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Abstract

In panel data the interest is often in slope estimation while taking account of the un-
observed cross sectional heterogeneity. This paper proposes two nonparametric slope
estimation where the unobserved effect is treated as fixed across cross section. The
first estimator uses first-differencing transformation and the second estimator uses
the mean deviation transformation. The asymptotic properties of the two estimators
are established and the finite sample Monte Carlo properties of the two estimators
are investigated allowing for systematic dependence between the cross-sectional effect
and the independent variable. Simulation results suggest that the new nonparamet-
ric estimators perform better than the parametric counterparts. We also investigate
the finite sample properties of the parametric within and first differencing estima-
tors. A very common practice in estimating earning function is to assume earnings
to be quadratic in age and tenure, but that might be misspecified. In this paper we
estimate nonparametric slope of age and tenure on earnings using NLSY data and
compare it to the parametric (quadratic) effect.
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1 Introduction

In panel data, we are able to get observations over cross-sectional units over time and

can capture the cross-ssectional heterogeneity by including an individual or cross-

sectional effect in our model. In traditional panel models whether the cross sectional

effect is treated as fixed or random is dependent on how the sample is drawn from the

population. In the random effect specification, it is assumed that the cross section is

drawn from a random population and the cross sectional effect is part of the stochastic

error. Whereas in the fixed effect model, the cross sectional effect capturing the cross-

section heterogeneity is not a part of the error but is a parameter varying across the

cross-section. The cross sectional effect when treated as fixed and non-random, allows

it to be correlated with other exogenous regressors in the model.1 This property of

the “fixed” effect is very important in applied econometrics where the cross sectional

effect captures omitted variables, allowing them to be correlated with the explanatory

variables included in the model. In the contemporary terminology the correlation of

the unobserved effect with the independent variable determines whether the cross-

sectional time invariant effect is fixed or random, irrespective of whether it is randomly

drawn or not.2 In this paper, we present two nonparametric slope estimation for fixed

effect panel models and do monte carlo simulations to investigate the small sample

properties of the estimators. Moreover, in the monte carlo simulations we investigate

the properties of different estimators allowing for a systematic dependence of the

randomly drawn cross sectional effect with the independent variables.

It is well known in theoretical econometrics that misspecification of the functional

form leads to biased estimates of the parameters. Often policies are based on these

biased estimates, making misspecification of the functional form an important issue

in applied econometrics. The significance of the functional form in the econometric

modelling makes nonparametric analysis very important. In nonparametric models,

no specific functional form is imposed on how the independent variable affects the

dependent variable, see Ullah and Pagan (1999). An important extension of non-

1For discussion on different panel data estimation and treatment of the cross-sectional effect see
Hsiao (2003 ), Baltagi (2002), and Mundlak (1978).

2Accoridng to Wooldridge (2002) the cross-sectional effect at least in microeconometrics is ran-
domly drawn no matter whether it is fixed or random.
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parametric kernel techniques have been to panel data models Ullah and Roy (1998),

Porter (1996). In particular, there have been extensive work on semiparametric or

partially linear models (where some dependent variable in the regression model enter

linearly and for others the functional form is not known, and hence partially linear),

see Li and Stengos (1996), Li and Ullah (1998), Berg, Li and Ullah (2000), Ullah

and Mundra (2001). However, there has not been enough work on pure nonparamet-

ric panel models; recently, Racine and Li (2004) propose a nonparametric estimator

with both continuous and count data and Henderson and Ullah (2004) investigate

the nonparametric estimation of random effect models. In this paper we propose two

nonparametric fixed-effect slope estimation. This is important in applied work where

we are often interested in the slope estimate while controlling for the unobserved

effect but the estimate of the cross sectional effect is not of interest. For instance,

the researcher is interested in the effect of tenure on wages while controlling for the

croo-sectional effect, which might represent the ability of the individual. A second

examplecan be that a researcher maybe interested in the effect of countrys’ income

on its international trade while accounting for the country specific effect (capturing

infrastructure, institution etc.), one can think of many more examples.

Firstly, in this paper we establish two nonparametric estimators, one using the

first-differencing and the second estimator uses within or mean-deviation proposed in

Ullah and Roy (1998). We establish the asymptotics of the two estimator and present

finite sample monte carlo properties allowing for systematic dependence among the

unobserved cross sectional effects, as well as the unobserved effect being correlated

with the explanatory variable. We compare the nonparametric estimators with their

parametric counterparts. Secondly, this paper uses monte carlo simulations to ex-

plore the finite sample properties of the parametric fixed effect estimation: within or

mean-deviation and first-differencing. It is well known that asymptotically both the

transformations mean-deviation and differencing gives consistent estimates, but little

is known how these estimators compare in a finite sample. This paper presents the

finite sample properties of the two parametric estimators allowing for the unobserved

fixed effect to be random and allowing for the correlation between the cross-sectional

effect and the explanatory variable.

This paper is organized as follows. Section 2 specifies the model and gives the
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estimates and section 3 establishes the asymptotics of the estimates. Monte Carlo

finite sample results under various forms of dependence between the cross sectional

effects and the explanatory variables are discussed in section 4. Section 5 presents

the application of the two nonparametric estimates to investigate the effect of age

and tenure on earnings using NLSY data. Finally, section 6 concludes.

2 Nonparametric Slope Estimation

The parametric (linear) fixed-effect panel model is specified as follows:

yit = αi + zitβ + uit i = 1, ..., n t = 1, ..., T (2.1)

where yit is the dependent variable, zit is the exogenous variable and β is the

parameter of interest and αi is the unobserved cross-sectional effect that is treated

as non-random and is a fixed unknown parameter to be estimated. The error uit is

assumed to follow the usual iid error structure with mean zero and constant variance.3

The nonparametric model given in (2.1) with the fixed effect is as follows

yit = αi +m(zit) + uit i = 1, ..., n t = 1, ..., T (2.2)

where we do not specify how zit effects yit, the unknown functional formm(.) makes

the model a nonparametric model. The problem is to estimate β (the parametric

slope) in the model (2.1) nonparametrically in (2.2). The nonparametric approach

is to use the nonparametric kernel regression estimation of the unknown form m(zit)

and estimate m0(zit), where m0(zit) is the first derivative of m(zit) with respect to zit.

