
DESIGN-ADAPTIVE POINTWISE NONPARAMETRIC REGRESSION

ESTIMATION FOR RECURRENT MARKOV TIME SERIES

By Emmanuel Guerre
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Abstract: A general framework is proposed for (auto)regression nonparametric es-

timation of recurrent time series in a class of Hilbert Markov processes with a Lipschitz

conditional mean. This includes various nonstationarities by relaxing usual dependence

assumptions as mixing or ergodicity, which are replaced with recurrence. The corner-

stone of design-adaptation is a data-driven bandwidth choice based on an empirical bias

variance tradeoff, giving rise to a random consistency rate for a uniform kernel esti-

mator. The estimator converges with this random rate, which is the optimal minimax

random rate over the considered class of recurrent time series. Extensions to general ker-

nel estimators are investigated. For weak dependent time-series, the order of the random

rate coincides with the deterministic minimax rate previously derived. New deterministic

estimation rates are obtained for modified Box-Cox transformations of Random Walks.

Résumé : On propose un cadre général pour l’estimation nonparamétrique ponctuelle

de la fonction d’autorégression dans une classe de processus de Markov récurrent à

valeurs Hilbert, et de moyenne conditionnelle Lipschitz. Ce nouveau cadre incorpore de

nombreux type de nonstationnarité, en relaxant les conditions usuelles de mélangeance

ou d’ergodicité au profit d’une hypothèse de récurrence. La clé de l’approche proposée est

un equilibre biais-variance empirique qui permet de choisir une fenêtre optimale aléatoire,

donnant lieu à une vitesse de convergence aléatoire pour un estimateur à noyau uniforme.

Cette vitesse s’adapte automatiquement à chacun des processus considérés, est optimale

dans un cadre minimax, et est aussi atteinte par des estimateurs à noyau plus généraux.

Dans le cas de processus faiblement dépendants, l’ordre de la vitesse aléatoire coincide

avec les taux minimax connus. De nouvelles vitesses sont obtenues pour une famille de

transformations Box-Cox modifiées appliquées à la marche aléatoire.
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1. Introduction Since Roussas (1969), the nonparametric literature for dependent data

has considerably grown, due in particular to an increasing interest on nonlinear modelling. See

Tjøstheim (1994) for a review of such subtle interplays. A vast majority of work deals with the

mixing stationary framework, see Bosq (1998), Fan and Yao (2003), or Györfi, Härdle, Sarda and

Vieu (1989) and the references therein. Some, as Delecroix (1987), Morvai, Yakowitz and Györfi

(1996), Yakowitz, Györfi, Kieffer and Morvai (1999) among others have pushed the limits to

stationary ergodic time series. The recurrence properties of ergodic processes, as formalized by

the Law of Large Numbers, provide indeed an intuitively appealing sufficient condition for con-

sistency of local smoothers. However, as argued in Karlsen and Tjøstheim (2001) who impulsed

new directions for nonparametric analysis of time series, this is too restrictive for active research

areas as long range dependence or unit root processes, see Robinson (1997) and Phillips and

Park (1998) for nonparametric approaches. The ergodic assumption imposes that the number of

visits to the estimation domain, over which nonparametric regression is performed, must remain

proportional to the sample size, a condition that does not hold for many nonstationary models

of interest. An alternative is to weaken ergodicity by assuming that the process is recurrent

over the estimation domain. An important difficulty is that it becomes practically relevant to

view recurrence as an unknown characteristic of the observations. As a matter of fact, arti-

cles investigating nonparametric estimation under recurrence remain exceptions. The retained

framework deals with Harris-recurrent Markov processes, as in Yakowitz (1993) for a sequential

nearest-neighbor regression estimator. Karlsen and Tjøstheim (2001) established consistency

and asymptotic normality of kernel estimators for β-null recurrent time series. Closer to our

approach but in the context of diffusion models is Delattre, Hoffmann and Kessler (2002) who

considered adaptation to the unknown recurrence rate. See also Blanke (2004) for the potentially

related issue of adapting to sample path smoothness.

In the present paper, nonparametric pointwise estimation of the Lipschitz conditional mean

given the past of a recurrent Hilbert-valued Markov time series is considered. The point of view

developed here differs from Karlsen and Tjøstheim (2001) whose approach leads in particular

to extend standard bias variance analysis to β-null recurrent processes. However, their results

hold for bandwidths restricted with the recurrence rate of the observations, which should be

partially known. By contrast, our design-adaptive approach replaces bandwidth choices based on

asymptotic expansion of the mean squared error with an empirical bias variance tradeoff which

does not require such a priori information. The expression “design-adaptation” was coined

out in Fan (1992) for local polynomial estimators which converge under weak conditions on

the i.i.d. covariate distribution. Such an approach was extended in Guerre (2000) to cover

arbitrary designs. Guerre (2000) considered, to capture the unknown recurrence features of

the covariates, data-driven bandwidths and random rates as standardization of nonparametric
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estimators. In the context of chaotic data, Guerre and Maës (1998) built on a data-driven

standardization, see also Berlinet and Biau (2001). The dynamic-adaptive approach of Delattre

et al. (2002) is crucially based on data-driven bandwidth and random standardization, see

also Spokoiny (2000) for smoothness adaptation under ergodic paths. The interest of data-

driven standardization has also been acknowledged in the context of smoothness adaptation,

see Hoffmann and Lepski (2002), as well as in the probability literature, see Chen (1999a) for

the Law of Iterated Logarithm under Harris-recurrence and the discussion therein.

More specifically, the distinctive merits of the design-adaptive approach for recurrent time

series are as follows. First, a general framework is proposed for Markov processes valued in

Hilbert spaces which avoid mixing conditions, allowing so for a wide range of nonstationarities.

The focus is set on recurrence over the estimation domain, with a recurrence rate which is

considered as an unknown characteristic of the observations. Second, an empirical bias variance

tradeoff for a uniform kernel estimator allows to propose a baseline data-driven design-adaptive

bandwidth, which gives rise to a random consistency rate. The resulting regression estimator

converges with this rate and automatically adapts to a wide range of local recurrence behaviors.

Extensions to a more general radial kernel estimators is also investigated. Third, the random rate

derived from the design-adaptive bandwidth is shown to be optimal in a minimax sense. In case

of weak dependent time series, the deterministic exact order of the random rate coincides with

the minimax optimal order previously derived. How design-adaptation deals with nonstationary

processes is illustrated here with the example of a modified Box-Cox transformation of the

Gaussian Random Walk.

The rest of the paper is divided in three sections and two appendices. Section 2 presents

the design-adaptive approach, our baseline nonparametric regression estimator as well as po-

tential improvements, with a non technical overview of our main results. Section 3 groups our

assumptions and states the main results. Section 4 gives the deterministic order of the optimal

data-driven rate for some examples of time series. Proofs of our main results (i.e. Theorems

1 to 4 and Corollary 1) are given in Appendix A, while Appendix B gathers proofs of more

illustrative results as Propositions 1 and 2.

2. Design-adaptive nonparametric regression estimation: an overview Let (X , ‖·‖)
be an Hilbert space with inner product < ·, · > and norm ‖ · ‖. Consider T + 1 observations

X0, . . . , XT from a time series valued in X , with

Xt = m(Xt−1) + et , E[et|Xt−1, . . . , X0] = 0 and E[‖et‖2|Xt−1, . . . , X0] ≤ σ2

for all t ≥ 1. Assume that the (auto)regression function m(·) is Lipschitz over a bounded open

subset D of X , i.e. that ‖m(x)−m(x′)‖ ≤ L‖x−x′‖ for all x, x′ in D. The purpose is to estimate
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m(x) for x in D, assuming that the number of visits of the Xt−1’s to the estimation domain D,

NT (D) =
T∑

t=1

I (Xt−1 ∈ D) ,

diverges with the sample size, a condition referred as a Recurrence Condition in what follows.

A solution to that issue is to average the Xt’s over the Xt−1 close enough to x, as done by the

radial uniform kernel estimate

mT (x; b) =
∑T

t=1 XtI (‖Xt−1 − x‖ ≤ b)
NT (b)

where NT (b) =
T∑

t=1

I (‖Xt−1 − x‖ ≤ b) ,(2.1)

setting mT (x; b) = 0 if NT (b) = 0. Before introducing our choice of the bandwidth b, we present

some examples of time series to motivate design-adaptation and the framework of Section 3.

Example 1: linear autoregressive models. A baseline example to motivate our approach

is the simple AR (1) model

Xt = aXt−1 + et , |a| ≤ 1 ,

with i.i.d. et such that Eet = 0 and Var(et) = σ2. The dependence structure of {Xt, t ≥ 0}
drastically differs following |a| < 1 or a = 1. In the former, the process is asymptotically

stationary with an invariant probability and the order of NT (D) is T by the Law of Large

Numbers. This model fits the framework of nonparametric estimation for dependent variables.

On the other hand, the AR(1) model is nonstationary with Xt = X0 +
∑t

i=1 ei when a = 1,

the Lebesgue measure is invariant, and NT (D) has the smaller order
√

T . This is outside the

scope of the vast majority of the nonparametric literature. Since the recurrence features of

this model are highly sensitive to the unknown parameter a, it is therefore desirable to design

nonparametric methods which can adapt to the time series at hand. Such features are shared

by many parametric models as linear or threshold autoregressive models of higher order models

which may generate more sophisticated seasonal nonstationarities, see Tong (1990).

Example 2: nonlinear autoregressive models. More complex recurrent time series include

nonlinear Markov processes of order d. Consider an univariate d-Markov time series {Yt, t ≥ 0}.
Let {εt, t ≥ 1} be the associated innovation process εt = Yt − E[Yt|Yt−1, . . . , Yt−d] assuming

that Var[εt|Yt−1, . . . , Yt−d] ≤ σ2. Under time homogeneity, the process admits an autoregressive

representation Yt = µ(Yt−1, . . . , Yt−d) + εt, where the conditional mean µ(Yt−1, . . . , Yt−d) =

E[Yt|Yt−1, . . . , Yt−d] is the parameter of interest. Taking X = Rd equipped with the usual

Euclidean norm and Xt = (Yt, . . . , Yt−d+1)′ yield that {Xt, t ≥ 0} is Markov with

Xt = m(Xt−1) + et where m(Xt−1) = (µ(Yt−1, . . . , Yt−d), Yt−1, . . . , Yt−d+1)′ ,
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and et = (εt, 0, . . . , 0)′. Note that mT (x; b) could be changed into its first entry for such rep-

resentation since the d − 1 last components of m(·) are known. As it can be expected from

Example 1, the probability structure of such nonparametric models is extremely complex and

developing practical tests for hypothesis as mixing decay conditions seems out of reach in prac-

tical applications. A more reasonable strategy is to postulate a weaker Recurrence Condition

over D. Conditions ensuring recurrence of such processes have been investigated, see Meyn and

Tweedie (1993) and the references therein, and Proposition 1 below.

Example 3: nonlinear transformation of a recurrent process. As mentioned in

Karlsen and Tjøstheim (2001), a nonparametric class of recurrent time series can be obtained

by transforming a baseline recurrent process {Yt, t ≥ 0}, as for instance the AR(1) considered

in Example 1. Indeed, if Xt = H(Yt) where H(·) is one to one and H(D) is a subset of D,

then the number of visits of the Xt−1’s to D diverges if the one of the Yt−1’s does. A family of

transformations H(·) in the spirit of the Box-Cox transformation will be applied to the Gaussian

Random Walk in Section 4 to exemplify the capability of the design-adaptive approach to cope

with nonstationary time series given by ill-conditioned transformation H(·).

In the expression (2.1) of the nonparametric estimator µT (x; b), the parameter b is a band-

width which indicates the closeness of the Xt−1’s to x. A crucial issue is the choice of b. For

the general class of nonparametric autoregressive models under consideration, usual standard

bandwidth choice using asymptotic expansion of the mean squared error of mT (x; b) are unlikely

to apply since the time series at hand can be nonstationary. On the other hand, it is still possible

to obtain a random order for the estimation error mT (x; b)−m(x) which decomposes into the

two following terms,

mT (x; b)−m(x) =
∑T

t=1 (m(Xt−1)−m(x)) I (‖Xt−1 − x‖ ≤ b)
NT (b)

+
∑T

t=1 etI (‖Xt−1 − x‖ ≤ b)
NT (b)

,

where the first sum is viewed as a bias term while the second corresponds to a stochastic error.

Since m(·) is Lipschitz over D, the bias term is bounded by Lb for any x in D provided that b is

small enough. Since
∑T

t=1 etI (‖Xt−1 − x‖ ≤ b) is a sum of martingale differences, we have, for

the stochastic error term times NT (b),

E

∥∥∥∥∥
T∑

t=1

etI (‖Xt−1 − x‖ ≤ b)

∥∥∥∥∥
2

=
T∑

t=1

E
(
I (‖Xt−1 − x‖ ≤ b) E[‖et‖2|Xt−1, . . . , X0]

)

+2
T∑

t=1

T∑
t′=t+1

E
(
I (‖Xt−1 − x‖ ≤ b) I (‖Xt′−1 − x‖ ≤ b) 〈et, E[et′ |Xt′−1, . . . , X0, ]〉

)
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≤ σ2ENT (b) .

It then follows, from the Markov inequality, that the stochastic term times NT (b) is of order

σN
1/2
T (b), so that the resulting order of the stochastic term is σ/N

1/2
T (b). Combining the bounds

for the squared bias and stochastic terms gives, for the regression estimator

mT (x; b)−m(x) = OP

((
L2b2 +

σ2

NT (b)

)1/2
)

.(2.2)

Therefore, mT (x; bT ) is a consistent estimator of m(x) as soon as the deterministic bT asymp-

totically vanishes and NT (bT ) diverges in probability. However, achieving a divergent NT (bT )

supposes some a priori information on the recurrence of the process {Xt, t ≥ 0} which may not

be available in practice. An alternative to such an ad hoc deterministic choice is to let the sample

X0, . . . , XT suggests a proper bandwidth according to an empirical bias variance tradeoff. As in

Guerre (2000), it is technically convenient in a first step to bound the right-hand side of (2.2)

with max(L2b2, σ2/NT (b)) and to propose

b̂T = b̂T (x;L, σ) = arg min
b≥0

max

(
L2b̂2

T ,
σ2

NT (̂bT )

)
i.e., for instance,

b̂T = min
{
b ≥ 0;L2b2NT (b) ≥ σ2

}
so that min

b≥0
max

(
L2b̂2

T ,
σ2

NT (̂bT )

)
= L2b̂2

T .(2.3)

Note that NT (̂bT ) > 0 so that mT (x; b̂T ) is defined without ambiguity. That b̂T in (2.3) achieves

minb≥0 max(L2b2, σ2/NT (b)), equal to L2b̂2
T , is easily seen from a graph, since σ2/NT (·) is cadlag

(right-continuous, left-limit) and decreases from +∞ to σ2/T , while L2b2 continuously increases

from 0 to +∞. The bandwidth b̂T accounts for the local recurrence properties of the process at

x, which is the purpose of design-adaptation, since b̂T decreases when the number of Xt−1’s in

small vicinities of x increases.

