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Abstract. Although the t−ratio variant of the Dickey-Fuller test is the
most commonly applied unit root test in practical applications, it has been

known for some time that readily implementable, more powerful modifica-

tions are available. We explore the large sample properties of five of these

modified tests, and the small sample properties of these five plus six hybrids.

As a result of this study we recommend two particular test procedures.
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1. INTRODUCTION

Very often, in the analysis of economic time series, a preliminary step is

to test the null hypothesis that an individual series of T observations is

integrated of order one, I(1), against the alternative that it is integrated

of order zero, I(0). The most commonly applied test of this sort is the

t−ratio (pivotal statistic) variant of the Dickey-Fuller test of Dickey and
Fuller (1979). In its most basic variant, the test statistic, which has a non-

standard limiting null distribution, is the t−ratio, DF , associated with the
OLS estimator of (ρ− 1) in the model

yt = γ0zt + ρyt−1 + ²t; t = 2, 3, ..., T (1)

with ²t taken to be independent and identically distributed with mean zero,

and variance σ2, and where either zt = 1 or zt = [1, t]
0 and γ is a conformable

vector of unknown parameters. In the former case the test is of a driftless

random walk against a stationary first order autoregression with unknown

mean while in the latter it is of a random walk with drift against an unknown

linear trend with stationary first order autoregressive errors. The test is

easily extended to allow higher order autoregressive processes (which might

be viewed as approximations to more general processes) through augmenta-

tion of (1) by lagged first differences of yt, a consideration that accounts for

its popularity.

It has been known for several years that, with a modest amount of com-

putational effort, more powerful modifications of this test are available. Our

purpose here is to compare some of these tests. The DF test is asymptoti-

cally equivalent to prior OLS detrending of yt, followed by the fitting to the

residuals ỹt of a model of the form (1) with γ = 0. Three modifications

involve alternative detrending, motivated by derivations of the asymptotic

Gaussian power envelope:

1. Elliott et al (1996) apply generalised least squares de-trending, taking

ỹt as the residuals from the regression of [y1, y2 − αy1, ..., yT − αyT−1]0 on
[z1, z2 − αz1, ..., zT − αzT−1]0, where α = 1 + c̄T−1, with c̄ ∈ (−∞, 0) a
constant specified from consideration of the power envelope. The resultant

test, which we denote GLS, is based on the fitting to ỹt of a model of the

form (1) with γ = 0.

2. Elliott (1999) notes that the above test is motivated by an alternative

model in which the initial observation is taken to be fixed, while a frequently

more attractive assumption is of full covariance stationarity, so that in terms

of (1) the initial deviation from trend is a zero-mean random variable with

variance σ2(1 − ρ2)−1. The initial GLS detrending would then generate

ỹt as the residuals from the regression of [(1 − α2)1/2y1, y2 − αy1, ..., yT −
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αyT−1]0 on [(1− α2)1/2z1, z2 −αz1, ..., zT −αzT−1]0. This approach is often
termed “unconditional,” and we denote the resulting unit root test statistic

GLSu. Several proposals for the choice of c̄ in GLS and GLSu have been

made. Elliott et al (1996) suggest c̄ = −7 for zt = 1 and c̄ = −13.5 for
zt = [1, t]

0; Elliott (1999) suggests c̄ = −10 in both cases. We adopt these
recommendations in our analysis of the tests.

3. Taylor (2002) considers recursive OLS detrending, a proposal which has

the advantage of not requiring the somewhat arbitrary specification of a

constant parameter. Thus ỹt are the residuals from the OLS regression of

yj on zj, j ≤ t. Again, the unit root test statistic, which we denote REC,
follows from the regression (1) with ỹt in place of yt and γ = 0.

Two previously proposed approaches retain OLS detrending (explicitly

or implicitly) and are motivated by the fact that, in the Gaussian case,

under stationarity, forward- and backward-looking finite order AR models

have identical covariance structures. These are:

4. Pantula et al (1994) first employ OLS detrending to generate residuals

ỹt. They then recommend a test based on weighted symmetric estimation

of ρ, through the minimization of

Q(ρ) =
TX
t=2

wt(ỹt−ρỹt−1)2+
T−1X
t=1

(1−wt+1)(ỹt−ρỹt+1)2 ; wt = T
−1(t−1)

from which a pivotal statistic readily follows. We denote this statistic WS.