The model in (2.2) can be written as

yit = αi +m(z) + (zit − z)β(z) + (1/2)(zit − z)2m2(z) + uit (2.3)

where we expand the unknown regression around a point z, to the third order.

The idea in (2.3) is to estimate the slope m0(zit) in (2.2) locally in the interval h

around z by linear approximation (zit − z)β(z).4
3In this section we do not impose any well defined cross sectional dependence between αi and

zit, which we do in the monte carlo simulations.
4This is similar to the nonparametric kernel regression functional models and varying coefficient

models proposed by Lee and Ullah ( 2003), Cai et al. (2000).
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There are two well known transformations used to take care of the fixed effect in

the parametric models, one is first differencing yit − yit−1 and the second is taking
deviations from mean yit − ȳi. = yit − 1

T

P
yit, see Hsiao (2003), Baltagi (2002),

Chamberlain (1984), and Matyas and Sevestre (1996).5 In this paper, we use the

two transformations within and first-differencing to the fixed effect nonparametric

model and estimate the slope coefficients with local linear kernel weighted techniques.

In addition, we compare the two methods in the linear parametric model for finite

sample properties. For linear models, it is well known that the two methods give

consistent estimates and Verbeek (1995) shows that the two transformations gives

same estimates for T = 2, but finite sample properties of the two slope estimates are

unknown. In section 4.1, we explore the monte carlo properties of the two linear

parametric slope estimates allowing for the cross-sectional effect to be correlated with

the independent variables.

2.1 First - Differencing Estimator

After taking a first difference of (2.3) we get:

∆yit = (zit − zit−1)β(z) + 1
2
[(zit − z)2 − (zit−1 − z)2]m2(z) +∆uit + r (2.4)

where β(z) =m1(z) is the slope parameter of interest and r is the remainder term.

The local linear estimator of β(z) is given by,

β̂(z) =

nX
i=1

TX
t=2

wit∆yit (2.5)

where wit =
∆zitKitKit−1

ΣΣ∆2zitKitKit−1
, see Pagan and Ullah (1999). Where Kit = K(

zit−z
h
)

and Kit−1 = K(
zit−1−z

h
) are the standard normal kernel function with optimal window

width h.6

.

5Baltagi and Li (2002) used first-differencing for series estimation of semiparametric panel model.
6See Pagan and Ullah (1999) for well established properties of the standard normal kernel and

details on the optimal window width (bandwidth) selection.
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2.2 Deviation from Mean Estimator

Deviation from mean transformation for the panel data model is proposed as follows7:

ȳi. = αi +m(z) + (z̄i. − z)β(z) + ui. (2.6)

where ȳi. =
1
T

P
yit, z̄i. =

1
T

P
zit, and ui. =

1
T

P
uit. Taking a difference of (2.6)

from (2.3) gives

yit − ȳi. = (zit − z̄i.)β(z) + uit − ui.
The local FE estimator of the slope β(z) can then be obtained by minimizing

Σ
i
Σ
t
(yit − ȳi. − (zit − z̄i.)β(z))2k( zit−zh ).This gives the slope estimator as follows:

β̃(z) =
X
i

X
t

kit(yit − ȳi.)(zit − z̄i.)
Σ
i
Σ
t
kit(zit − z̄i.)2 , (2.7)

2.3 Estimation of the Unobserved Effect

In this paper the parameter of interest is the nonparametric slope β(z), the com-

putation procedure of which, similar to the linear parametric panel model does not

require the fixed effect to be estimated, Hsiao (2003). If there was an interest in

estimating αi, one can substitute the estimate of β(z) from both the deviation and

first differencing estimator in yit − (zit − z)β(z) = αi +m(z) = δi(z) and obtain the
estimate, bδi(z). In order to identify the unobserved cross sectional effect αi, we will
need an additional restriction, lets say

P
αi = 0. This will give the estimate of the

nonparametric cross sectional effect bαi = bδi(z)− Pbδi(z)
n
, as the deviation of the non-

parametric fixed effect estimator at a point z from the unit (cross-sectional) mean.

Note here that bm(z) = bδi(z)
n
.8

7In Ullah and Roy (1997) the mean deviation nonparametric fixed effect estimator was mentioned
but the properties of the estimator were not discussed.

8This is simlar to the parametric case if we have a fixed effect αi and a global intercept µ in
the model, and we get the estimate of αi + µ = δi. Together with a simple restriction

P
αi = 0,

we identify the cross-sectional effect in the linear panel model as bαi = δi −
P
δi
n . The asymptotic

properties of the nonparametric cross sectional effect is future research.
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3 Asymptotic Properties of the Estimators

In this section asymptotic properties of the estimators are established and asymptotic

distributions of the above estimators are derived. The assumptions and steps are

similar to those of Robinson (1986, 1988a, 1988b), Kneisner and Li (2002)

Following Robinson (1988), let Gλµ denote the class of functions such that if g ²G
λ
µ,

then g is µ times differentiable; g and its derivatives (up to order µ) are all bounded

by some function that has λ− th order finite moments. Also, K2 denotes the class of

all Borel measurable, bounded, real valued functions K(ψ) such that (i)
R
K(ψ)dψ =

1, (ii)
R |K(ψ)|ψdψ = 0 (iii) |ψ||K(ψ| → 0 as |ψ| → ∞, (iv) sup |K(ψ)| < ∞,

(v)
R
K2(ψ)dψ < ∞ (vi)

R
ψ2K(ψ)dψ = µ2 < ∞ (vii)

R
ψK2(ψ)dψ < ∞ (viii)R

ψ2K2(ψ)dψ = φ1 <∞
Theorem 1: Under the following assumptions

(1) For all t, (yit , zit) are iid. across i and zit is a second order stationary real

valued stochastic process ∀ i and zit and zit−1 admits a joint density function f ²G∞µ−1.
m(zit) and m(zit−1) both ²G2µ−1 for some positive integer µ > 2.