For the choice (2.3) of b̂T , one would expect that the order for the estimation error (2.2) is

RT = RT (x;L, σ) =
1(

minb≥0 max
(
L2b2, σ2

NT (b)

))1/2
=

1

Lb̂T

.(2.4)

However, the order m(x; b̂T ) −m(x) = OP(1/RT ) cannot be directly derived from (2.2) which

does not hold for a data-driven bandwidth as b̂T . However, empirical processes techniques can be

helpful to achieve such a result. This necessitates to restrict to a class of Markov processes as done

with Definition 1 in Section 3. Theorem 2 then shows that the estimation error m(x; b̂T )−m(x)

is of order 1/RT uniformly over the considered class, without mixing or ergodicity conditions.

A pleasant feature is that RT can be interpreted as a random convergence rate. Since NT (b)

increases with b and T , it is easily seen from (2.4) that RT increases with the sample size, as any

of the power function of T which are usually considered as a normalization in nonparametric
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inference. However, choosing such a deterministic standardization necessitates some a priori

information on the dynamic of the process at hand. For instance, the optimal minimax rate

to estimate a Lipschitz conditional mean is T 1/3 under weak dependence and becomes T 1/6

for a recurrent Random Walk. By contrast, Theorem 4 shows that RT is an optimal minimax

random rate over a class including these two kind of time series. On the other hand, RT may

have a slower deterministic equivalent than the minimax rates derived for more specific classes

of processes, due to an excess of generality. As addressed in Section 4, the exact order of RT

coincides with the minimax rates for weak dependent time series or recurrent Random Walks.

This suggests that the design-adaptive approach is not affected by a loss due to its capability

to deal with a large class of recurrent time series.

Therefore, potential improvements of the simple estimator mT (x, b̂T ) are limited to decrease

RT with a constant multiplicative factor. An alternative design-adaptive estimator builds on

the more general radial kernel smoother

µT (x;h) = µT (x;h, K) =

∑T
t=1 XtK

(
‖Xt−1−x‖

h

)
∑T

t=1 K
(
‖Xt−1−x‖

h

) .(2.5)

The kernel K(·) is taken nonnegative, so that 0 ≤ K(·) ≤ 1 can be assumed without loss of

generality. As mT (x; b), the estimation error µT (x;h)−m(x) decomposes into a bias a stochastic

terms which can be used to propose a design-adaptive h. To achieve a better performance than

mT (x; b̂T ), a more precise bound than Lh for the bias term of µT (x;h) is considered. Define

BT (h) = BT (h;x,K) =

∑T
t=1 ‖Xt−1 − x‖K

(
‖Xt−1−x‖

h

)
∑T

t=1 K
(
‖Xt−1−x‖

h

) ,

NT (h;K) = NT (h;x,K) =
T∑

t=1

K2

(
‖Xt−1 − x‖

h

)
,

VT (h) = VT (h;x, K) =

(∑T
t=1 K

(
‖Xt−1−x‖

h

))2

∑T
t=1 K2

(
‖Xt−1−x‖

h

) =

(∑T
t=1 K

(
‖Xt−1−x‖

h

))2

NT (h;K)
,

where LBT (h) is the improved bias bound while σ/V
1/2
T (h) gives the order of the stochastic

error of µ̂T (x;h). A major difference with the bounds Lb and σ/N
1/2
T (b) used for mT (x; b)

is that LBT (h) and σ/V
1/2
T (h) are not necessarily monotone. This complicates the study of

a bandwidth achieving the minimum of ((LBT (h))2 + σ2/VT (h))1/2 which replaces the right-

hand side of (2.2). To overcome this technicality, we have introduced the “K-number of visits”

NT (h;K) which parallels NT (b), and increases with h if K(·) decreases over R+. The choice of
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an optimal bandwidth ĥT for µT (x;h) is based upon a pilot bandwidth ĥ0T as follows:

ĥ0T = ĥ0T (x;L, σ2,K) = min
{
h ≥ 0;L2h2NT (h;K) ≥ σ2

}
,(2.6)

ĥT = ĥT (x;L, σ, κ0,K) = arg min
h∈HT

(
L2B2

T (h) +
σ2

VT (h)

)
with, for some κ0 > 1,(2.7)

HT = {h ≥ 0;h ≤ κ0ĥ0T , NT (ĥ0T ;K)/κ0 ≤ NT (h;K), VT (h) ≤ κ0NT (ĥ0T ;K)} ,

RT (K) = RT (x;L, σ, κ0,K) =
1(

L2B2
T (ĥT ) + σ2/VT (ĥT )

)1/2
.(2.8)

The pilot bandwidth ĥ0T parallels the optimal bandwidth b̂T of mT (x; b) with NT (b) changed

into NT (h;K). However, since 0 ≤ K(·) ≤ 1 implies that NT (h;K) ≤ NT (h), µT (x; ĥ0T )

does not have a better order than mT (x; b̂T ), while µT (x; ĥT ) can improve on mT (x; b̂T ) and

µT (x; ĥ0T ), up to a limitation due to the constraints of HT . The variable RT (K) is viewed as

the random rate of µT (x; ĥT ), see Theorem 3 which parallels Theorem 2.

3. Assumptions and main results

3.1. Assumptions We assume that the kernel function K(·) in (2.5) satisfies:

Assumption K. The kernel K(·) is continuously decreasing from R+ to [0, 1], with compact

support [0, 1] and K(0) = 1. K(·) has bounded variations and K(z) ≥ κ1 > 0 for z in [0, 1/2].

Assumption K ensures in particular that NT (h;K) is continuously increasing in h. Let us now

introduce our assumptions for {Xt, t ≥ 0}. The reader is referred to Meyn and Tweedie (1993)

or Nummelin (1984) for a general exposition of the theory of Markov processes, see also Karlsen

and Tjøstheim (2001) for an overview covering most of the results needed here. The process

{Xt, t ≥ 0} is Markov of order 1, with values in (X ,S) where the Borel field S is countably

generated. The space X with inner product < ·, · > and norm ‖ · ‖ is a real Hilbert space with

finite or infinite dimension. The system {vj , j ≥ 1} generates X , assuming that the vj ’s with j

less than the dimension of X form an orthonormal basis while the other vanish, i.e. for X = Rd

as in Example 2, (v1, . . . , vd) is the canonical basis and vd+j = 0, j ≥ 1. The estimation set D
is a bounded open subset of X . The distribution of {Xt, t ≥ 0} is denoted P.

The definition of the class PD(L, σ) of admissible time series involves some additional quan-

tities. Consider a probability measure P over X , with P (D) = 1 and

F (h) = inf
x∈D

P ({y ∈ D : ‖y − x‖ ≤ h}) is continuous,(3.1)

with F (h) > 0 for h > 0 and limh→∞ F (h) = 1.
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Recall that et =
∑∞

j=1 < et, vj > vj . The standard deviation σ is identified with a sequence

{σj , j ≥ 1} of nonnegative numbers with σ1 > 0,
∑∞

j=1 σ2
j = σ2 and

∑∞
j=1 σj ≤ κ2σ for some

κ2 ≥ 1. In addition to L > 0 and σ, consider ρ in [0, 1), an integer number d ≥ 1 as in Example

2, and a positive sequence nT which typically diverges with a slow rate as lnT .

Definition 1. The class PD(L, σ) = PD(L, σ; ρ, P , d, , nT , κ2) is the family of distributions

P such that

i. P is the distribution of a time-homogeneous Markov process {Xt, t ≥ 0}, with

P (‖Xt − x‖ = h for some t ≥ 0) = 0 for all x in D and all h ≥ 0,(3.2)

EPNT (D) ≥ nT for all T ≥ 0.(3.3)

ii. The regression m(·) = EP[Xt+1|Xt = ·] is L-Lipschitz over D, i.e. ‖m(x) − m(x′)‖ ≤
L‖x− x′‖ for all x, x′ in D.

iii. The innovation term et = Xt −m(Xt−1) satisfies supx∈D E
[
< et, vj >2 |Xt−1 = x

]
≤ σ2

j

and supx∈D E1/8
[
< et, vj >8 |Xt−1

]
≤ κ2σj for all j ≥ 1.

iv. P satisfies the Minorization Condition P(Xt+d ∈ A|Xt = x) ≥ (1 − ρd)P (A)I(x ∈ D) for

any Borel subset A of D.

The following condition on P (·) and ρ allows to consider a subclass P ′D(L, σ) ⊂ PD(L, σ) of

univariate Markov processes with Gaussian innovations.

Assumption P. Assume that X = R and d = 1. Let Pg be the N (0, σ2) distribution for the

innovation term. Then the distribution P (·) and ρ in Definition 1-(iv) are such that, for any

Borel subset A of D, inf |m|≤κ3+1 Pg (m + et ∈ A) ≥ (1− ρ)P (A).

Under Assumption P, a choice of P (·) is a uniform distribution since the Gaussian density is

positive continuous. The quantities ρ, P , d, nT and κ2 in Definition 1 need not to be known

and are only used to obtain rate-consistency uniformly over PD(L, σ). The Condition (3.2)

ensures that the ‖Xt−1 − x‖’s has a continuous distribution. The condition (3.3) imposes a

minimal recurrence rate over D. The Minorization Condition (iv) is used in Markov processes

Theory in the so-called splitting technique, see Meyn and Tweedie (1993), Nummelin (1984),

and Karlsen and Tjøstheim (2001) for nonparametric statistical applications. The conditions

(3.3) and (iv) impose some important qualitative restrictions on the evolution equation Xt =

m(Xt−1)+et. The next Proposition briefly recalls some simple assumptions ensuring recurrence

and a Minorization Condition in the setup of Example 2.
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Proposition 1. Let {Yt, t ≥ 0} be a time-homogeneous Markov process of order d with

the autoregressive representation Yt = µ(Yt−1, . . . , Yt−d) + εt for t ≥ d. Let {Xt, t ≥ 0} with

Xt = (Yt, . . . , Yt−d+1)′ and m(·) be as in Example 2 with X = Rd. Assume that

(a) The distribution of εt given (Yt−1, . . . , Yt−d) = Xt−1 = x has a probability density function

f(ε|x) which is bounded away from 0 and continuous with respect to (ε, x) in R× Rd.

(b) The regression function µ(·) is continuous over Rd.

(c) There is a continuous U(·) from Rd to R+ with lim‖x‖→∞ U(x) = ∞, an integer number

d′ > 0 and a compact subset C of Rd such that EP[U(Xt+d′)|Xt = x] ≤ U(x) for all x in

Rd \ C.

Let D be any bounded subset of Rd. Then the Continuity Condition (3.2) holds under (a) and

(b), and there exists a distribution P satisfying (3.1) and a ρ in [0, 1) such that {Xt, t ≥ 0} verifies

the Minorization Condition of Definition 1-(iv). Under (a), (b) and (c), EPNT (D) diverges.

Assumption (c) is the so-called drift condition, see e.g. Meyn and Tweedie (1993) and Tong

(1990). The choice U(x) = ‖x‖2 yields (c) if ‖m(x)‖2 + VarP[Xt|Xt−1 = x] ≤ ‖x‖2, so that

‖m(x)‖ can behave as ‖x‖ when ‖x‖ grows, as in the case of the Random Walk. Better choices

of U(·) gives weaker restrictions on m(·), see Meyn and Tweedie (1993, Theorem 9.5.6). Meyn

and Tweedie (1993, Theorem 9.4.2) gives a converse to Proposition 1 which ensures existence

of such U(·) provided P(limT→∞NT (D) = ∞|X0 = x) = 1 for all x.

3.2. Main results A major difficulty in the study of mT (x; b̂T ) and µT (x; ĥT ) is due to the

fact that the bandwidths b̂T and b̂T are data-driven. A first step to overcome this dependence

is to show that NT (D) has a deterministic exact order which diverges, as done in Theorem 1.

Theorem 1. Let NT (D) =
∑T

t=1 I (Xt−1 ∈ D). Then, for each P in PD(L, s), there exists a

deterministic diverging sequence nT = nT (P) which gives the exact order of NT (D) in probability

uniformly over PD(L, s), i.e.

lim
T,z→+∞

inf
P∈P(L,σ)

P
(

nT (P)
z

≤ NT (D) ≤ nT (P)z
)

= 1.

Theorem 1 is a uniform version of Theorem 2.1 in Chen (1999b), and is proven using the splitting

technique. The next two results build on Theorem 1 to bound the stochastic fluctuations of b̂T

and ĥT , which gives the rate-consistency of mT (x; b̂T ) and µT (x; ĥT ).
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Theorem 2. Let mT (x; b), b̂T = b̂T (x;L, σ) and RT = RT (x;L, σ) be as in (2.1), (2.3) and

(2.4). Then, for any x in D, RT

(
mT (x; b̂T )−m(x)

)
is bounded in probability uniformly over

PD(L, σ), i.e.

lim
T,z→+∞

sup
P∈PD(L,σ)

P
(
RT

∥∥∥mT (x; b̂T )−m(x)
∥∥∥ ≥ z

)
= 0 for any x in D.