5. Leybourne (1995) proposes OLS estimation of (1), together with OLS

estimation of the corresponding model for the reversed series; that is

vt = δ0zt + ρvt−1 + ηt; t = 2, 3, ..., T (2)

where vt = yT+1−t. Denote by DFf the Dickey-Fuller t−ratio from (1)

and by DFr the corresponding statistic from (2). Leybourne’s proposed

statistic, which we denote MAX , is then max(DFf ,DFr).

The limiting null distributions of these five modified tests are all given

in the cited literature. As regards the alternative hypothesis, we strongly

prefer true stationarity, and restrict attention to this case in the remainder of

the paper, in line with the view of Pantula et al (1994), quoted approvingly

by Taylor (2002), that formulations such as that where the deviation from

trend of the first observation has the same variance as the error terms might

reasonably be assumed in “a modest number of situations.” We therefore

consider power under the more natural stationarity alternative, where the

deviation from trend of the first observation has variance σ2(1−ρ2)−1. One
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possible procedure is through calculation of the local asymptotic power,

which follows directly from the limiting distribution of the test statistics,

where as in Chan and Wei (1987), Phillips and Perron (1988) and elsewhere

we set ρ = 1 + cT−1, for fixed c, using the “local-to-unity asymptotics”
approach. This limiting distribution is given for the MAX test in Section

2. Those for the other tests are given by, or can be directly inferred from,

Elliott et al (1996), Elliott (1999), and Taylor (2002). We go on to compare

the results with the Gaussian power envelope, given by Elliott (1999).

It emerges from Section 2 that some at least of the tests have local

asymptotic power close to the envelope. However, this is certainly insuf-

ficient to conclude that the behaviour of the tests, as they are applied in

practice, with finite sample sizes, will be the same. Accordingly, in Section

3 we report results of a simulation study on the finite sample power and

size properties of the tests. As well as the standard Dickey-Fuller test and

the five modifications noted earlier, we consider also six “hybrid” tests, in

which each detrending procedure is used in conjunction with both the WS

approach and the MAX approach. For example, the statistic we denote

GLSMAX first applies GLS detrending, and then applies the MAX princi-

ple, the test statistic being the maximum of the t−ratios for testing ρ = 1

from the estimation of (1) with γ = 0 and (2) with δ = 0.

2. ASYMPTOTIC DISTRIBUTION OF THE MAX STATISTICS
UNDER THE LOCAL ALTERNATIVE

Suppose that the time series yt is generated through

yt = ρyt−1 + ²t (3)

ρ = 1+
c

T

where c ∈ (−∞, 0). We impose the following assumptions on the initial

value y1 and the error term ²t.

Assumption 1. (i) y1 is distributed with mean zero and variance σ
2(1 −

ρ2)−1, (ii) ²t is i.i.d.(0, σ2) and (iii) y1 is uncorrelated with ²t, t ≥ 2.

Assumption (i) is adopted from Elliott (1999), implying that the first

observation y1 is drawn from the unconditional distribution of yt. Assump-

tion (ii) is made for clarity and simplicity and it can be relaxed to allow

²t to be a martingale difference sequence (see, for instance, Banerjee et al,

1992). The DF regression based on the forward series yt is

∆yt = γ̂0zt + ρ̂yt−1 + ²̂t (4)
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while the DF regression based on the reverse series vt = yT+1−t is

∆vt = γ̃0zt + ρ̃vt−1 + η̃t. (5)

Let DFf denote the Dickey-Fuller t−ratio from (4) and DFr denote the

corresponding statistic from (5). The MAX statistic is then MAX =

max(DFf ,DFr). The following theorem gives the limiting distribution of

the MAX test statistics under the local alternative.