(2) E(uit | zit, zit−1) = 0 , E(u2it | zit, zit−1) = σ2 < ∞ is continuous in zit and

zit−1, and uit ∀ i and t.
(3) K ²K2 and k(ψ) ≥ 0 ; as n→∞ , h→ 0 , nhq+3 →∞ and nhq+4 → 0.

√
NTh4

³
β̂(z)− β(z)

´
˜N (0,Σ)

for large N and fixed T, where R ' m2(z) (µ2f(z, z))
−1 , Φ = 4σ2µ2f (z, z)φ1,

Σ = R−1ΦR−1

For the proof of Theorem 1 see Appendix A. The results can be generalized in

multivariate context with q elements in zit, replace NTh
4 by NTh2q+2.

Theorem 2: Under the following assumptions

(1) For all t, (yit , zit) are iid. across i and zit is a second order stationary real

valued stochastic process ∀ i and zit admits a density function g ²G∞µ−1, m(zit) ²G2µ−1
for some positive integer µ > 2.

(2) E(uit|zit) = 0 , E(u2it | zit) = σ2u < ∞ is continuous in zit

(3) k ²K2 and k(ψ) ≥ 0 ; as n→∞ , h→ 0 , nhq+2 →∞ and nhq+3 → 0.
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√
NTh3

³
β̃(z)− β(z)

´
˜N (0,Σ1)

where Σ1 = R
−1
1 Φ1R

−1, where R1 = T 2z2g(z) and Φ1 = σ2ug(z).K1, where K1 is

some function of φ1 and
R
ψK2(ψ)dψ.For the proof of the Theorem 2 see Appendix B.

The results can be generalized in multivariate context with q elements in zit, replace

NTh3 by NThq+2..

4 Monte Carlo Results

In this section we discuss the Monte Carlo properties of the within and first differenc-

ing estimator, when the unobserved effect is randomly drawn both for the parametric

and the nonparametric models. It is well known that for large N and fixed T , both

the deviation and first differencing estimator gives consistent estimate of the slope

in panel models. Though in applied work we are often far from large N, and it

becomes important to investigate how the estimated slope compares under the two

transformations in finite sample. The monte carlo properties of the estimated slope

are investigated both when αi is correlated with zit and when it is not.

4.1 Parametric Models

For the parametric linear model the following data generating process is used is

yit = αi + zitβ + uit (4.1)

where αi is the cross sectional fixed effect and is generated by αi = 2.5 + αj, this

allows that the fixed effect for unit i is correlated with j. In these experiments zit is

generated by the following data generating methods

(i) DGP1: zit = o.1t+0.5zit−1+wit, where zio = 10+5wio and wit ∼ U [−0.5, 0.5],
uit is drawn from standard normal distribution, this mechanism was followed by

Baltagi et al.(1992 ), Li and Ullah (1992) and was first proposed by Nerlove (1971).

(ii) DGP2: zit ∼ U [−
√
3,
√
3], this DGP was used by Berg et al.(1999).

The model in (4.1) is estimated by both the transformations, deviation from mean

and first differencing. The parametric OLS estimator are given as follows:
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(1) Parametric first differencing estimator

bβdiff = PP
(zit − zit−1) (yit − yit−1)PP

(zit − zit−1)2 (4.2)

(2) Parametric mean deviation estimator

bβdev = PP
(zit − zi.) (yit − yi.)PP

(zit − zi.)2
(4.3)

The results are based on 2000 replications(M) and both N and T are allowed to

vary and β is fixed at 8. The number of cross section N takes the values 10, 50, 100,

500, T is varied to be 3, 6, 10, 50,100, and 500. In every experiment we report the

Bias, Standard Error, and the Root Mean Square Error for the estimate of the slope

β.

Bias =M−1
MP
j=1

³bβj − β´, RMSE =
(
M−1

MP
j=1

³bβj − β´2
)−1/2

.

The results are given in Table 1 (Panel 1 for DGP1 and Panel 2 for DGP2). From

both the Panels we see that for all N as T increases first differencing fixed effect slope

estimator for linear model is doing better than the mean-deviation estimator. We see

that the difference between the root mean square of the mean deviation and the first-

differencing estimator is steadily rising as T goes up for fixed N . The bias and the

standard error for the first differencing estimator is lower than the mean-deviation

estimator as T increases for all N.9 On the contrary for fixed T, increasing N, in the

case of DGP1 there is no significant change in the magnitude of rmse for the two

estimates. For DGP2 on the other hand for fixed T and increasing N, deviation is

doing better than differencing.

In another experiment for DGP2 we generate αi as a random variable drawn from

vi, where vi˜N(0, σv), the value of σ
2
v + σ

2
u = 20 and ρ = σ2v/(σ

2
v + σ

2
u) takes the

value of 0.8. In Table 2 (Panel 1) gives the difference of the root mean square error

9According to Verbeek (1995), the two transformations mean-deviation or within and the first
differencing gives same results when T = 2. For T >= 2, if after differencing transformation we keep
the time period as T and not T−1 for every i, (in other words we keep the redundant variable zi1−zi0)
then OLS (within) and first-differencing gives the same estimate. In these monte carlo experiments
after differencing T is becoming T − 1, in this case within OLS is only same as differencing GLS in
small samples.
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between the within and the first differencing estimator. In Panel 2 in Table 2 we

present results from another experiment where αi is random but also correlated with

zi. From Table 2 we see that the difference in rmse for the two estimators is similar

in both the panels. In both the panels we see that similar to Table 1 the differencing

is doing better than deviation as T increases ∀ N. Moreover, for fixed T increasing
N deviation is doing better than differencing.