Theorem 3. Assume that the kernel function K(·) satisfies Assumption K. Let µT (x;h) =

µT (x;h, K), ĥT = ĥT (x;L, σ, κ0,K) and RT (K) = RT (x;L, σ, κ0,K) be as in (2.5), (2.7) and

(2.8). Then, for any x in D, RT (K)
(
µT (x; ĥT )−m(x)

)
is bounded in probability uniformly

over PD(L, σ), and the random rates RT and RT (K) are of the same order i.e.

lim
T,z→+∞

sup
P∈PD(L,σ)

P
(
RT (K)

∥∥∥µT (x; ĥT )−m(x)
∥∥∥ ≥ z

)
= 0(3.4)

and
κ1

2
√

2
RT ≤ RT (K) ≤

√
κ0RT for any x in D.(3.5)

At the difference of Theorem 1, the proofs of Theorems 2 and 3 avoid using a splitting argument,

which may forbid extension to continuous-time processes or random fields. The proofs of The-

orems 2 and 3 build instead on results from Orey (1959) used in Yakowitz (1993). A first step

notes that mT (x; b̂T ) averages over values of Xt−1 in D for b̂T small enough. Hence the proof of

Theorems 2 and 3 rely on the so-called “process on D” of Orey (1959) given by the successive

values of {Xt−1, t ≥ 1} in D. As recalled in Lemma A.1 in Appendix A, the process on D is

Φ-mixing with exponential decay. This allows to find the exact order of the bandwidth b̂T when

the bound for NT (D) in Theorem 1 holds. This gives the order of RT = 1/(Lb̂T ) which is used

to bound the stochastic error term of mT (x; b̂T )−m(x) using a maximal inequality, leading to

Theorem 2. Theorem 3 is proven similarly using the restrictions in (2.7) for ĥT . Compared to

Karlsen and Tjøstheim (2001), Theorems 2 and 3 do not restrict the dynamics of the time series

to β-null recurrence and avoid technical smoothness conditions on its invariant measure.

Achieving uniform results in Theorems 1 to 3 necessitates the uniform Recurrence Condi-

tion (3.3) over the class PD(L, σ), together with (3.1) which bounds from below the transition

probability of Xt given Xt−d in Definition 1-(iv). Without these restrictions the lagged process

{Xt−1, t ≥ 1} may not visit the vicinity of some x in D, so that it can be conjectured that consis-

tent estimators of m(x) do not exist. Under these conditions, the rate RT diverges in probability

with the sample size, showing that mT (x; b̂T ) and µT (x; ĥT ) are consistent estimators of m(x).

However RT can diverge slowly, with an order ranging from 1 to
√

T as seen from (2.4). Section

4 shows that all these orders can be achieved.
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In view of the bound (3.5) in Theorem 3, mT (x; b̂T ) and µT (x; ĥT ) converge to m(x) with

the same rate RT . But the upper bound RT (K) ≤ √
κ0RT in (3.5) suggests that it can be an

artifact due to choice of the set HT = HT (κ0) of admissible bandwidths in (2.7), since taking

κ0 = +∞ may give a better kernel estimator. This raises the issue of the rate optimality, i.e. of

the existence of estimator converging to m(x) faster than RT . The two next results show that

RT is the minimax optimal random estimation rate of m(x) over PD(L, σ). Theorem 4 below

adopts a local minimax framework. Define, for any P0 in PD(L, σ), x in D and ε > 0,

Vx(P0; ε) = {P ∈ PD(L, σ); ‖m(x)−m0(x)‖ ≤ ε} ,

where m(·) = EP[Xt|Xt−1 = ·] and m0(·) = EP0 [Xt|Xt−1 = ·]. Theorem 4 and Corollary 1 are

stated for univariate Markov time series, but multivariate extension with higher Markov order

can be proven similarly.

Theorem 4. Let RT = RT (x;L, σ) be as in (2.4) and assume that Assumption P holds.

Consider a sequence of i.i.d. N (0, σ2) innovation terms {et, t ≥ 0}. Let P0 be the distribution

of {X0
t , t ≥ 0} with X0

0 = e0 and X0
t = m0(X0

t−1) + et, where the regression function m0(·) is

continuous over R and L/2-Lipschitz over D, with supx∈D |m0(x)| ≤ κ3 for κ3 as in Assumption

P. Assume also that there is a real continuous function U(·) ≥ 0 with lim|x|→∞ U(x) = +∞ such

that

EP0

[
U(X0

t+1)
∣∣X0

t = x
]
≤ U(x) for all x in R \ D′,(3.6)

where D′ is a finite closed interval containing D.

Then there exists a diverging sequence nT > 0 such that P0 is in PD(L, σ), and there is a

z > 0 such that, for any x in D,

lim inf
T→+∞

inf
m̂T

sup
P∈Vx(P0;ε)

P (RT ‖m̂T (x)−m(x)‖ ≥ z) > 0 for any ε > 0,

where infm̂T
is the infimum over all the possible estimators m̂T (·) using X0, . . . , XT .

The lower bound of Theorem 4 shows that RT is an optimal estimation rate in the local minimax

sense, i.e. that estimator converging to m(x) faster than RT uniformly over Vx(P0; ε) does not

exist. The Drift Condition (3.6) is in line with Proposition 1. The next Corollary shows that

RT is a global minimax estimation rate over PD(L, σ).

Corollary 1. Assume that Assumption P holds and that supT≥1(nT /T ) is small enough.

Then, for any x inD and uniformly over PD(L, σ), the fastest rate of convergence of any estimator

m̂T (x) to m(x) is RT , i.e. there is a z > 0 with

lim inf
T→+∞

inf
m̂T

sup
P∈PD(L,σ)

P (RT ‖m̂T (x)−m(x)‖ ≥ z) > 0 for all x in D.
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4. Examples of design-adaptation Finding the exact deterministic order of the random

rate RT can be useful to calibrate the sample size T to achieve a given precision for some

specific class of time series. It also illustrates how the design-adaptive approach can cope with

irregular recurrence behaviors of the observations at hand. For the sake of simplicity we consider

univariate time series {Xt, t ≥ 0} and focus on the estimation of m(0) with D = (−1, 1). We

first recall some results of Guerre (2000) for the regression model Yt = m(Xt) + et. Consider

the modified Box-Cox transformation

Hα,θ(y) = sgn(y)θ|y|α, with α, θ > 0, sgn(y) = 1 if y ≥ 0, sgn(y) = −1 if y < 0,

so that H−1
α,θ(x) = sgn(x)

(
|x|
θ

)1/α

= H1/α,θ−1/α(x) .

Guerre (2000) considered a design Xt = Hα,θ(Ut) where the Ut are i.i.d. uniform random

variables. The Xt’s have density (x/θ)1/α−1I[0,θ](x)/(αθ) which is ill-conditioned at 0, that is can

vanish or diverge, except for α = 1. Standard nonparametric methods are usually limited to α =

1, see e.g. Stone (1980), while the design-adaptive approach deals with all values of the unknown

α. Both the expression of Hα,θ(·) and of the design density are helpful to understand how α

and θ affect the design repartition in the vicinity of 0. Indeed, for x ∈ D, limα→+∞Hα,θ(x) = 0

while limα→0 Hα,θ(x) = θsgn(x). Therefore {Xt, t ≥ 0} visits small neighborhoods of 0 more

frequently for large α and small θ. The counterpart of the random rate RT in Guerre (2000) is

equivalent to (L2/(σ2θ1/α))α/(2α+1)Tα/(2α+1)/L in probability. These deterministic rates range

from 1 for α = 0 to
√

T for α = +∞, the rate 1 being achieved with the constant design Xt = 1

while
√

T corresponds to Xt = 0 for all t. For α = 1, the order of RT is T 1/3, the usual minimax

rate for Lipschitz regression functions, see Stone (1980) among others.

Let us now return to the time series context. Such results carry over to transformations

of weak dependent Markov time series and we consider now the case of transformations of a

Gaussian Random Walk. As shown below, the Gaussian Random Walk is more spread out than

a weak dependent process so that slower rates will be achieved. Set

Yt = Yt−1 + gt with Y0 = g0, so that Yt =
∑t

i=0 gi, where the gt’s are i.i.d. N (0, 1),

Xt = Hα,θ(Yt) for t ≥ 0.(4.1)

Because Hα,θ(·) is one to one, {Xt = Hα,θ(Yt), t ≥ 0} is also a Markov process. Since

Xt = Hα,θ(Yt) = Hα,θ

(
H1/α,θ−1/α(Xt−1) + gt

)
= Hα,θ (gt) +

∫ Xt−1

0

H ′
α,θ

(
H1/α,θ−1/α(z) + gt

)
H ′

1/α,θ−1/α(z)dz ,
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with EHα,θ(gt) = 0, we have

m(x) = EP[Xt|Xt−1 = x] = E
[
Hα,θ

(
H1/α,θ−1/α(x) + gt

)]
=
∫ x

0

H ′
1/α,θ−1/α(z)E

[
H ′

α,θ

(
H1/α,θ−1/α(z) + gt

)]
dz so that

m′(x) = H ′
1/α,θ−1/α(x)E

[
H ′

α,θ

(
H1/α,θ−1/α(x) + gt

)]
,

which gives supx∈D |m′(x)| < ∞ for α ≤ 1, and,

sup
x∈D

EP[|et|2p|Xt−1 = x] ≤ 22p−1

(
sup
x∈D

EP[|Xt|2p|Xt−1 = x] + sup
x∈D

|m(x)|2p

)
< ∞ ,

for any p ≥ 1, where et is the innovation term Xt−m(Xt−1). Therefore, for α ≤ 1, the time series

{Xt, t ≥ 0} satisfies Conditions (ii) and (iii) of Definition 1 for some L and σ depending upon

α and θ. The parameters α and θ drive the recurrence of the transformed process {Xt, t ≥ 1}
as seen from its invariant measure. The Gaussian Random Walk {Yt, t ≥ 0} is a null-recurrent

process with the Lebesgue measure as invariant measure, so that {Xt = Hα,θ(Yt), t ≥ 0} is

also null-recurrent with invariant measure (x/θ)1/α−1dx/(αθ), which parallels the density of

the design Hα,θ(Ut) of Guerre (2000). The invariant density diverges at 0 for α > 1, indicating

clustering at 0, while its vanishes for α < 1. This contrasts with the rate of EPNT (D), which is
√

T for all α, θ. Indeed, since the Yt−1’s are N (0, t), the expression of Hα,θ(·) yields

EPNT (D) =
T∑

t=1

P
(
|Yt−1| ≤

1
θ1/α

)
=

T∑
t=1

P
(
|N (0, 1)| ≤ 1

θ1/α
√

t

)

∼
T∑

t=1

2√
2πθ1/α

√
t
∼ 4

√
T√

2πθ1/α
.

The order
√

T is smaller than the order T achieved by the number of visits of weak dependent

Markov processes. A more precise asymptotic study of RT and NT (D) necessitates to introduce

the local time {λ(w, s), w ∈ R, s ∈ R+} of a standard Brownian Motion {W (s), s ∈ R+}. The

local time is the density function of the occupation time
∫ t

0
I(W (s) ∈ A)ds with respect to

Lebesgue measure, i.e. ∫
I(w ∈ A)λ(w, t)dw =

∫ t

0

I(W (s) ∈ A)ds ,

see Revuz and Yor (1991) for a more detailed exposition. In particular, λ(0, 1) has the distribu-

tion of the absolute value of a standard normal variables.

Proposition 2. Let {Xt, t ≥ 0} be as in (4.1), with α, θ > 0, x = 0 and D = (−1, 1).

Define RT = RT (0;L, σ) as in (2.4). Then, for any L, σ > 0,
(
T−1/2NT (D) , T−α/(4α+2)RT

)
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converges in distribution to(
2λ(0, 1)

θ1/α
,

1
L

(
2L2λ(0, 1)

σ2θ1/α

)α/(2α+1)
)

.

Compared with the weak dependence case, the order of RT now increases from 1 to T 1/4 with an

upper bound T 1/4 given by the order of N
1/2
T (D). Combining Proposition 2 and Theorems 2 and

3 give, for α ≤ 1, new deterministic minimax rates Tα/(4α+2) for the estimation of the regression

function m(0) over vicinities V0(P; ε) of the model (4.1). In the regular case α = 1, the exact

order of RT is T 1/6 which is slower than the rate T 1/3 achieved for weak dependent processes

due to a lower recurrence rate
√

T for NT (D) in place of T . An estimation procedure in the

spirit of Delattre et al. (2002), or a bias-variance tradeoff based on the asymptotic expansions

of Karlsen and Tjøstheim (2001), give estimators which also achieved this optimal rate.

However, such procedures would be less efficient than the design-adaptive approach if α 6= 1.

From a heuristical viewpoint, these procedures parallel standard bias variance analysis, viewing

NT (D), instead of the sample size, as the relevant number of observations to estimate m(0).

See also Spokoiny (2000) who imposes a condition corresponding to the ergodic case. According

to such analogy, the order of the stochastic term is 1/(NT (D)b)1/2 with a bias bounded by b

time a constant. Balancing this two terms suggests a bandwidth of order N
−1/3
T (D) in place

of the usual T−1/3 order for estimating Lipschitz functions. But the proof of Proposition 2

shows that the order of the stochastic error of mT (x; b) is 1/(NT (D)b1/α)1/2 for small b, as seen

from (B.2.3) in Appendix B, instead of 1/(NT (D)b)1/2. It follows that a bandwidth of order

N
−1/3
T (D) ∼P T−1/6 gives a rate min((T 1/2T−1/6α)1/2, T 1/6)) ∼ T (3α−1)/12α for α ≤ 1, which

is, for α < 1, smaller than the rate Tα/(4α+2) of the design-adaptive approach. The superiority

of the design-adaptive approach comes from the empirical bias-variance tradeoff leading to the

choice (2.3) of b̂T , while its competitors use a more theoretical bias-variance tradeoff which is

not appropriate for the range α < 1 of transformations of the Random Walk. Note that the

gain can be important since a bandwidth of order N
−1/3
T (D) give an estimator which is not

consistent if α < 1/3, showing the interest of design-adaptation which can automatically cope

with irregular local recurrence behaviors of the sample.

Appendix A: Proofs of main results.

A.1. Additional notations and conventions Let {τi, i ≥ 1} be the successive epochs where the

process {Xt−1, t ≥ 1} visits D, i.e.

τ1 = inf {t ≥ 1, Xt−1 ∈ D} , . . . , τk+1 = inf {t > τk; Xt−1 ∈ D} ,
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and let xi−1 = Xτi−1 be the associated values of the process, the so-called “process on D” in the Orey

(1959) terminology, which is also an homogeneous Markov process. Define ηi = eτi , and let Fi be the

Borel field generated by xi−1, ηi−1, . . . , x0, η0. Set

ηi(j) =< ηi, vj > , ωi(j) = η2
i (j)− EP[η

2
i (j)|Fi] , ζi(j) = ω2

i (j)− EP[ω
2
i (j)|Fi] .(A.1.1)

Let {Φk, k ≥ 0} be the Φ-mixing coefficients of the Markov process {xi, i ≥ 0}, i.e.

