently large n,

(III) ≤ CPn(k∗nι,Pnι )
ξq















Knι
∑

k=1

k∈Bn,M∗

P q
nι(kq + k∗

q

nι,Pnι )

N q
ι

+
kq + k∗

q

nι,Pnι

N
q/2
ι

+
kq/2 + k∗

q/2

nι,Pnι

N q
ι Lq

nι,Pnι
(k)

+
‖a(k)− a(k∗nι,Pnι

)‖q
R

N
q/2
ι Lq

nι,Pnι
(k)

+
K2q

nι P
2q
nι

N2q
ι Lq

nι,Pnι
(k)







. (C.12)

In view of (C.7), (C.12) and the conditions imposed on ι and Pn, we have

(III) = o(1) (C.13)

by using a sufficiently large q in (C.12). Similarly, (5.2) and the definition of Bn,M∗

yield that for all k ∈ {k : 1 ≤ k ≤ Kn, k ∈/Bn,M∗},

Ln,Pn(k)

Ln,Pn(k)− Ln,Pn(k∗n,Pn
)
≤ C(k∗n,Pn

)ξ (C.14)

holds eventually in n. By (B.3)-(B.7), (B.11), (B.12), (C.14), the fact that for

Pn ≥ 1, Ln(k)/Ln(k∗n) ≤ PnLn,Pn(k)/Ln,Pn(k∗n,Pn
), and an argument similar to the

one used to verify (C.13), we have

(IV ) = o(1). (C.15)

Consequently, (C.6) follows from (C.8), (C.9), (C.13), (C.15) and Proposition 2.

Next, assume that condition (i) holds. In this case, Theorem 4 guarantees that

lim sup
n→∞

E











(

f(k̂n,Pn
) + S(k̂n,Pn

)
)2

p0σ2

N











≤ 1. (C.16)

By (C.1), (B.3)-(B.7), (B.11), (B.12) and the same reasoning as that of Theorem 4,

we also have

lim
n→∞

P (k̂n,Pn
6= p0) = 0, (C.17)

and for q > 0,

E

∣

∣

∣

∣

∣

f(k̂n,2) + S(k̂n,2)

(p0σ2

N )1/2

∣

∣

∣

∣

∣

q

= O(1). (C.18)
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Since for sufficiently large n,

qn(k̂
(ι)
n )− σ2

Ln(k∗n)
≤ E

{

(f(k̂n,2) + S(k̂n,2))
2

p0σ2

N

(

I{k̂
n,Pn

6=p0} + I{k̂
nι,Pnι

6=p0}

)

}

+ E

{

(f(k̂n,Pn
) + S(k̂n,Pn

))2

p0σ2

N

}

, (C.19)

(C.6) follows from (C.16)-(C.19) and Hölder’s inequality. This completes the proof

of the theorem. 2
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