4.2 Nonparametric Models

For the nonparametric model the following data generating process is used is

yit = αi + zitβ1 + z
2
itβ2 + uit (4.4)

where zit ∼ U [−0.5, 0.5] by DGP2 and αi is generated by αi = vi + c1αj , where
vi˜N(0,σv), M = 1000 for the nonparametric simulations. The value of β1 is chosen

to be 0.5, β2 is chosen to be 2. The value of σ
2
v + σ

2
u = 20 and ρ = σ2v/(σ

2
v + σ

2
u)

takes the value of 0.8. In the above model the true data generation is quadratic and

the model is estimated by both the nonparametric methods proposed in the previous

sections; deviation from mean and first differencing. T is varied to be 3,6,10, while

N takes the values 10, 50, 100 and c1 = 0 or c1 = 2. When c1 = 0, we do not allow

for any correlation between αi and αj, but when c1 = 2, we are allowing for αi to

be correlated with αj (in some AR fashion). Note that under both situation, the

two transformations within and first-differencing will eliminate the unobserved effect

and the estimate of the slope will not be effected. For comparison purposes we also

compute the parametric fixed effect slope estimator for the model given in (4.2 ) by

the differencing (bβdiff) and the mean deviation (bβdev) estimator. Table 3 (Table 5)
and Table 4 (Table 6) presents the differencing transformation (mean deviation) for

c1 = 0 and c1 = 2 respectively. We see that the nonparametric estimator is consistent

and performs better than the parametric estimator for all the cases. For fixed N and

increasing T (also for fixed T and increasing N) for both the estimators the difference

in the rmse is falling between the parametric and the nonparametric estimators in

all the cases. We see that the difference in the rmse for the parametric and the

nonparametric estimator falls when αi is allowed to be correlated with αj. Compared

to first differencing transformation for the mean deviation case the difference between

9



the nonparametric and the parametric rmse is lower.

In another exercise, we allow αi to be correlated with zi. by αi = vi+ c1αj + c2zi.,

where the value of c2 = 0.5 and c1 takes the value 0 or 2 (i.e. both when the unob-

served effect αi is not allowed to be correlated with αj and when it is). The results

from the simulation are given in Table 7 (Table 9) and Table 8 (Table 10) for first

differencing (mean deviation) for c1 = 0 and c1 = 2 respectively. Here again we

see that the nonparametric estimator is doing better than the parametric and for

both the estimators for fixed N and increasing T (also for fixed T and increasing N)

the difference in the rmse is falling between the parametric and the nonparametric

estimators. Moreover, the difference in the rmse for the parametric and the nonpara-

metric estimator falls when αi is allowed to be correlated with αj . Also, compared to

first differencing transformation for the mean deviation case the difference between

the nonparametric and the parametric rmse is lower.

In another experiment we increased the degree of correlation between the random

cross sectional effect and the independent variable. In Table 11 we present results

from experiment where αi = vi+c1αj+c2z, c1 = 0 and c2 = 4, for first differencing and

Table 12 shows for mean deviation. Comparing to Table 8 (where c1 = 0 and c2 = 2)

in Table 11 we see that for N = 10 and any T, the parametric estimator is doing

worse, the difference between the nonparametric and parametric estimator increases.

Similarly is the case with mean deviation. So we find evidence that when we in-

crease the correlation between the random cross-sectional effect and the independent

variable, the misspecified parametric model performs worse than the nonparametric

model.

We also increased the degree of nonlinearity in the model given by (4.4), by in-

creasing the value of β2 from 2 to 4 and αi = vi + c1αj + c2zi., where c2 =0.5 and

c1 = 2. From Table 13 (compared to Table 7) for first differencing and Table 14 (com-

pared to Table 9) for mean deviation we see that in small samples the nonparametric

estimator is doing better than the parametric estimator; as expected.
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5 Application

In this part, we apply the nonparametric estimators to investigate the effect of

worker’s age and tenure on their earnings using NLSY79 (National Longitudinal Sur-

vey of Youth Data). This a well known panel data that uses surveys by the Bureau

of Labor Statistics (BLS) to gather information on the labor market experiences of

diverse groups of men and women in the U.S. at different time points.10 In estimating

earning functions it is a very common practice to assume that workers earnings are

quadratic in age and tenure, see Angrist and Krueger (1991), Sander (1992), Vella

and Verbeek (1998) and Rivera-Batiz (1999) to name a few. In the nonparametric

model no functional form is imposed on the effect of age and tenure on earnings.

Worker earnings are measured in hourly wages, age in years, and tenure in number

of weeks. A parametric fixed-effect (quadratic) model is fit to investigate the effect

of age and tenure on workers log hourly wages for a sample of 1000 individuals for

t = 3 (the years are 1994, 1996, and 1998). The parametric model is estimated by

both the first-differencing and the mean-deviation methods and the slope estimates

are given in 4.2 and 4.3. Similarly the nonparametric first-differencing and mean-

deviation slopes are estimated, given in 2.5 and 2.7. The slope estimates are used to

calculate earning elasticity with respect to age and tenure.

Figure 1 and Figure 2 gives the wage elasticity with respect to age and tenure

respectively, by first-differencing methods both for the parametric and nonparametric

models. Figure 3 and Figure 4 give the same for the mean-deviation method. From

Figure 1 we see that nonparametric wage elasticity with respect to age lies mostly

between 2 and 3, whereas the parametric first-differncing elasticity is between 0 and

-1.5. From Figure 1 and Figure 3, we see that the parametric wage elasticity with

increasing age is falling both for the differencing and mean-deviation transformation.