Φk = Φk(P) = sup
n≥0

sup
A with P(xn∈A)>0,B

|P (xn+k ∈ B|xn ∈ A)− P (xn+k ∈ B)| .

Consider now the estimation procedure. We aim to give, as far as possible, a unified treatment for

mT (x; b) and µT (x; h) which coincide if K(z) = I(z ≤ 1). For A ⊂ R, define

K2
A(xi−1) = K2

A(xi−1; x) = −
∫ 1

0

I
(
‖xi−1 − x‖

z
∈ A

)
dK2(z)

where the negative differential term dK2(z) is minus the Dirac mass at 1 if K(z) = I(z ≤ 1),

in which case KA(xi−1) = I(‖xi−1 − x‖ ∈ A). Note that K2(‖xi−1 − x‖/h) = K2
(−∞,h](xi−1) =

−
∫ 1

0
I (‖xi−1 − x‖ ≤ zh) dK2(z), which increases with h under Assumption K. Since x is in D which is

open, the regression estimators mT (x; b̂T ), µT (x; ĥ0T ) and mT (x; ĥT ) averages over the Xt−1’s in D,

that is over the xi−1’s, when b̂T , ĥ0T and ĥT are small enough. We therefore introduce some counter-

parts for NT (h; K), the stochastic errors of mT (x; b) and µT (x; h), b̂T , and ĥ0T defined with respect

to {xi, i ≥ 0}. For β ∈ R and A ⊂ R, define

νn(β) = νn(β; x, K) =

n∑
i=1

K2

(
‖xi−1 − x‖

β

)
, νn(A) =

n∑
i=1

K2
A (‖xi−1 − x‖) ,

noticing that νn((−∞, β]) = νn(β). Observe that NT (β; K) = νNT (D)(β) for β small enough. The

counterpart of the stochastic term is Σn(β)/νn(β) with

Σn(β) = Σn(β; x, K) =

n∑
i=1

K

(
‖xi−1 − x‖

β

)
ηi .(A.1.2)

The counterpart of the bandwidths b̂T and ĥ0T is

β̂n = β̂n(x; L, σ, K) = arg min
β≥0

max

(
Lβ,

σ√
νn(β)

)
= min

{
β ≥ 0; L2β2νn(β) ≥ σ2} ,(A.1.3)

using the same convention than in (2.3). It is easily seen that β̂n, as b̂T , decreases with the sample

size under Assumption K or if K(z) = I(z ≤ 1), see e.g. Lemma A.2-(i) for a proof of a similar

statement. The definitions (2.3) and (2.6) of b̂T and ĥ0T yields that b̂T = β̂NT (D) if K(z) = I(z ≤ 0)

and ĥ0T = β̂NT (D) as soon as β̂NT (D), or b̂T and ĥ0T , are small enough.

We now introduce some deterministic counterparts for νn(·) and β̂n. Define, for β ≥ 0 and A ⊂ R

Fi(β) = Fi(β; x, P, K) = EPK
2

(
‖xi−1 − x‖

β

)
= −

∫ 1

0

P (‖xi−1 − x‖ ≤ zβ) dK2(z) ,(A.1.4)

F n(β) =
1

n

n∑
i=1

Fi(β) = EP[νn(β)/n] , Fi(A) = EPK
2
A(xi−1) , F n(A) =

1

n

n∑
i=1

Fi(A) .(A.1.5)
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Under Assumption K or if K(z) = I(z ≤ 1), Fi(·) and F n(·) are cumulative distribution functions.

With the same convention as in (A.1.3), set

βn = βn(x, L, σ, P, K) = min
{
β ≥ 0; L2nβ2F n(β; P, x) ≥ σ2} ,(A.1.6)

In what follows, [z] is the integer part of z ∈ R and, Ci, C or C′ stand for constants which does not

depend upon P in PD(L, σ). The constant C or C′ may vary from line to line.

A.2. Intermediate results We begin with a lemma for the process on D.

Lemma A.1. Assume that K(z) = I(z ≤ 1) or satisfies Assumption K. Let {Fi(·) = Fi(·; x, P, K), i ≥
1} and {F n(·) = F n(·; x, P, K), n ≥ 1} be as in (A.1.4)-(A.1.5). For any distribution P in PD(L, σ),

we have:

i. For any j ≥ 1, the sequences {ηi(j), i ≥ 1}, {ωi(j), i ≥ 1} and {ζi(j), i ≥ 1} defined in (A.1.1)

are Fi centered martingale differences, with

EP[η
2
i (j)|Fi] ≤ σ2

j , EP[ω
2
i (j)|Fi] ≤ κ4

2σ
4
j and EP[ζ

2
i (j)|Fi] ≤ 8κ8

2σ
8
j .

ii. The Φ-mixing coefficients of {xi, i ≥ 0} are such that Φk(P) ≤ 2ρk for all k ≥ 0.

iii. For any x in D, the Fi(·)’s are continuous, have a limit F (·) = F (·; x, P, K) when i grows which

is such that F (β) ≥ (ρd − 1)
∫ 1

0
F (βz)dK2(z). The F n(·)’s are continuous with F n(β) > 0 for all

β > 0 and n ≥ d + 1. Moreover

sup
β≥0

|Fi(β)− F (β)| ≤ ρi−1 and sup
β≥0

|F n(β; P, x)− F (β; P, x)| ≤ 1

n(1− ρ)
.

iv. There exists a constant C1 = C1(ρ, κ2, K(·)) > 0 such that, for any 1 ≤ n1 < n2 and any A ⊂ R,

VarP

(
n2∑

i=n1+1

K2
A(xi−1)

)
≤
(

1 +
4ρ

1− ρ

)(
n2F n2(A)− n1F n1(A)

)
,(A.2.1)

E1/3
P

∣∣∣∣∣
n2∑

i=n1+1

K2
A(xi−1)

∣∣∣∣∣
3

≤ C1

((
1 + n2F n2(A)− n1F n1(A)

)3 − 1
)1/3

,(A.2.2)

E
1
6
P

∥∥∥∥∥
n2∑

i=n1+1

KA(xi−1)ηi

∥∥∥∥∥
6

≤ C1σ
((

1 + n2F n2(A)− n1F n1(A)
)3 − 1

) 1
6

.(A.2.3)

Proof of Lemma A.1 : (i) follows from Definition 1-(iii), the Strong Markov Property, EP[ω
2
i (j)|Fi] ≤

EP[η
4
i (j)|Fi], EP[ζ

2
i (j)|Fi] ≤ EP[ω

4
i (j)|Fi] ≤ EP[η

8
i (j)|Fi] + 6EP[η

4
i (j)|Fi]E2

P[η
2
i (j)|Fi] + E4

P[η
2
i (j)|Fi].

(ii) and (iii). Take x = 0 ∈ D without loss of generality, and let x denote now a variable. Set

P (x, A) = P(X1 ∈ A|X0 = x), PD(x, A) = P(x1 ∈ A|x0 = x). We have, for all A ⊂ D,

PD(x, A) = P (x, A) +

∫
X\D

P (x, dx1)P (x1, A) +

∫
X\D

∫
X\D

P (x, dx1)P (x1, dx2)P (x2, A) + · · ·

≥ P (x, A) ,
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which implies PD(x, dy) ≥ P (x, dy) for (almost) all x, y in D. Hence

P(xi+d ∈ A|xi = x) =

∫
PD(xd−1, A)PD(xd−2, dxd−1)× · · · × PD(x, dx1) ≥ P (Xt+d ∈ A |Xt = x ) ,

and then, by Definition 1-(iv)

P(xi+d ∈ A|xi = x) ≥ (1− ρd)P (A) for any A ⊂ D and x ∈ D.(A.2.4)

This implies by Theorem 16.2.4 of Meyn and Tweedie (1993) that {xi, i ≥ 0} has an invariant distri-

bution πD(·) with

sup
A,x∈D

|P(xi−1 ∈ A|x0 = x)− πD(A)| ≤ ρi−1 .(A.2.5)

This gives, for all A with P(xn ∈ A) > 0,

|P(xn+k ∈ B|xn ∈ A)− P(xn+k ∈ B)|

≤ |P(xn+k ∈ B|xn ∈ A)− πD(xn+k ∈ B)|+ |P(xn+k ∈ B)− πD(xn+k ∈ B)|

=
1

P(xn ∈ A)

∣∣∣∣∫
x∈A

(P(xn+k ∈ B|xn = x)− πD(xn+k ∈ B)) P(xn ∈ dx)

∣∣∣∣
+

∣∣∣∣∫
x∈D

(P(xn+k ∈ B|xn = x)− πD(xn+k ∈ B)) P(xn ∈ dx)

∣∣∣∣ ≤ 2ρk ,

and then Φk ≤ 2ρk. Set pi(β) = P(‖xi−1‖ ≤ β), pn(β) =
∑n

i=1 pi(β)/n and p(β) = πD(‖xi−1‖ ≤ β),

so that Fi(β) = −
∫ 1

0
pi(zβ)dK2(z) and F n(β) = −

∫ 1

0
pn(zβ)dK2(z) by (A.1.4). We have p(β) =∫

D P(‖xi+d‖ ≤ β|xi = x)πD(dx) ≥ (1 − ρd)P (‖xi‖ ≤ β) ≥ (1 − ρd)F (β) by (A.2.4) and (3.1), which

gives F (β) = −
∫ 1

0
p(zβ)dK2(z) ≥ (ρd−1)

∫ 1

0
F (zβ)dK2(z). (3.2) yields that the pi(·)’s are continuous.

Hence the Fi(·)’s and F n(·)’s are continuous. (A.2.4) gives

pi+d+1(β) = P(‖xi+d‖ ≤ β) =

∫
D

P(‖xi+d‖ ≤ β|xi = x)P(xi ∈ dx) ≥ (1− ρd)P (‖xi+d‖ ≤ β) ,

so that pi+d+1(β) > 0 for β > 0 by (3.1). Hence Fi(β) > 0 and F n(β) > 0 for β > 0 and i, n ≥ d + 1.

(A.2.5) gives supβ≥0 |pi(β)− p(β)| ≤ ρi−1. Hence integrating with respect to dK2(z) yields

sup
β≥0

|Fi(β)− F (β)| ≤ ρi−1 , sup
β≥0

|F n(β)− F (β)| ≤ 1

n

n∑
i=1

ρi−1 ≤ 1

n(1− ρ)
.

(iv). Set yi(z) = I
(
‖xi−1‖

z
∈ A

)
and define now pi(·) as pi(z) = P(yi(z) = 1), so that

K2
A(xi−1) = −

∫ 1

0

yi(z)dK2(z) , Fi(A) = −
∫ 1

0

pi(z)dK2(z) ,

∣∣CovP
(
K2

A(xi−1), K
2
A(xj−1)

)∣∣ ≤ ∫ 1

0

∫ 1

0

∣∣CovP
(
yi(z), yj−1(z

′)
)∣∣ dK2(z)dK2(z′) ,

with VarP(yi(z)) = pi(z)(1− pi(z)) ≤ pi(z) and for i < j,∣∣CovP
(
yi(z), yj(z

′)
)∣∣ = ∣∣P(yj(z

′) = 1|yi(z) = 1)− pj(z
′)
∣∣ pi(z) ≤ Φ(j − i)pi(z) .



18 EMMANUEL GUERRE

Since −
∫ 1

0
dK2(z) = 1, it follows that

VarP

(
n2∑

i=n1+1

K2
A(xi−1)

)
≤

n2∑
i=n1+1

VarP
(
K2

A(xi−1)
)

+ 2

n2∑
i=n1+1

n2∑
j=i+1

∣∣CovP
(
K2

A(xi−1), K
2
A(xj−1)

)∣∣
≤ −

n2∑
i=n1+1

∫ 1

0

pi(z)dK2(z) + 2

n2∑
i=n1+1

∫ 1

0

∫ 1

0

pi(z)dK2(z)dK2(z′)

∞∑
k=1

Φ(k)

≤
(

1 +
4ρ

1− ρ

) n2∑
i=n1+1

Fi(A) ,

which gives (A.2.1). For (A.2.2), set I3 = {(i1, i2, i3); n1+1 ≤ i1 < i2 < i3 ≤ n2} and I2 = {(i1, i2); n1+

1 ≤ i1 < i2 ≤ n2}. This gives

EP

∣∣∣∣∣
n2∑

i=n1+1

K2
A(xi−1)

∣∣∣∣∣
3

= EP

∣∣∣∣∣
∫ 1

0

(
n2∑

i=n1+1

yi(z)

)
dK2(z)

∣∣∣∣∣
3

≤ C

[
−
∑
I3

∫
[0,1]3

EP

(
3∏

j=1

yij (zj)dK2(zj)

)

+
∑
I2

∫
[0,1]2

EP

(
2∏

j=1

yij (zj)dK2(zj)

)
−

n2∑
i=n1+1

∫ 1

0

EP (yi(z)) dK2(z)

]
.

We have, for i1 < i2 < i3,

EP(yi1(z1)yi2(z2)yi3(z3)) = P(yi3(z3) = 1|yi2(z2) = 1, yi1(z1) = 1)P(yi2(z2) = 1|yi1(z1) = 1)pi1(z1)

≤ (pi3(z3) + Φ(i3 − i2)) (pi2(z2) + Φ(i2 − i1)) pi1(z1)

= pi1(z1)pi2(z2)pi3(z3) + pi1(z1)pi2(z2)Φ(i3 − i2)

+pi1(z1)pi3(z3)Φ(i2 − i1) + pi1(z1)Φ(i3 − i2)Φ(i2 − i1) ,

EP(yi1(z1)yi2(z2)) = P(yi2(z2) = 1|yi1(z1) = 1)pi1(z1) ≤ pi2(z2)pi1(z1) + pi1(z1)Φ(i2 − i1) .

Summing gives∑
I3

pi1(z1)pi2(z2)Φ(i3 − i2) ≤ 2

n2∑
i1=n1+1

pi1(z1)

n2∑
i2=i1+1

pi2(z2)

n2∑
i3=i2+1

ρi3−i2

≤ 2ρ

1− ρ

n2∑
i=n1+1

pi(z1)

n2∑
j=i+1

pj(z2) ,

∑
I3

pi1(z1)pi3(z3)Φ(i2 − i1) ≤ 2

n2∑
i1=n1+1

pi1(z1)

n2∑
i2=i1+1

ρi2−i1

n2∑
i3=i2+1

pi3(z3)

≤ 2ρ

1− ρ

n2∑
i=n1+1

pi(z1)

n2∑
j=i+1

pj(z3) ,

∑
I3

pi1(z1)Φ(i2 − i1)Φ(i3 − i1) ≤ 4

n2∑
i1=n1+1

pi1(z1)

n2∑
i2=i1+1

ρi2−i1

n2∑
i3=i2+1

ρi3−i2

≤ 4ρ2

(1− ρ)2

n2∑
i=n1+1

pi(z1) ,
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∑
I2

pi1(z1)Φ(i2 − i1) ≤ 2

n2∑
i1=n1+1

pi1(z1)

n2∑
i2=i1+1

ρi2−i1 ≤ 2ρ

1− ρ

n2∑
i1=n1+1

pi1(z1) .

It follows that

EP

∣∣∣∣∣
n2∑

i=n1+1

K2
A(xi−1)

∣∣∣∣∣
3

≤ C

 ∑
n1+1≤i1,i2,i3≤n2

Fi1(A)Fi2(A)Fi3(A) +
∑

n1+1≤i1,i2≤n2

Fi1(A)Fi2(A) +

n2∑
i=n1+1

Fi(A)


= C

[(
n2F n2(A)− n1F n1(A)

)3
+
(
n2F n2(A)− n1F n1(A)

)2
+ n2F n2(A)− n1F n1(A)

]
≤ C

[(
1 + n2F n2(A)− n1F n1(A)

)3 − 1
]

,

which is (A.2.2). For (A.2.3), set Sj =
∑n2

i=n1+1 KA(xi−1)ηi(j), S =
∑n2

i=n1+1 KA(xi−1)ηi =
∑∞

j=1 Sjvj ,

so that we have to bound E1/6
P ‖S‖6. The triangular inequality gives

E1/6
P ‖S‖6 = E1/6

P

∥∥∥∥∥
∞∑

j=1

Sjvj

∥∥∥∥∥
6

= E1/6
P

√√√√ ∞∑
j=1

S2
j

6

≤ E1/6
P

(
∞∑

j=1

|Sj |

)6

≤
∞∑

j=1

E1/6
P S6

j ,

and we now bound the E1/6
P S6

j ’s. The Burkholder inequality (see e.g. Chow and Teicher (1998), Theorem

1 p. 396), convexity inequality, and the definition of ωi(j), ζi(j) in (A.1.1) give that there are some

constants C > 0 such that

E
1
6
P S6

j = E
1
6
P

(
n2∑

i=n1+1

KA(xi−1)ηi(j)

)6

≤ CE
1
6
P

√√√√ n2∑
i=n1+1

K2
A(xi−1)η2

i (j)

6

≤ C

[
EP

(
n2∑

i=n1+1

K2
A(xi−1)EP[η

2
i (j)|Fi]

)3

+ EP

(
n2∑

i=n1+1

K2
A(xi−1)ωi(j)

)3] 1
6

≤ C

σ6
j EP

(
n2∑

i=n1+1

K2
A(xi−1)

)3

+ EP

(
n2∑

i=n1+1

K4
A(xi−1)

(
EP[ω

2
i (j)|Fi] + ζi(j)

)) 3
2


1
6

≤ C

σ6
j EP

(
n2∑

i=n1+1

K2
A(xi−1)

)3

+ κ6
2σ

6
j EP

(
n2∑

i=n1+1

K4
A(xi−1)

) 3
2

+ EP

(
n2∑

i=n1+1

K4
A(xi−1)ζi(j)

) 3
2


1
6

≤ C

σ6
j EP

(
n2∑

i=n1+1

K2
A(xi−1)

)3

+ κ6
2σ

6
j EP

(
n2∑

i=n1+1

K4
A(xi−1)

) 3
2

+ EP

(
n2∑

i=n1+1

K8
A(xi−1)ζ

2
i (j)

) 3
4


1
6

.

Observe that 0 ≤ K2
A(·) ≤ 1 gives K2p

A (xi−1) ≤ K2
A(xi−1) for p = 2, 4, that E|Z|3/2 = E|Z|3/2I(|Z| ≤

1) + E|Z|3/2I(Z > 1) ≤ E|Z| + E|Z|3, and that E4/3|Z| ≤ E|Z| + E2|Z|. This together the Hölder

inequality yield

EP

(
n2∑

i=n1+1

K4
A(xi−1)

) 3
2

≤ EP

(
n2∑

i=n1+1

K2
A(xi−1)

)3

+

n2∑
i=n1+1

EPK
2
A(xi−1) ,
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EP

(
n2∑

i=n1+1

K8
A(xi−1)ζ

2
i (j)

) 3
4

≤ E
4
3
P

(
n2∑

i=n1+1

K8
A(xi−1)E[ζ2

i (j)|Fi]

)
≤ (8κ2σj)

6E
4
3
P

(
n2∑

i=n1+1

K2
A(xi−1)

)

≤ (8κ2σj)
6

[
EP

(
n2∑

i=n1+1

K2
A(xi−1)

)
+ E2

P

(
n2∑

i=n1+1

K2
A(xi−1)

)]
.

Substituting then gives, using (A.2.2), E1/6
P S6

j ≤ Cσj

[(
1 + n2F n2(A)− n1F n1(A)

)3 − 1
]1/6

. Summing

over j gives (A.2.3), using the bound of E1/6‖S‖6, since
∑∞

j=1 σj ≤ σ. 2

We now turn to the theoretical bandwidths of (A.1.6).

Lemma A.2. Assume that K(z) = I(z ≤ 1) or satisfies Assumption K, and let {βn =

βn(x, L, σ, P, K), n ≥ 1} be as in (A.1.6). Then

i. For any P ∈ PD(L, σ) and x ∈ D, βn decreases with n, L2nβ2
nF n(βn) = σ2 for n ≥ 1, and

nF n(βn) is increasing.

ii. There exists a positive sequence {βn = βn(L, σ, K), n ≥ 1} which does depend upon x in D and

P in PD(L, σ), such that limn→∞ βn = 0, and, for any x in D and n ≥ 1,

sup
P∈PD(L,σ)

βn ≤ βn and inf
P∈PD(L,σ)

nF n(βn) ≥ σ2

L2β
2

n

.

iii. For z0 > 1, set n1 = [n/z0] and n2 = [nz0]. Then there exists a constant C2 = C2(z0) > 0 such

that

C2

z2
0

≤ `F `(β`)

n2F n2(βn2)
=

β2
n2

β2
`

≤ 1 , ` = n1, . . . , n2 ,

for all n1 ≥ 1, P in PD(L, σ) and x in D.

Proof of Lemma A.2 : (i). Since nF n(β) = F1(β)+ · · ·+Fn(β), L2(n+1)β2F n+1(β) ≥ L2nβ2F n(β)

and then L2(n+1)β2
nF n+1(βn) ≥ σ2 by definition of βn, so that βn+1 ≤ βn by (A.1.6). The continuity

of the F n(·)’s stated in Lemma A.1-(iii) gives L2nβ2
nF n(βn) = σ2 since β ∈ R+ → L2β2F n(β)

continuously increases from 0 to infinity. It follows that nF n(βn) = σ2/(L2β2
n) decreases.

(ii). It is sufficient to prove the first inequality by (i). Set F K(β) = (ρd− 1)
∫ 1

0
F (βz)dK2(z), which

continuously increases from 0 to 1 by (3.1). Lemma A.1-(iii) gives F n(·) ≥ F K(·))− 1/n(1− ρ) for all

x in D and P in PD(L, σ). Hence L2nβ2F n(β) ≥ L2nβ2 (F K(β)− 1/n(1− ρ)). Note that there is a

βn, which does not depend on P, such that

L2nβ
2

n

(
F K(βn)− 1

n(1− ρ)

)
= σ2 .

Then βn ≤ βn for all P in PD(L, σ) since L2nβ
2

nF n(βn) ≥ σ2. That limn→∞ βn = 0 is a direct

consequence of (3.1) which givesF K(·) > 0 over R+
∗ .
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(iii). It is sufficient to bound n1F n1(βn1)/(n2F n2(βn2)) by (i), which implies that this ratio is

(βn2/βn1)
2 ≤ 1 . For the lower bound, βn1 ≥ βn2 and Lemma A.1-(iii) yield

n1F n1(βn1)

n2F n2(βn2)
≥ 1

z2
0

F n1(βn1)

F n2(βn1)
≥ 1

z2
0

F n1(βn1)

F (βn1) + 1
n2(1−ρ)

≥ 1

z2
0

F n1(βn1)

F n1(βn1) + 1
n2(1−ρ)

+ 1
n1(1−ρ)

=
1

z2
0

1−
1

1−ρ

(
1 + 1

z2
0

)
n1F n1(βn1) + 1

1−ρ

(
1 + 1

z2
0

)
 ≥ 1

z2
0

1−
1

1−ρ

(
1 + 1

z2
0

)
σ2/(L2β

2

n1
) + 1

1−ρ

(
1 + 1

z2
0

)


for all P ∈ PD(L, σ) and x ∈ D, where the last lower bound goes to 1/z2
0 when n grows. 2

The next lemma shows in particular that β̂n/βn goes to 1 in probability.

Lemma A.3. Assume that K(z) = I(z ≤ 1) or satisfies Assumption K, and let {βn =

βn(x, L, σ, P, K), n ≥ 1} be as in (A.1.6) and {β̂n = β̂n(x, L, σ, K), n ≥ 1} as in (A.1.3). Define

n1, n2 as in Lemma A.2, with n1 = [n/z0] and n2 = [nz0] for some z0 > 1. Consider the event

E1n(ε) =

{
(1− ε)β` < β̂` ≤ (1 + ε)β`,

`F `(β`)

(1 + ε)2
≤ ν`(β̂`) ≤

`F `(β`)

(1− ε)2
for ` = n1, . . . , n2

}
.

Then, for any x in D, limn→∞ infP∈PD(L,σ) P (E1n(ε)) = 1 for all ε in (0, 1).

Proof of Lemma A.3 : For brevity, assume x = 0 ∈ D. Consider the event

E1n(δ) =

{
1− δ ≤ L2β2

` ν`(β`)

L2`β2
` F `(β`)

≤ 1 + δ , ` = n1, . . . , n2

}
, δ > 0.

Since β` decreases and L2β2
` `F `(β`) = σ2 by Lemma A.2-(i), we have

L2β2
` ν`(β`)

L2`β2
` F `(β`)

≥
L2β2

n2ν`(βn2)

L2`β2
` F `(β`)

≥
L2β2

n2νn1(βn2)

L2`β2
` F `(β`)

=
L2β2

n2νn1(βn2)

L2n2β2
n2F n2(βn2)

=
νn1(βn2)

n2F n2(βn2)
,

L2β2
` ν`(β`)

L2`β2
` F `(β`)

≤
L2β2

n1ν`(βn1)

L2`β2
` F `(β`)

≤
L2β2

n1νn2(βn1)

L2`β2
` F `(β`)

=
L2β2

n1νn2(βn1)

L2n1β2
n1F n1(βn1)

=
νn2(βn1)

n1F n1(βn1)
.

Let Ec
1n(δ) be the event “E1n(δ) is false”. The upper and lower bounds above, the Markov inequality,

(A.2.1) in Lemma A.1, and Lemmas A.1-(iii) and A.2-(i,ii) give

P(Ec
1n) ≤ P

(
νn2(βn1)

n1F n1(βn1)
− 1 ≥ δ

)
+ P

(
νn1(βn2)

n2F n2(βn2)
− 1 ≤ −δ

)

≤ 1

δ2

(
VarP (νn2(βn1))(
n1F n1(βn1)

)2 +
VarP (νn1(βn2))(
n2F n2(βn2)

)2
)

,

with
VarP (νn1(βn2))(
n2F n2(βn2)

)2 ≤ C
n1F n1(βn2)(
n2F n2(βn2)

)2 ≤ C

n2F n2(βn2)
≤ Cβ

2

n2
,

VarP (νn2(βn1))(
n1F n1(βn1)

)2 ≤ C
n2F n2(βn1)(
n1F n1(βn1)

)2 ≤ C
n1F n1(βn1) + n2

1−ρ

(
1

n1
+ 1

n2

)
(
n1F n1(βn1)

)2 ≤ C

n1F n1(βn1)
≤ Cβ

2

n1
.

Hence limn→+∞ infP∈PD(L,σ) P (E1n(δ)) = 1 for any δ > 0. Consider now the event

E2n(ε) = {(1− ε)β` < β̂` ≤ (1 + ε)β`, ` = n1, . . . , n2} , 0 < ε < 1 .
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(A.1.3) gives, since ν`(β) increases with β and σ2 = L2β2
` `F `(β`),

E2n(ε) =
{
L2(1− ε)2β2

` ν` ((1− ε)β`) < σ2, L2(1 + ε)2β2
` ν` ((1 + ε)β`) ≥ σ2, ` ∈ [n1, n2]

}
⊃
{
L2(1− ε)2β2

` ν` (β`) < σ2, L2(1 + ε)2β2
` ν` (β`) ≥ σ2, ` ∈ [n1, n2]

}
=

{
1

(1 + ε)2
≤ L2β2

` ν`(β`)

L2β2
` `F `(β`)

<
1

(1− ε)2
, ` ∈ [n1, n2]

}
⊃ E1n(δ)

for some δ ∈ (0, 1). Hence limn→∞ infP∈PD(L,σ) P(E2n(ε)) = 1. The definition (A.1.3) of β̂` gives

ν`(β̂`) ≥
σ2

L2β̂2
`

≥ σ2

L2(1 + ε)2β2
`

=
`F `(β`)

(1 + ε)2
, ` = n1, . . . , n2 on E2n(ε).

For the upper bound of ν`(β̂`), note that (3.2) implies that there is no ties among the xi’s P-almost

surely. Consequently, there is a β < β̂` close enough to β̂` such that ν`(β) = ν`(β̂`) − 1 and with

L2β2
(
ν`(β̂`)− 1

)
< σ2. Taking β → β̂` in this inequality gives, on E2n(ε),

νn(β̂`) ≤
σ2

L2β̂2
`

+ 1 ≤ σ2

L2(1− ε)2β2
`

+ 1 =
`F `(β`)

(1− ε)2
+ 1 , ` = n1, . . . , n2 on E2n(ε).