For nonparametric wage elasticity we find that the range is bigger and the magni-

tude in mean-deviation is lower than the first-differencing. Figure 2 shows that the

wage elasticity is steadily rising with tenure in the first-differencing parametric case,

whereas in the nonparametric case we see that the earning elasticity is rising but at

10The NLS contractors for the BLS are the Centre for Human Resource Research (CHRR) at the
Ohio State University, The National Opinion Research Center at the University of Chicago, and the
U.S. Census Bureau.
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an increasing rate.11 From Figure 4 we see that the parametric mean-deviation wage

elasticity with respect to tenure is mostly zero but in the nonparametric case we see

high wage elasticity for some workers at a higher level of tenure.

6 Conclusion

The two nonparametric slope estimator proposed in this paper for fixed-effect panel

model performs better than the parametric counterparts. Moreoevr, the nonparamet-

ric estimator performs better than the parametric estimator under various scenarios

of systematic dependence among the random cross sectional effects and also when a

correlation is introuced between the random cross-sectional effect and the indepen-

dent variables in the model. We also find that for the linear fixed-effect estimator,

the rmse for the first-differencing estimator is lower than the mean-deviation as T is

rising. A simple application of the two nonparametric slope estimator to the NLSY

sample exploring the earning elasticity with respect to worker age and tenure shows

that the nonparametric results are very different from the parametric, both in the

magnitude and the change of the slope.

11This might be the case because the workers in the sample are relatively young mostly between
the ages 31 - 35.
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7 Appendix

7.1 Proof of Theorem 1

For q = 1, β̂(z) =
nP
i=1

TP
t=2

wit∆yit.where wit =
∆zitKitKit−1

ΣΣ∆2zitKitKit−1
. Refer to (2.5). This proof

is for q = 1, but can easily be generalized to higher q. Write, E(β̂(z)/zit, zit−1) =

E(
PP

wit (m(zit)−m(zit−1))).
. Approximated value is E(β̂(z) / zit, zit−1)

˜ E

µPP
wit

µ
∆zitβ(z) +

1
2

£
(zit − z)2 − (zit−1 − z)2

¤
m2(z)

+1
6

£
(zit − z)3 − (zit−1 − z)3

¤
m3(z)

¶¶
.

Using
PP

∆zitwit = 1,the approximated bias is, E(β̂(z)/zit, zit−1)− β(z) =
E
¡
1
2
witm

2(z)
£
(zit − z)2 − (zit−1 − z)2

¤
+ 1

6
m3(z)wit

£
(zit − z)3 − (zit−1 − z)3

¤¢
Using ψit =

zit−z
h
, we derive some lemmas.

E(D1) = E[Σ
i
Σ
t
∆2zitKitKit−1] == nT

ZZ
∆2zitKitKit−1f(zit, zit−1)dzitdzit−1(A.1)

˜nTh42µ2f(z, z) +O(h
6)

E(D2) = E[ΣΣ(zit − z)2∆zitKitKit−1] (A.2)

= = nT

Z Z
h4(ψit)

2K (ψit)K(ψit−1)f(ψith+ z,ψit−1h+ z)dψitdψit−1

˜nT
£−h5µ2f(z, z) + h6µ4f10(z, z)− h6 (µ2)2 f01(z, z)¤+O(h7)

E(D3) = E[ΣΣ(zit−1 − z)2∆zitKitKit−1] (A.3)

= = nT

Z Z
h4(ψit−1)

2K (ψit)K(ψit−1)f(ψith+ z,ψit−1h+ z)dψitdψit−1

˜nT
£
h5f(z, z)µ2 − h6µ4f01(z, z) + 2h6 (µ2)2 f10(z, z)

¤
+O(h7)

E(D4) = E[Σ
i
Σ
t
∆zit∆uitKitKit−1] == 0 (A.4)

where the notation f10[x, y] represents the partial derivative of f(x, y) with respect

to the first variable.

13



f01[x, y] represents the partial derivative of f(x, y) with respect to the second

variable,

and f(z, z)is the value of f(x, y) evaluated at x = z, y = z.

Combining (A.1) - (A.3) the approximate bias is: E(β̂(z)/zit, zit−1) − β(z) =
−1
2
m2(z)h+O(h6).

Since approximate bias is free from zit, zit−1 it is also approximate unconditional

bias.

β̂(z)− β(z) =
m2(z)

2

"PP
∆zitKitKit−1

£
(zit − z)2 − (zit−1 − z)2

¤
+∆uit

ΣΣ∆2zitKitKit−1

#

=
m2(z)

2

£
D1
¤− {XX

∆zitKitKit−1 (zit − z)2 −
XX

∆zitKitKit−1(zit−1 − z)2XX
∆zitKitKit−1∆uit}

=
m2(z)

2

£
D1
¤−1 £

D2 +D3 +D4
¤

Now using lemmas (A.1) - (A.4):

E
³

D1

NTh4

´
= 2µ2f(z, z) + o(1), thus

m2(z)
2
E
h

D1

NTh4

i−1
→ m2(z) (µ2f(z, z))

−1 +

o(1) = R.

E
³

D2

NTh4

´
= O (h) = o(1) and E

³
D3

NTh4

´
= O (h) = o(1).

Also, E(D4)2 =
PP

E (∆2zit∆
2uitK

2 (zit)K
2 (zit−1)) = NTh44σ2f(z, z)φ1 +

O(h5). E
³

D4

NTh4

´2
= 4σ2f(z,z)φ1

(NTh4)
+O(h5).

Thus
√
NTh4var

³
D4

NTh4

´
= Φ+ o(1), where Φ = 4σ2f (z, z)φ1.