This ends the proof of the Lemma since infP∈PD(L,σ) infn1≤`≤n2 `F `(β`) → +∞ by Lemma A.2-(ii). 2

Lemma A.4. Assume that K(z) = I(z ≤ 1) or satisfies Assumption K, and consider {βn =

βn(x, L, σ, P, K), n ≥ 1}, {β̂n = β̂n(x, L, σ, K), n ≥ 1} as in (A.1.6), (A.1.3). Let n1, n2 be as in

Lemma A.2, with n1 = [n/z0] and n2 = [nz0] for some z0 > 1, and consider a random measurable

sequence {γ̂n, n ≥ 1} such that there is a κ5 > 1, with for all x in D,

lim
n→+∞

inf
P∈PD(L,σ)

P

(
ν`(β̂`)

κ5
≤ ν`(γ̂`) ≤ κ5ν`(β̂`) for all ` = n1, . . . , n2

)
= 1 .(A.2.6)

Then there exists some deterministic sequences {β1n, n ≥ 1}, {β2n, n ≥ 1}, which depend upon z0, P, x

in D, L and σ2, such that, for

nrn = n2F n2(βn2) = σ2/(L2β2
n2) ≥ σ2/(L2β

2

n) ,

we have

lim
n→+∞

inf
P∈PD(L,σ)

P (β1n ≤ γ̂` ≤ β2n for all ` = n1, . . . , n2) = 1 ,(A.2.7)

lim
n,z→+∞

inf
P∈PD(L,σ)

P
(

1

z
≤ ν`(γ̂`)

nrn
≤ z for all ` = n1, . . . , n2

)
= 1 ,(A.2.8)

1

C4
≤ `F `(β)

nrn
≤ C4 for all β ∈ [β1n, β2n] and ` ∈ [n1, n2],(A.2.9)

for n1 ≥ 1, and where βn is as in Lemma A.2-(ii), with a constant C4 = C4(z0, κ5, L, σ) > 1.

Proof of Lemma A.4 : recall that infP∈PD(L,σ) nrn diverges when n grows. Let C2 = C2(z0) with

C2/z2
0 ≤ 1 be as in Lemma A.2-(iii). The continuity of the F`(·)’s from Lemma A.1-(iii) and n1F n1(·) ≤

n2F n2(·) give that there are β1n ≤ β2n with

n2F n2(β1n) =
C2

κ5z2
0

nrn

3
and n1F n1(β2n) = 3κ5nrn .
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It follows that (A.2.9) holds by definition of rn and Lemma A.1-(iii) which gives for some C4

`F `(β) ≥ n1F n1(β1n) ≥ n1F n2(β1n)− n1

1− ρ

(
1

n1
+

1

n2

)
=

C2(1 + o(1))

3κ5z4
0

nrn

3
− n1

1− ρ

(
1

n1
+

1

n2

)
≥ nrn

C4
,

`F `(β) ≤ n2F n2(β2n) ≤ n2F n1(β2n) +
n2

1− ρ

(
1

n1
+

1

n2

)
= 3z2

0κ5(1 + o(1))nrn +
n2

1− ρ

(
1

n1
+

1

n2

)
≤ C4nrn.

(A.2.8) follows from (A.2.6), definition of rn, Lemmas A.3 and A.2-(iii). (A.2.7) holds if

lim
n→+∞

inf
P∈PD(L,σ)

P (ν`(β1n) + 1 < ν`(γ̂`) < ν`(β2n)− 1 for all ` ∈ [n1, n2]) = 1 .

But (A.2.6), Lemmas A.3 and A.2-(iii,ii) show that

lim
n→+∞

inf
P∈PD(L,σ)

P
(

C2nrn/(2z2
0)− 1

κ5
≤ ν`(γ̂`) ≤ 2κ5nrn for all ` ∈ [n1, n2]

)
= 1 .

Therefore, since ν`(β1n) ≤ νn2(β1n) and ν`(β2n) ≥ νn1(β2n), it is sufficient to show that

lim
n→+∞

inf
P∈PD(L,σ)

P

νn2(β1n) + 1 <
C2rn/(2z2

0)− 1

κ5
, 2κ5rn < νn1(β2n)− 1 for ` ∈ [n1, n2]

 = 1 .

But the definition of β1n and β2n and Lemma A.1-(A.2.1) yield

EPνn2(β1n) =
C2

κ5z2
0

nrn

3
with VarP (νn2(β1n)) ≤

(
1 +

4ρ

1− ρ

)
C2

κ5z2
0

nrn

3
,

EPνn1(β2n) = 3κ5nrn with VarP (νn1(β2n)) ≤ 3κ5

(
1 +

4ρ

1− ρ

)
nrn ,

with nrn ≥ σ2/(L2β
2

n) for all P ∈ PD(L, σ), so that the Markov inequality shows that the latter limit

holds. It follows that (A.2.7) is true. 2

The next lemma is used for the stochastic error terms of the nonparametric regression estimators.

Lemma A.5. Take K(z) = I(z ≤ 1) or assume that Assumption K holds. Let n1, n2 be as in

Lemma A.2, with n1 = [n/z0] and n2 = [nz0] for some z0 > 1. Consider a random measurable sequence

{γ̂n, n ≥ 1} satisfying the condition (A.2.6) of Lemma A.4. Then, for any x in D,

lim
n,z→+∞

sup
P∈PD(L,σ)

P

(
max

n1≤`≤n2

∥∥∥∥∥ Σ`(γ̂`)

ν
1/2
` (γ̂`)

∥∥∥∥∥ ≥ z

)
= 0 .

Proof of Lemma A.5 : Assume x = 0 ∈ D for brevity. By Lemma A.4-(A.2.8), it is sufficient to prove

lim
n,z→+∞

sup
P∈PD(L,σ)

P
(

max
n1≤`≤n2

∥∥∥∥Σ`(γ̂`)√
nrn

∥∥∥∥ ≥ z

)
= 0 .
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Let β1n and β2n be as in Lemma A.4. Define, for λ = (λ1, λ2) in [0, 1]2,

βn(λ1) = β1n + λ1(β2n − β1n) , n(λ2) = n1 + (n2 − n1)λ2 , Sn(λ) =
1√
nrn

∑
1≤i≤n(λ2)

K

(
‖xi−1‖
βn(λ1)

)
ηi.

(A.2.7) and the Markov inequality show that the Lemma is proven if

sup
P∈PD(L,σ)

E1/6
P max

λ∈[0,1]2
‖Sn(λ)‖6 ≤ C .(A.2.10)

The proof of (A.2.10) builds on a maximal inequality given in van der Vaart and Wellner (1996,

Corollary 2.2.5). A first step is to bound the increments of ‖Sn(·)‖. We have, for any λ, λ′ in [0, 1]2,

E1/6
P
∣∣‖Sn(λ)‖ −

∥∥Sn(λ′)
∥∥∣∣6 ≤ E1/6

P
∥∥Sn(λ1, λ2)− Sn(λ′1, λ2)

∥∥6
+ E1/6

P
∥∥Sn(λ′1, λ2)− Sn(λ′1, λ

′
2)
∥∥6

.

The bound (A.2.3) of Lemma A.1-(iv) yields for the first item, assuming λ1 < λ′1

E1/6
P
∥∥Sn(λ1, λ2)− Sn(λ′1, λ2)

∥∥6
=

1√
nrn

E1/6
P

∥∥∥∥∥∥
∑

1≤i≤n(λ2)

K(βn(λ1),βn(λ′1)] (xi−1) ηi

∥∥∥∥∥∥
6

≤
C
[(

1 + n2

(
F n2(βn(λ1))− F n2(βn(λ′1))

))3 − 1
]1/6

√
nrn

= Cd1n(λ1, λ
′
1) ,(A.2.11)

For the increment with respect to λ2, (A.2.3) yields, for λ2 ≤ λ′2,

E1/6
P
∥∥Sn(λ′1, λ2)− Sn(λ′1, λ

′
2)
∥∥6

=
1√
nrn

E1/6
P

∥∥∥∥∥∥
∑

n(λ2)<i≤n(λ′2)

K

(
‖xi−1‖
βn(λ′1)

)
ηi

∥∥∥∥∥∥
6

≤
C′
[(

1 +
∑

n(λ2)<i≤n(λ′2) Fi(βn(λ′1))
)3

− 1

]1/6

√
nrn

≤
C′
[(

1 +
∑

n(λ2)<i≤n(λ′2) Fi(β2n)
)3

− 1

]1/6

√
nrn

.

Now, Lemma A.1-(iii), the definition of rn together with Lemma A.2-(ii), give∑
n(λ2)<i≤n(λ′2)

Fi(β2n) ≤
∑

n(λ2)<i≤n(λ′2)

(
F n2(β2n) +

1

n1(1− ρ)
+ ρn1−1

)
≤ Cnrn|λ2 − λ′2| ,

and then,

EP
∥∥Sn(λ′1, λ2)− Sn(λ′1, λ

′
2)
∥∥6 ≤ Cd2n(λ2, λ

′
2) = C

[
(1 + nrn|λ2 − λ′2|)

3 − 1
]1/6

√
nrn

.(A.2.12)

Substituting (A.2.11)-(A.2.12) into the bound for E1/6
P ‖Sn(λ)− Sn(λ′)‖6 yields

E1/6
P ‖Sn(λ)− Sn(λ′)‖6 ≤ Cdn(λ, λ′) where dn(λ, λ′) = d1n(λ1, λ

′
1) + d2n(λ2, λ

′
2) .

Note that dn(·, ·) is a semimetric on [0, 1]2. We now bound the covering numbers of [0, 1]2 with respect

to dn(·, ·). Observe that d1n(λ1, λ
′
1) ≤ ε and d2n(λ2, λ

′
2) ≤ ε are equivalent to, by (A.2.11)-(A.2.12),

n2

∣∣F n2 (βn(λ1))− F n2 (βn(λ′1))
∣∣

nrn
≤
(
(nrn)3ε6 + 1

)1/3 − 1

nrn
≤ ε2 ,

|λ2 − λ′2| ≤
(
(nrn)3ε6 + 1

)1/3 − 1

nrn
≤ ε2 .
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F n2(·) is a cumulative distribution function and we used its quantiles to cover [0, 1]. It follows from

(A.2.9) that the number of dn-balls with radius ε necessary to cover [0, 1]2 is bounded by C/ε4.

Since (A.2.9), (A.2.11) and (A.2.12) yield that the dn-diameter of [0, 1]2 can be bounded by a δ > 0

independently of n and P, Corollary 2.2.5 of van der Vaart and Wellner (1996) shows that

sup
P∈PD(L,σ)

E1/6
P max

λ,λ′∈[0,1]2

∣∣‖Sn(λ)‖ −
∥∥Sn(λ′)

∥∥∣∣6 ≤ C

∫ δ

0

dε

ε2/3
< ∞ .

This implies (A.2.10) since supP∈PD(L,σ) E1/6
P ‖Sn(0, 1)‖6 is finite by (A.2.3) and (A.2.9). 2

A.3. Proofs of main results
A.3.1. Proof of Theorem 1. We proceed with the so called split chain technique, see e.g. Meyn

and Tweedie (1993, Section 5.1) and Nummelin (1984, Section 4.4). We briefly recall some results

of the split chain technique useful for the proof, and refer the reader to the references above for a

broader overview. We begin with the case d = 1. Under the Minorization Condition of Definition

1-(iv), one can embed {Xt, t ≥ 0} into a larger probability space on which a sequence {Zt, t ≥ 0} of

{0, 1}-valued random variables is defined such that {X∗
t , t ≥ 0} = {(Xt, Zt), t ≥ 0} is a Markov process

on X ∗ = X ×{0, 1}. With a little abuse of language, we use P to denote the distribution of {X∗
t , t ≥ 0}.

The process {X∗
t , t ≥ 0} has an atom a∗ = D × {1}, with

{Xt ∈ a∗} = {Zt = 1} , P (Xt ∈ A |Zt = 1, X∗
t−1, . . . , X

∗
0 ) = P (A) and

P (Zt = 1 |Xt, X
∗
t−1, . . . , X

∗
0 ) = (1− ρ)I(Xt ∈ D) ,(A.3.1)

see (4.16b,c) in Nummelin (1984). This extends to the case d > 1 using (17.21) in Meyn and Tweedie

(1993) to the d-step Markov chains {Xdt+k, t ≥ 0}, k = 0, . . . , d− 1. In the proof, we restrict to d = 1

since the case d > 1 can be similarly dealt with by considering each of the d-step Markov chains,

because, for each T , at least one of them has a expected number of visits larger than nT /d.

Let τ∗1 be the first epoch at which {X∗
t−1, t ≥ 1} visits a∗, i.e. τ∗1 = inf {t ≥ 1; Zt−1 = 1}. By

the strong Markov property, {X∗
t−1, t ≥ τ∗1 }, as {X∗

t−1, t ≥ τ∗1 } given τ∗1 ≤ T , is a Markov chain

with the transition of {X∗
t , t ≥ 0}, initialized in the atom distribution given by P(Zτ∗1−1 = 0) = 0,

P(Xτ∗1−1 ∈ A, Zτ∗1−1 = 1) = P (A). The proof is divided in three steps. In the first step, we bound

P(τ∗1 > T ). In the second step, we find a deterministic order for the number of visits N∗
T (a∗) =∑T

t=1 I (Zt−1 = 1) =
∑T

t=τ∗1
I (Zt−1 = 1) to the atom a∗. The last step concludes.

Step 1. The visit time τ∗1 . (A.3.1) gives

P(τ∗1 > T ) = P (ZT−1 = 0, . . . , Z0 = 0) =

T−1∏
t=1

P (Zt = 0 |Zi = 0, i ≤ t− 1)× P(Z0 = 0)

=

T−1∏
t=0

(1− (1− ρ)P(Xt ∈ D)) =

T∏
t=1

(1− (1− ρ)P(Xt−1 ∈ D)) and then,

P(τ∗1 > T ) ≤ exp

(
−(1− ρ)

T∑
t=1

I (Xt−1 ∈ D)

)
= exp (−(1− ρ)EPNT (D)) ,
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so that supP∈PD(L,σ) P(τ∗1 > T ) ≤ exp (−(1− ρ)nT ) → 0 when T → +∞ by (3.3).

Step 2. The number of visits N∗
T (a∗). Set n1T = n1T (P) = EP[N

∗
T (a∗)|τ∗1 ≤ T ], observing that

N∗
T (a∗) = 0 when τ∗1 > T . (A.3.1) gives (1−ρ)EPNT (D) = EPN

∗
T (a∗) = n1T (1− P(τ∗1 > T )). Therefore,

supP∈PD(L,σ) P(τ∗1 > T ) ≤ exp (−(1− ρ)nT ) proven in Step 1 and (3.3) yield

sup
P∈PD(L,σ)

∣∣∣∣ (1− ρ)EPNT (D)

n1T (P)
− 1

∣∣∣∣ = sup
P∈PD(L,σ)

∣∣∣∣EPN
∗
T (a∗)

n1T (P)
− 1

∣∣∣∣ ≤ exp (−(1− ρ)nT )(A.3.2)

so that inf
P∈PD(L,σ)

n1T (P) ≥ CnT .

The bound (2.4) of Chen (1999a) for Ñ∗
T (α) = N∗

T (a∗)−1 =
∑T

t=τ∗1 +1 I(Zt−1 = 1) yields, for any δ > 0,

EP

[
Ñ∗

T (a∗)I
(
Ñ∗

T (a∗) ≥ δ
)
|τ∗1 ≤ T

]
≤ P

[
Ñ∗

T (a∗) ≥ δ |τ∗1 ≤ T
] (

δ + 1 + EP

[
Ñ∗

T (a∗) |τ∗1 ≤ T
])

= P [N∗
T (a∗) ≥ 1 + δ |τ∗1 ≤ T ] (δ + n1T ) with

EP

[
Ñ∗

T (a∗)I
(
Ñ∗

T (a∗) ≥ δ
)
|τ∗1 ≤ T

]
= n1T − 1− EP

[
Ñ∗

T (a∗)I
(
Ñ∗

T (a∗) < δ
)
|τ∗1 ≤ T

]
≥ n1T − 1− δ,

where the last bound is, for T large, positive for all P in PD(L, σ) by (A.3.2). Rearranging gives

P (N∗
T (a∗) ≥ 1 + δ) ≥ n1T − 1− δ

n1T + δ
P (τ∗1 ≤ T ) .(A.3.3)

Take δ = n1T /z − 1 > 0 for T large enough and all P ∈ PD(L, σ) by (A.3.2). Substituting yields

lim
T,z→+∞

inf
P∈PD(L,σ)

P
(n1T

z
≤ N∗

T (a∗) ≤ n1T z
)

= 1 ,

since the Markov inequality gives lim supT→+∞ supP∈PD(L,σ) P (n1T z < N∗
T (a∗)) ≤ 1/z.

Step 3. The number of visits NT (D). Set nT = (1−ρ)n1T and observe that N∗
T (a∗) ≤ NT (D) so that

P(nT /z ≤ N∗
T (a∗)) ≤ P(nT /z ≤ NT (D)) and then limT,z→+∞ infP∈PD(L,σ) P (nT /z ≤ NT (D)) = 1. The

Markov inequality and (A.3.2) give lim supT→+∞ supP∈PD(L,σ) P (NT (D) > nT z) = 1/z. 2

A.3.2. Proof of Theorem 2. Assume for brevity that x = 0 ∈ D. Since RT = 1/Lb̂T and

RT ≤ N
1/2
T (̂bT )/σ by (2.3), the bias variance decomposition of mT (0; b̂T ) yields

RT

∥∥∥mT (0; b̂T )−m(0)
∥∥∥ ≤ 1

Lb̂T

∥∥∥∑T
t=1 (m(Xt−1)−m(0)) I

(
‖Xt−1‖ ≤ b̂T

)∥∥∥
NT (̂bT )

(A.3.4)

+

∥∥∥∑T
t=1 I

(
‖Xt−1‖ ≤ b̂T

)
et

∥∥∥
σN

1/2
T (̂bT )

.(A.3.5)

Consider ε > 0. By Theorem 1, there is a z0 > 1 such that for n1T = [nT /z0], n2T = [nT z0], we have,

lim inf
T→∞

inf
P∈PD(L,σ)

P (E3T ) ≥ 1− ε/2 , where E3T = {n1T ≤ NT (D) ≤ n2T } .(A.3.6)

Observe that (3.3) and (A.3.2) yield that n1T ≥ n′T = [CnT /z0] → +∞ for all P in PD(L, σ). Since

the estimation point 0 is in the open D, there is a β > 0 such that {x ∈ X ; ‖x‖ ≤ β} ⊂ D. Let βn be

as in Lemma A.2-(ii), so that βn′
T
≤ β/2 for T large enough. Therefore, definitions (2.3) and (A.1.3)

of b̂T and β̂n, (A.3.6), Lemmas A.3 and A.2-(ii) yield that

lim inf
T→∞

inf
P∈PD(L,σ)

P (E4T ) ≥ 1− ε where E4T =
{

b̂T = β̂NT (D) ≤ β
}
∩ E3T .(A.3.7)
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On E4T , mT (0; b̂T ) averages over D. In this case, (A.3.4)-(A.3.5) and Definition 1-(ii) yield

RT

∥∥∥mT (0; b̂T )−m(0)
∥∥∥ ≤ 1 +

∥∥∥ΣNT (D)(β̂NT (D))
∥∥∥

σν
1/2

NT (D)(β̂NT (D))
.

Therefore, taking γ̂n = β̂n in Condition (A.2.6) of Lemmas A.4 and A.5 yields that

lim sup
T,z→+∞

sup
P∈PD(L,σ)

P
(
RT

∥∥∥mT (0; b̂T )−m(0)
∥∥∥ ≥ z on E4T

)
= 0 ,

and Theorem 2 is proven since ε > 0 can be arbitrarily small in (A.3.6)-(A.3.7). 2

A.3.3. Proof of Theorem 3. Take x = 0 ∈ D for brevity. We begin with (3.5). Under Assumption

K, NT (·; K) is continuous increasing, and

BT (h) ≤ h , NT (h) ≥ NT (h; K) ≥
T∑

t=1

K2

(
‖Xt−1‖

h

)
I
(
‖Xt−1‖ ≤

h

2

)
≥ κ2

1NT (h/2) ,

VT (h) =

(∑T
t=1 K

(
‖Xt−1‖

h

))2

∑T
t=1 K2

(
‖Xt−1‖

h

) ≥

(∑T
t=1 K2

(
‖Xt−1‖

h

))2

∑T
t=1 K2

(
‖Xt−1‖

h

) = NT (h; K) .

Observe that the definition (2.6) of ĥ0T gives L2ĥ2
0T = σ2/NT (ĥ0T ; K). Define

R0T =
1

Lĥ0T

= N
1/2
T (ĥ0T ; K)/σ =

(
min
h≥0

max

(
L2h2,

σ2

NT (h; K)

))−1/2

.

NT (·; K) ≤ NT (·) yields R0T ≤ RT and NT (·; K) ≥ κ2
1NT (·/2) implies

1

R2
0T

≤ min
h≥0

max

(
L2h2,

σ2

κ2
1NT (h/2)

)
≤ 4

κ2
1

min
h≥0

max

(
L2(h/2)2,

σ2

NT (h/2)

)
=

4

κ2
1R

2
T

,

so that κ1RT /2 ≤ R0T ≤ RT . We now bound RT (K) with R0T . Because LBT (h) ≤ Lh, σ2/VT (h) ≤
σ2/NT (h; K) and ĥ0T is in HT , we have

1

R2
T (K)

= min
h∈HT

(
L2B2

T (h) +
σ2

VT (h)

)
≤ 2max

L2ĥ2
0T ,

σ2

NT

(
ĥ2

0T ; K
)
 =

2

R2
0T

,

and R0T /
√

2 ≤ RT (K). For the upper bound, observe that VT (ĥT ) ≤ κ0NT (ĥ0T ; K) = κ0σ
2R2

0T by

definition of HT and (2.7). This gives RT (K) ≤ V
1/2

T (ĥT )/σ ≤ √
κ0R0T . Hence R0T /

√
2 ≤ RT (K) ≤

√
κ0R0T with κ1RT /2 ≤ R0T ≤ RT , and then (3.5).

The proof of (3.4) follows the same steps than the Proof of Theorem 2 and is briefly detailed. Since

RT (K) ≤ 1/LBT (ĥT ) and

RT (K) ≤ V
1/2

T (ĥT )

σ
=

1

σ

∑T
t=1 K

(
‖Xt−1|/ĥT

)
N

1/2
T (ĥT ); K)

,

the bias-variance decomposition gives that RT (K)
∥∥∥µT (0; ĥT )−m(0)

∥∥∥ is bounded by

1

LBT (ĥT )

∥∥∥∥∥∥
∑T

t=1 (m(Xt−1)−m(0)) K
(
‖Xt−1‖

ĥT

)
∑T

t=1 K
(
‖Xt−1‖

ĥT

)
∥∥∥∥∥∥+

∥∥∥∑T
t=1 K

(
‖Xt−1‖

ĥT

)
et

∥∥∥
σN

1/2
T (ĥT ; K)

.
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Now, (A.3.7) yields that ĥ0T = β̂NT (D) with a large probability, and ĥT ≤ κ0ĥ0T by definition of HT .

Hence µT (0; ĥT ) averages on D with large probability. Setting γ̂NT (D) = ĥT gives in this case

RT (K)
∥∥∥µT (0; ĥT )−m(0)

∥∥∥ ≤ 1 +

∥∥ΣNT (D)

(
γ̂NT (D)

)∥∥
σν

1/2

NT (D)

(
γ̂NT (D)

) .

Since NT (·; K) ≤ VT (·; K), the bounds in HT implies

1

κ0
νNT (D)

(
β̂NT (D)

)
≤ νNT (D)

(
γ̂NT (D)

)
≤ κ0νNT (D)

(
β̂NT (D)

)
,

that is Condition (A.2.6) in Lemmas A.4 and A.5, which gives (3.4). 2

A.3.4. Proof of Theorem 4 and Corollary 1. Take D = (−1, 1) and x = 0 without loss of

generality. Recall that the {et, t ≥ 0} are i.i.d. N (0, σ2), and let P be the associated distribution. The

proof of Theorem 4 is divided in four steps.

Step 1. Construction of a family of alternatives and choice of nT . Consider a 1/2-Lipschitz function

µ(·) : R 7→ [0, 1/2] with support [0, 1] and µ(0) = 1/2, as µ(x) = (1− |x|)I[−1,1](x)/2. Define

mb(x) = m0(x) + Lbµ
(x

b

)
, b ∈ [0, min(1, 1/L)] ,(A.3.8)

with m0(·) = limb→0 mb(·) = m0(·). Note that mb(x) is continuous over R, L-Lipschitz over D, that

supx∈D |mb(x)| ≤ κ3 + 1 and mb(x) = m0(x) for all x in R \ D, for all b in [0, min(1, 1/L)]. Let Pb be

the distribution of {Xb
t , t ≥ 0} where Xb

0 = e0 and Xb
t = m(Xb

t−1) + et, so that Pb satisfies Definition

1-(ii,iii). Since mb(·) and m0(·) coincide over R \ D, (3.6) yields that the Pb’s, b in [0, min(1, 1/L)]},
satisfy the Drift Condition (c) of Proposition 1, as well as (a) and (b) since mb(·) is continuous and the

et’s are i.i.d. normal variables. Hence Proposition 1 and Assumption P yield that (3.2) and Definition

1-(iv) hold with limT→∞ EPbNT (D) = ∞ for all b in [0, min(1, 1/L)].

Set nT = infb∈[0,min(1,1/L)] EPbNT (D) so that EPbNT (D) ≥ nT for all b in [0, min(1, 1/L)]. Recall

that nT must diverge to define a class PD(L, σ). Observe that b 7→ Xb
t is continuous for all t ≥ 0 so

that the Lebesgue Dominated Convergence Theorem yields that

nT (b) = EPbNT (D) = EP

[
T−1∑
t=0

I(Xb
t ∈ D)

]
≥ Pg(e0 ∈ D) > 0

is continuous for all T ≥ 0. Since 1/nT (·) decreases with T and limT→∞ 1/nT (b) = 0 for all b

in [0, min(1, 1/L)], the Dini Theorem yields that 1/nT = supb∈[0,min(1,1/L)] 1/nT (b) → 0. Hence

limT→∞ nT = ∞ and, for this choice of nT , Pb is in PD(L, σ) for all b in [0, min(1, 1/L)].

Step 2. A contiguous alternative P1 = P1T . Consider a z > 1 to be chosen large enough. Under (3.2)

and Definition 1-(iv) with (3.1), arguing as for Lemma A.2-(i) shows that there is a bT = bT (z) ↘ 0

such that

bT = min

{
b ≥ 0; L2b2EP0NT (b) ≥ σ2

z4

}
, or equivalently L2b2

T∑
t=1

P
(
|X0

t−1| ≤ bT

)
=

σ2

z4
.(A.3.9)

Abbreviate PbT , mbT (·), {XbT
t , t ≥ 0} in P1, m1(·), {X1

t , t ≥ 0} respectively. (A.3.8) yields that

|m1(0) − m0(0)| ≤ LbT /2 so that P1 is in V0(P0, ε) for T large enough. Normality of the et’s and
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(A.3.8) show that the loglikelihood ratio LT = ln(dP1/dP0)(X0, . . . , XT ) writes

LT =
LbT

σ2

T∑
t=1

µ

(
Xt−1

bT

)
et −

L2b2
T

2σ2

T∑
t=1

µ2

(
Xt−1

bT

)
under P0.

Note that the choice of µ(·) in (A.3.8), and (A.3.9) give

EP0

(
L2b2

T

2σ2

T∑
t=1

µ2

(
Xt−1

bT

))
≤ L2b2

T

8σ2

T∑
t=1

P0 (|Xt−1| ≤ bT ) ≤ L2b2
T EP0NT (bT )

8σ2
=

1

8z4
,

EP0

(
LbT

σ2

T∑
t=1

µ

(
Xt−1

bT

)
et

)2

=
L2b2

T

σ2

T∑
t=1

EP0µ2

(
Xt−1

bT

)
≤ 1

4z4
,

and then, for any z ≥ 1,

EP0 |LT | ≤ E1/2
P0

(
LbT

σ2

T∑
t=1

µ

(
Xt−1

bT

)
et

)2

+ EP0

(
L2b2

T

2σ2

T∑
t=1

µ2

(
Xt−1

bT

))
≤ 1

z2
.