By Lindberg-Levy Central Limit theorem
√
NTh4

³
D4

NTh4

´
d→ N (0,Φ)

Thus it is proved that
√
NTh4

³
β̂(z)− β(z)

´
˜N (0,Σ) , where Σ = R−1ΦR−1

8 Appendix B

For asymptotic normality of β̃(z)

β̃(z) − β(z) = m2 (z)

2

Σ
i
Σ
t
kit (zit − z̄i.) [(zit − z)2 − (z̄i. − z)2 + (uit − ui.]

Σ
i
Σ
t
(zit − z̄i.)2kit
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First we state some lemmas:

E(z2itkit ≈ hz2g(z) +O(h2) (B.1)

E(z̄2i.kit) ≈ hz2g(z) +O(h2) (B.2)

E(zitz̄i.kit) ≈ hz2g(z) +O(h2) (B.3)

E(z3itkit) ≈ hz3g(z) +O(h2) (B.4)

E(zitz̄
2
i.kit) ≈ hz3g(z) +O(h2) (B.5)

E(z2itz̄i.kit) ≈ hz3g(z) +O(h2) (B.6)

So using (B1-B3) the expectation of the denominator:

1

NTh
E(
X
i

X
t

(zit − z̄i.)2Kit) ≈ z2g(z) + o(1) = R1

Similarly using (B1-B6)

1

NTh

X
i

X
t

E(kit (zit − z̄i.) [(zit − z)2 − (z̄i. − z)2]) ≈ o(1)

The second moment of
PP

kit (zit − z̄i.)Uit
√
NTh3E

µPP
kit (zit − z̄i.)Uit
NTh3

¶2
≈ Φ1 + o(1) (B.7)

where Φ1 = σ
2
ug(z).K1,where K1is some function of φ1and

R
ψK2(ψ)dψ

By Lindberg-Levy Central Limit theorem

√
NTh3

³XX
kit (zit − z̄i.)Uit

´
d→ N (0,Φ1)

Thus,
√
NTh3

³
β̃(z)− β(z)

´
˜N (0,Σ1)

where Σ1 = R−11 Φ1R
−1
1
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Table 1: Root Mean Square Error Difference between the two Parametric Slope Estimators.
The Value in the cell is Rmseβdev − Rmse


βdiff

Panel (1): DGP1
N,T 3 6 10 50 100 500
10 1.076 3.866 6.442 10.276 10.507 10.588
50 1.026 3.868 6.439 10.283 10.512 10.590
100 1.036 3.883 6.435 10.285 10.513 10.590
500 1.040 3.876 6.438 10.286 10.512 10.590
1000 1.043 3.879 6.436 10.287 10.513 10.592

Panel (2): DGP2
N,T 3 6 10 50 100 500
10 0.821 1.182 1.682 3.863 5.525 12.773
50 0.350 0.533 0.750 1.742 2.467 5.589
100 0.246 0.370 0.520 1.237 1.765 3.865
500 0.112 0.174 0.225 0.557 0.790 1.763
1000 0.075 0.121 0.166 0.401 0.549 1.816



Table 2: Root Mean Square Error Difference between the two Parametric Slope Estimators when
αi is random. The Value in the cell is Rmseβdev − Rmse


βdiff.

Panel 1: DGP2 when αi is not correlated with zi

N,T 3 6 10 50 100 500
10 -0.159 0.009 -0.048 -0.037 -0.024 -0.012
50 0.014 -0.030 -0.026 -0.016 -0.013 -0.005
100 0.031 -0.009 -0.018 -0.011 -0.008 -0.004
500 0.005 -0.006 -0.009 -0.006 -0.004 -0.002
1000 0.006 -0.005 -0.006 -0.004 -0.003 -0.001

Panel 2: DGP2 when αi is correlated with zi
N,T 3 6 10 50 100 500
10 -0.159 0.009 -0.048 -0.037 -0.027 -0.015
50 0.014 -0.030 -0.026 -0.020 -0.013 -0.006
100 0.032 -0.017 -0.018 -0.011 -0.008 -0.004
500 0.005 -0.003 -0.008 -0.006 -0.004 -0.002
1000 0.006 -0.005 -0.006 -0.004 -0.003 -0.001



Table 3: Nonparametric and the Parametric Slope Estimators:
First-Differencing b1 = 0.5, b2 = 2, ρ = 0.8, c1 = 0

N=10
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.416 0.420 0.591 -0.402 0.274 0.487 -0.414 0.220 0.469

βdiff 0.013 2.526 2.525 0.089 1.671 1.673 0.019 1.328 1.328

Rmse

βdiff−Rmse


βz 1.933 1.186 0.859

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.426 0.175 0.460 -0.419 0.119 0.435 -0.412 0.096 0.423

βdiff -0.055 1.050 1.051 -0.012 0.713 0.713 0.027 0.575 0.575

Rmse

βdiff − Rmse


βz 0.406 0.277 0.152

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.424 0.120 0.441 -0.415 0.094 0.425 -0.419 0.069 0.425

βdiff -0.045 0.721 0.722 0.012 0.563 0.563 -0.014 0.415 0.415

Rmse

βdiff − Rmse


βz 0.281 0.138 -0.010



Table 4: Nonparametric and the Parametric Slope Estimators:
First-Differencing b1 = 0.5, b2 = 2, ρ = 0.8, c1 = 2

N=10
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.420 0.351 0.547 -0.426 0.233 0.485 -0.419 0.164 0.450

βdiff -0.0517 2.140 2.139 -0.055 1.406 1.407 -0.011 0.986 0.985

Rmse

βdiff−Rmse


βz 1.592 0.922 0.535

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.418 0.141 0.441 -0.417 0.103 0.430 -0.411 0.085 0.420

βdiff -0.009 0.847 0.847 -0.002 0.619 0.618 0.033 0.508 0.509

Rmse

βdiff − Rmse


βz 0.406 0.189 0.089

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.422 0.098 0.434 -0.416 0.075 0.423 -0.149 0.057 0.423

βdiff -0.032 0.591 0.592 0.003 0.449 0.449 -0.014 0.342 0.343

Rmse

βdiff − Rmse


βz 0.158 0.026 -0.080



Table 5: Nonparametric and the Parametric Slope Estimators:
Mean Deviation b1 = 0.5, b2 = 2, ρ = 0.8, c1 = 0

N=10
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.096 2.242 2.242 -0.025 1.061 1.061 0.060 0.925 0.927

βdiff -0.095 2.943 2.943 -0.026 1.370 1.369 0.063 1.186 1.187

Rmse

βdiff−Rmse


βz 0.701 0.308 0.26

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.038 0.926 0.926 0.002 0.578 0.577 -0.003 0.407 0.406

βdiff 0.042 1.200 1.200 0.003 0.725 0.725 -0.002 0.518 0.518

Rmse

βdiff − Rmse


βz 0.274 0.148 0.112

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.014 0.585 0.585 -0.013 0.401 0.401 0.003 0.283 0.283

βdiff 0.012 0.732 0.732 -0.013 0.506 0.506 0.004 0.357 0.357

Rmse

βdiff − Rmse


βz 0.147 0.105 0.074



Table 6: Nonparametric and the Parametric Slope Estimators:
Mean Deviation b1 = 0.5, b2 = 2, ρ = 0.8, c1 = 2

N = 10
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.067 1.842 1.842 0.006 1.267 1.267 0.009 0.948 0.947

βdev 0.081 2.417 2.417 -0.001 1.635 1.634 0.013 1.189 1.189

Rmse

βdev − Rmse


βz 0.575 0.367 0.241

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.026 0.796 0.796 -0.01 0.590 0.590 0.001 0.406 0.405

βdiff 0.030 1.027 1.026 -0.009 0.745 0.744 0.002 0.517 0.517

Rmse

βdev − Rmse


βz 0.230 0.154 0.111

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.036 0.566 0.567 -0.008 0.389 0.389 0.015 0.294 0.294

βdiff 0.037 0.707 0.708 -0.009 0.488 0.487 0.016 0.373 0.373

Rmse

βdev − Rmse


βz 0.141 0.099 0.079



Table 7: Nonparametric and the Parametric Slope Estimators:
First-Differencing b1 = 0.5, b2 = 2, ρ = 0.8, c1 = 0, c2 = 2, αi correlated with z i.

N = 10
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.418 0.379 0.564 -0.421 0.278 0.504 -0.424 0.192 0.465

βdiff 0.004 2.314 2.313 -0.028 1.683 1.682 -0.042 1.152 1.152

Rmse

βdiff − Rmse


βz 1.749 1.178 0.687

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.426 0.175 0.460 -0.419 0.119 0.435 -0.412 0.096 0.423

βdiff -0.055 1.050 1.051 -0.012 0.601 0.713 0.027 0.575 0.575

Rmse

βdiff − Rmse


βz 0.590 0.277 0.152

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.424 0.120 0.441 -0.413 0.084 0.422 -0.419 0.072 0.425

βdiff -0.045 0.721 0.722 0.019 0.503 0.503 -0.016 0.431 0.431

Rmse

βdiff − Rmse


βz 0.281 0.082 0.005



Table 8: Nonparametric and the Parametric Slope Estimators: First-Differencing
b1 = 0.5, b2 = 2, ρ = 0.8, c1 = 2, c2 = 2, αi correlated with z i.

N = 10
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.421 0.330 0.535 -0.409 0.225 0.467 -0.423 0.170 0.456

βdiff -0.022 1.990 1.990 0.048 1.373 1.373 -0.036 1.025 1.025

Rmse

βdiff − Rmse


βz 1.454 0.906 0.569

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.425 0.140 0.447 -0.420 0.100 0.432 -0.416 0.083 0.424

βdiff -0.047 0.839 0.840 -0.020 0.601 0.601 0.007 0.500 0.500

Rmse

βdiff − Rmse


βz 0.392 0.169 0.076

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.423 0.098 0.434 -0.412 0.072 0.418 -0.418 0.054 0.422

βdiff -0.036 0.591 0.592 0.028 0.0434 0.435 -0.009 0.324 0.323

Rmse

βdiff − Rmse


βz 0.158 0.016 -0.098



Table 9: Nonparametric and the Parametric Slope Estimators: Mean-Deviation
b2 = 2, ρ = 0.8, c1 = 0, c2 = 2, αi correlated with zi.

N = 10
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.096 2.242 2.242 -0.025 1.061 1.061 0.060 0.925 0.927

βdev -0.095 2.943 2.943 -0.026 1.370 1.369 0.063 1.186 1.187

Rmse

βdev − Rmse


βz 0.701 0.305 0.260

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.038 0.926 0.926 0.002 0.578 0.577 -0.003 0.407 0.406

βdev 0.042 1.200 1.200 0.003 0.725 0.725 -0.002 0.518 0.518

Rmse

βdev − Rmse


βz 0.274 0.148 0.112

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.014 0.585 0.585 -0.013 0.401 0.401 0.014 0.285 0.285

βdiff 0.012 0.732 0.732 -0.013 0.506 0.506 0.013 0.361 0.361

Rmse

βdev − Rmse


βz 0.147 0.105 0.076



Table 10: Nonparametric and the Parametric Slope Estimators:Mean-Deviation
b2 = 2, ρ = 0.8, c1 = 2, c2 = 2, αi correlated with zi.