Therefore the Markov inequality gives, for any z′ > 0,

sup
T≥1

P0

(
|LT | ≥ z′

)
≤ z′

z2
.(A.3.10)

Step 3. The random rate RT under P0 and P1. Recall that RT = 1/(Lb̂T ) with b̂T as in (2.3).

Therefore, the definition (A.3.9) of bT gives for z ≥ 1 and under P0,

P0

(
RT ≥ 1

2z2LbT

)
= P0

(
b̂T ≤ 2z2bT

)
= P0

(
σ2 ≤ 4z2L2b2

T NT

(
2z2bT

))
≥ P0

(
σ2 ≤ 4z2L2b2

T NT (bT )
)

= P0

(
EP0NT (bT )

4
≤ NT (bT )

)
.

To find a lower bound for the probability above will be done using the split chain {X∗
t , t ≥ 0} =

{(Xt, Zt), t ≥ 0} defined in the Proof of Theorem 1, and N∗
T (a∗, bT ) =

∑T
t=1 I (Zt−1 = 1, |Xt| ≤ bT ) ≤

NT (bT ). Observe that {Zt−1 = 1, |Xt| ≤ bT } ⊂ a∗ is an atom of the split chain for T large enough.

Therefore, arguing as for (A.3.3) in the proof of Theorem 1, with N∗
T (a∗, bT ), NT (bT ) in place of

N∗
T (a∗), NT (D), gives

P0

(
EP0NT (bT )

4
≤ NT (bT )

)
≥
(
1− 1

4

)
EP0NT (bT )(

1 + 1
4

)
EP0NT (bT )

(1 + o(1)) =
3

5
(1 + o(1)) .

Under P1, (A.3.10) gives

P1

(
RT ≥ 1

2z2LbT

)
= EP0

[
I
(

RT ≥ 1

2z2LbT

)
exp(LT )

]
≥ 1

3
P0

(
RT ≥ 1

2z2LbT
, LT ≥ − ln 3

)
≥ 1 + o(1)

5
− P0 (|LT | ≥ ln 3) ≥ 1 + o(1)

5
− ln 3

z2
.

Hence

lim inf
T→+∞

max
P∈{P0,P1}

P(ET (z)) ≥ 1

6
with ET (z) =

{
RT ≥ 1

2z2LbT

}
, for z large enough.(A.3.11)
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Step 4. Proof of the lower bound. Because P1 is in V0(P0; ε) for T large enough, (A.3.11) gives, for

any z′ > 0,

lim inf
T→∞

inf
m̂T

sup
P∈V0(P0;ε)

P
(
RT |m̂T (0)−m(0)| ≥ z′

)
≥ lim inf

T→∞
inf
m̂T

max
P∈{P0,P1}

P
(
RT |m̂T (0)−m(0)| ≥ z′, ET (z)

)
≥ lim inf

T→∞
inf
m̂T

max
P∈{P0,P1}

P
(
|m̂T (0)−m(0)| ≥ 2Lz′z2bT , ET (z)

)
.

Since m1(0) = m0(0) + LbT /2 by choice of µ(·) in (A.3.8), the triangular inequality gives

P1

(
|m̂T (0)−m1(0)| ≥ 2Lz′z2bT , ET (z)

)
≥ P1

(
LbT

2
− |m̂T (0)−m0(0)| ≥ 2Lz′z2bT , ET (z)

)
≥ P1

(
|m̂T (0)−m0(0)| < LbT

2
− 2Lz′z2bT , ET (z)

)
.

Take z′ with LbT /2− 2Lz′z2bT = 2Lz′z2bT , i.e. z′ = 1/(8z2), 2Lz′z2bT = LbT /4. Substituting gives

lim inf
T→∞

inf
m̂T

sup
P∈V0(P0;ε)

P
(

RT |m̂T (0)−m(0)| ≥ 1

8z2

)
≥ lim inf

T→∞
inf
m̂T

max

{
P0

(
|m̂T (0)−m0(0)| ≥ LbT

4
, ET (z)

)
, P1

(
|m̂T (0)−m0(0)| < LbT

4
, ET (z)

)}
.

The maximum above is the maximum error on ET (z) of a test χT which accepts P = P0, i.e. χT = 0,

if and only if |m̂T (0)−m0(0)| < LbT /4. It follows that

lim inf
T→∞

inf
m̂T

sup
P∈V0(P0;ε)

P
(

RT |m̂T (0)−m(0)| ≥ 1

8z2

)
≥ lim inf

T→∞
inf
χT

max {P0 (χT = 1, ET (z)) , P1 (χT = 0, ET (z))} .

But, for any test χT ,

P1 (χT = 0, ET (z)) =

∫
I (χT = 1, ET (z)) exp(LT )dP0 ≥ exp(−z)

∫
I (χT = 1,LT ≥ −z, ET (z)) dP0

≥ exp(−z) (P0 (LT ≥ −z, ET (z))− P0 (χT = 1, ET (z))) , and then

inf
χT

max [P0 (χT = 1, ET (z)) , P1 (χT = 0, ET (z))] ≥ min
p∈[0,1]

max [p, exp(−z) (P0(LT ≥ −z, ET (z))− p)]

=
exp(−2z)

1 + exp(−z)
P0(LT ≥ −z, ET (z)) ≥ exp(−2z)

1 + exp(−z)
(P0 (ET (z))− P0 (|LT | ≥ z)) .

Hence (A.3.10) and (A.3.11) show that

lim inf
T→∞

inf
m̂T

sup
P∈V0(P0;ε)

P
(

RT |m̂T (0)−m(0)| ≥ 1

8z2

)
≥ exp(−2z)

1 + exp(−z)

(
1

6
− 1

z

)
,

with a lower bound which is strictly positive for z large enough, hence Theorem 4. 2

Corollary 1 follows from minor modifications of the proof of Theorem 4 detailed now. Let P0 be

the distribution of {et, t ≥ 0} with m0(·) = 0, which is such that (3.6) holds for U(x) = x2 and any

D′ with [−σ, σ] ⊂ D′ since EP[e
2
t+1|et] = σ2. Assumption P ensures that P0 is in PD(L, σ) provided

that TPg(et ∈ D) ≥ nT . The perturbations Pb of P0 defined through (A.3.8) satisfy a Minorization

Condition Pb(Xt+1 ∈ A|Xt = x) ≥ (1−ρ′)P ′(A) for all x in R and A ⊂ R, where P ′(dy) is proportional
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to inf |m|≤κ3+1 exp(−(y−m)2/2σ2)dy > 0. This ensures that EPbNT (D) ≥ T (1− ρ′)P ′(D) > 0, so that

these Pb are in PD(L, σ) provided supT≥1(nT /T ) ≥ (1 − ρ′)P ′(D). Corollary 1 then follows since

supP∈PD(L,σ) P(RT |m̂T (0)−m(0)| ≥ z) ≥ supP∈V0(P0;ε) P(RT |m̂T (0)−m(0)| ≥ z). 2

Appendix B: Proof of Propositions 1 and 2

B.1. Proof of Proposition 1. Set xt = (yt, . . . , yt−d+1) and note that Yt given Xt−1 = xt−1

has density f(y − m(xt−1)|xt−1) which is positive continuous in (y, x) under (a) and (b). Define

fD(y) = infx∈D f(y −m(x)|x) which is positive continuous for bounded D. We have for any subset A

of Rd and integer number n ≥ 1,

P (Xt ∈ A|Xt−n = xt−n) =

∫
I(xt ∈ A)

n−1∏
k=0

f (yt−k −m(xt−k−1) |xt−k−1 ) dyt−k .(B.1.1)

Since the sphere {y ∈ Rd; ‖y − x‖ = h} has vanishing Lebesgue measure, (B.1.1) yields P(‖Xt − x‖ =

h|Xt−d = ·) = 0, so that P(‖Xt − x‖ = h) = 0 for all t, which implies (3.2). We now check the

Minorization Condition. Let D′ =
∏d

i=1[a, b] be such that D ⊂ D′. (B.1.1) yields, for any xt−d in D,

P(Xt ∈ A|Xt−d = xt−d) ≥
∫

I(xt ∈ A ∩ D)

d−1∏
k=0

f (yt−k −m(xt−k−1) |xt−k−1 ) I(xt−k−1 ∈ D′)dyt−k

≥
∫

I(xt ∈ A ∩ D)

d−1∏
k=0

fD′ (yt−k) I(xt−k−1 ∈ D′)dyt−k = (1− ρD)

∫
I(xt ∈ A)f

D
(xt)dxt ,

where, by construction of D′ =
∏d

i=1[a, b] and since xt−d is in D ⊂ D′,

1− ρD =

∫
I(xt ∈ D)

d−1∏
k=0

fD′ (yt−k) I(yt−k ∈ [a, b])dyt−k =

∫
I(xt ∈ D)

d−1∏
k=0

fD′ (yt−k) dyt−k ,

f
D

(xt) =
I(xt ∈ D)

1− ρD

d−1∏
k=0

fD′ (yt−k) I(yt−k ∈ [a, b]) =
I(xt ∈ D)

1− ρD

d−1∏
k=0

fD′ (yt−k) .

If D is a bounded open subset of Rd, 0 ≤ ρD < 1 and f
D

(·) is a positive continuous density over D.

Hence f
D

(·) defines a PD(·) satisfying (3.1) and P(Xt+d ∈ A|Xt = xt) ≥ (1− ρD)PD(A)I(xt ∈ D) for

any Borel set A ⊂ D, which is the Minorization Condition of Definition 1-(iv).

We now show that EPNT (D) diverges for any D with positive Lebesgue measure. Under (a) and (b),

arguing as above yields a Minorization Condition P(Xt+d ∈ A|Xt = xt) ≥ (1− ρC)P C(A)I(xt ∈ C) for

any compact C with positive Lebesgue measure, showing that the level sets of U(·), {x ∈ Rd; U(x) ≤ r}
are small for r large enough. (B.1.1), (a) and (b) implies that {Xt, t ≥ 0} is Lebesgue-irreducible, so

that (c) and Theorem 8.4.3 in Meyn and Tweedie (1993) yield that {Xt, t ≥ 0} is Lebesgue recurrent,

i.e. EP[NT (D)|X0 = x] →∞ for almost all x. Hence limT→∞ EPNT (D) = ∞. 2
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B.2. Proof of Proposition 2. (4.1) gives

NT (b) =

T∑
t=1

I

(
|Yt−1| ≤

(
b

θ

)1/α
)

= NY
T

((
b

θ

)1/α
)

where NY
T (b) =

∑T
t=1 I(|Yt−1| ≤ b).(B.2.2)

Consider a sequence bT > 0 going to 0 with limT→∞
√

TbT = +∞. Theorem 2 of Akonom (1993, p.

70) gives that {Yt, t ≥ 0} can be reconstructed on a larger probability space jointly with a standard

Brownian motion {W (s), s ∈ R+} such that

NY
T (bT )

bT

√
T

− 1

bT

√
T

∫ T

0

I (|W (s)| ≤ bT ) ds = o(1), a.s.

Observe that

1

bT

√
T

∫ T

0

I (|W (s)| ≤ bT ) ds
d
=

√
T

bT

∫ 1

0

I
(√

T |W (s)| ≤ bT

)
ds =

√
T

bT

∫ bT /
√

T

−bT /
√

T

λ(w, 1)dw

→ 2λ(0, 1) a.s.

by continuity of the local time. Define now, for k = −K, . . . , K,

bT =
1

(2λ(0, 1))
α

2α+1

(
σ2θ1/α

L2
√

T

) α
2α+1

, bk,T =
1(

2
(
1 + 1√

K

)k
) α

2α+1

(
σ2θ1/α

L2
√

T

) α
2α+1

,

EK =

{(
1 +

1√
K

)−K

≤ λ(0, 1) <

(
1 +

1√
K

)K
}

,

noticing that limT→+∞
√

Tb
1/α
k,T = ∞. Hence the Skohorod device gives that {Yt, t ≥ 0} can be recon-

structed jointly with a variable λ(0, 1) such that, by (B.2.2) and the limits above,

NT (D)√
T

=
2λ(0, 1)

θ1/α
+ o(1) , NT (bk,T ) = 2

√
Tλ(0, 1)

(
bk,T

θ

) 1
α

(1 + o(1)) a.s.,(B.2.3)

k = −K, . . . , K. On the event EK , set

bK,T = bk,T if

(
1 +

1√
K

)k

≤ λ(0, 1) <

(
1 +

1√
K

)k+1

, k = −K, . . . , K − 1 ,

bK,T = bk,T if

(
1 +

1√
K

)k−1

≤ λ(0, 1) <

(
1 +

1√
K

)k

, k = −K + 1, . . . , K ,

setting bK,T = bK,T = 1 outside EK . It follows that

bK,T ≤ bT ≤ bK,T on EK , with lim
K→∞

sup
T≥1

bT

bK,T

= lim
K→∞

inf
T≥1

bK,T

bT
= 1 .(B.2.4)

(B.2.3) gives, on EK

L2b2
K,T NT (bK,T ) = 2

√
TL2λ(0, 1)

b
(2α+1)/α
K,T

θ1/α
(1 + o(1)) ≤ σ2(1 + o(1)) a.s.,

L2b
2
K,T NT (bK,T ) = 2

√
TL2λ(0, 1)

b
(2α+1)/α
K,T

θ1/α
(1 + o(1)) ≥ σ2(1 + o(1)) a.s.,

and then, since RT = 1/(Lb̂T ) with b̂T as in (2.3),

lim
T→∞

P
(

T−α/(4α+2)

LbK,T (1 + ε)
≤ T−α/(4α+2)RT ≤ T−α/(4α+2)

LbK,T (1− ε)
, EK

)
= 1 for any ε > 0.
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Hence (B.2.4), (B.2.3), limT,K→∞ P(EK) = 1 and definition of bT yields Proposition 2. 2
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Guerre, E. and J. Maës (1998). Optimal rate for nonparametric estimation in deterministic dynamical systems.

Statistical Inference for Stochastic Processes 1 157–173.
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