N = 10
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.067 1.842 1.842 0.006 1.267 1.267 0.009 0.948 0.947

βdev 0.081 2.417 2.417 -0.001 1.635 1.634 0.013 1.189 1.189

Rmse

βdev − Rmse


βz 0.575 0.367 0.242

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.049 0.844 0.845 -0.012 0.544 0.544 -0.029 0.426 0.427

βdev 0.049 1.068 1.069 -0.013 0.695 0.694 -0.030 0.538 0.539

Rmse

βdev − Rmse


βz 0.224 0.15 0.112

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.001 0.568 0.568 -0.008 0.389 0.389 0.000 0.299 0.299

βdiff -0.001 0.720 0.720 -0.009 0.488 0.487 0.000 0.388 0.387

Rmse

βdev − Rmse


βz 0.152 0.098 0.088



Table 11: Nonparametric and the Parametric Slope Estimators with
Increased Correlation with zi: First Differencing

b2 = 2, ρ = 0.8, c1 = 0, c2 = 4 
N = 10

T = 3 T = 6 T = 10
Bias Std Rmse Bias Std Rmse Bias Std Rmse


βz -0.416 0.420 0.591 -0.402 0.274 0.487 -0.414 0.220 0.469

βdiff 0.013 2.526 2.525 0.089 1.671 1.673 0.019 1.328 1.328

Rmse

βdiff − Rmse


βz 1.933 1.186 0.859

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.426 0.175 0.460 -0.419 0.119 0.435 -0.412 0.096 0.423

βdiff -0.055 1.050 1.051 -0.012 0.713 0.713 0.027 0.575 0.575

Rmse

βdiff − Rmse


βz 0.590 0.277 0.152

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.424 0.120 0.441 -0.415 0.094 0.425 -0.420 0.071 0.426

βdiff -0.045 0.721 0.722 0.012 0.563 0.563 -0.018 0.423 0.424

Rmse

βdiff − Rmse


βz 0.281 0.138 -0.002



Table 12: Nonparametric and the Parametric Slope Estimators with
Increased Correlation with mean z i: Mean-Deviation
b2 = 2, ρ = 0.8, c1 = 0, c2 = 4

N = 10
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.093 2.131 2.132 -0.069 1.456 1.457 0.023 0.952 0.952

βdev 0.100 2.780 2.781 -0.072 1.926 1.926 0.023 1.199 1.199

Rmse

βdev − Rmse


βz 0.649 0.469 0.247

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.038 0.926 0.926 0.002 0.578 0.577 -0.003 0.407 0.406

βdiff 0.042 1.200 1.200 0.003 0.725 0.725 -0.002 0.518 0.518

Rmse

βdev − Rmse


βz 0.274 0.148 0.112

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.014 0.585 0.585 -0.013 0.401 0.401 0.009 0.290 0.290

βdiff 0.012 0.732 0.732 -0.013 0.506 0.506 0.010 0.363 0.363

Rmse

βdev − Rmse


βz 0.147 0.105 0.073



Table 13: Nonparametric and the Parametric Slope Estimators with
Increased Nonlinearity: First Differencing

b2 = 4, ρ = 0.8, c1 = 2, c2 = 0.5 
N = 10

T = 3 T = 6 T = 10
Bias Std Rmse Bias Std Rmse Bias Std Rmse


βz -0.438 0.335 0.551 -0.404 0.236 0.468 -0.421 0.174 0.456

βdiff -0.118 2.033 2.036 0.084 1.431 1.433 -0.026 1.046 1.046

Rmse

βdiff − Rmse


βz 1.485 0.965 0.590

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.414 0.149 0.440 -0.413 0.108 0.427 -0.414 0.082 0.422

βdiff 0.015 0.897 0.897 0.023 0.650 0.650 0.016 0.491 0.491

Rmse

βdiff − Rmse


βz 0.456 0.223 0.069

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.417 0.099 0.429 -0.414 0.074 0.420 -0.420 0.060 0.424

βdiff -0.002 0.594 0.593 0.018 0.445 0.445 -0.020 0.358 0.359

Rmse

βdiff − Rmse


βz 0.165 0.025 -0.065



Table 14: Nonparametric and the Parametric Slope Estimators with
Increased Nonlinearity: Mean-Deviation

b2 = 4, ρ = 0.8, c1 = 2, c2 = 0.5
N = 10

T = 3 T = 6 T = 10
Bias Std Rmse Bias Std Rmse Bias Std Rmse


βz -0.042 1.985 1.985 0.007 1.283 1.282 0.008 0.958 0.957

βdev -0.035 2.578 2.577 0.001 1.654 1.653 0.011 1.202 1.201

Rmse

βdev − Rmse


βz 0.593 0.371 0.244

N = 50
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz 0.028 0.804 0.804 -0.011 0.597 0.596 -0.029 0.405 0.406

βdiff 0.032 1.037 1.037 -0.010 0.754 0.753 -0.030 0.511 0.512

Rmse

βdev − Rmse


βz 0.233 0.157 0.106

N = 100
T = 3 T = 6 T = 10

Bias Std Rmse Bias Std Rmse Bias Std Rmse

βz -0.030 0.537 0.537 -0.007 0.394 0.394 0.0001 0.301 0.301

βdiff -0.031 0.672 0.673 -0.008 0.494 0.494 0.0002 0.391 0.390

Rmse

βdev − Rmse


βz 0.136 0.1 0.09



Figure 1: Elasticity of Hourly Wage with respect to Age: First-Differencing

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45

Age (years)

W
ag

e 
El

as
tic

ity

Parametric Elasticity Estimate (Quadratic
Functional Form)
Nonparametric Elasticity Estimate (First-
Differencing)



Figure 2: Elasticity of Hourly wage with respect to Tenure: First-Differencing
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Figure 3 Elasticity of Hourly Wage with respect to Age: Mean-Deviation
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Figure 4: Elasticity of Hourly Wage with respect to Tenure: Mean-Deviation
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