Theorem 1 If yt is generated by (3) and Assumption 1 holds, then;

(a) If the fitted model contains a constant only, so that in (4) and (5)
zt = 1,

MAX ⇒ max(F0, R0)

where

F0 =
0.5{Jc(1)2 − 1}−HcJc(1)

(Gc −H2
c )
1/2

R0 =
−0.5{Jc(1)2 + 1}+HcJc(1)

(Gc −H2
c )
1/2

and

Jc(r) = Wc(r) + (e
rc − 1)Zc

Hc =

Z 1

0
Jc(r)dr

Gc =

Z 1

0
Jc(r)

2dr.

Here,Wc(r) is an Ornstein-Uhlenbeck process defined asWc(r) = c
R r
0 e

c(r−λ)W (λ)dλ+
W (r), W (r) is a standard Brownian motion process defined as the limit of
σ−1T−1/2

PrT
t=1 ²t and Zc is a random variable with mean zero and variance

(−2c)−1.
(b) If the fitted model contains a linear trend, so that in (4) and (5)

zt = [1, t]
0,

MAX ⇒ max(F1, R1)

where

F1 =
0.5{Jc(1)2 − 1}− 6McJc(1) + 2HcJc(1) + 12HcMc − 6H2

c

(Gc − 12M2
c + 12HcMc − 4H2

c )
1/2

R1 =
−0.5{Jc(1)2 + 1}+ 6McJc(1)− 2HcJc(1)− 12HcMc + 6H

2
c

(Gc − 12M2
c + 12HcMc − 4H2

c )
1/2

and

Mc =

Z 1

0
rJc(r)dr.
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The asymptotic distributions of theMAX statistics under the unit root

hypothesis ρ = 1 can be shown as a special case for c = 0. The variance of

(erc− 1)Zc is given by (erc− 1)2(−2c)−1 and it can be shown to converge to
zero as c→ 0 by applying the L’hopital’s rule. Also Wc(r) converges to the

standard Brownian motion process W (r) as c→ 0. Hence, we have the fol-

lowing results: Jc(1),Hc, Gc andMc converge toW (1),H =
R 1
0 W (r)dr, G =R 1

0 W (r)
2dr and M =

R 1
0 rW (r)dr respectively as c → 0. Therefore, when

the fitted model contains a constant only, the limiting null distribution is

given by

MAX ⇒ max(Fn0, Rn0)

where

Fn0 =
0.5{W (1)2 − 1}−HW (1)

(G−H2)
1/2

Rn0 =
−0.5{W (1)2 + 1}+HW (1)

(G−H2)1/2
.

(this result is given in Leybourne (1995)). When the fitted model contains

both a constant and a linear trend, the limiting null distribution is now

given by

MAX ⇒ max(Fn1, Rn1)

where

Fn1 =
0.5{W (1)2 − 1}− 6MW (1) + 2HW (1) + 12HM − 6H2

(G− 12M2 + 12HM − 4H2)1/2

Rn1 =
−0.5{W (1)2 + 1}+ 6MW (1)− 2HW (1)− 12HM + 6H2

(G− 12M2 + 12HM − 4H2)1/2
.

Note that it is readily shown that the same limiting null distributions arise

if ²t follows a stationary AR(p
∗) process with martingale difference distur-

bances, provided that (4) and (5) are augmented with p ≥ p∗ lagged changes
in yt and vt respectively (for details see Leybourne et al, 2002).

Given the local asymptotic distributions of the various test statistics, and

the critical values following from the asymptotic null distributions, asymp-

totic local power can be calculated. Results for 0.05-level tests are shown

in Table 1, where ENV denotes the asymptotic Gaussian power envelope,

taken from Elliott (1999). These results were obtained by simulating 50000

replications of the appropriate limiting functionals, using series of 5000

Gaussian white noise innovations. Here and throughout, all calculations

were programmed in GAUSS. Notice first that, with the exception of the

constant case for c = −20,−25 where GLS is inferior, DF is outperformed
in terms of asymptotic local power by all five modified tests in both the
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constant and linear trend cases. It also emerges that the REC, WS, and

MAX tests have asymptotic local powers on or very close to the envelope

for all the values of c considered. This is not, however, the situation for

the two tests based on GLS detrending; this being particularly evident in

the constant only case. As previously noted by Elliott (1999) and Taylor

(2002), the relatively poor performance of the GLSu test is rather ironic,

given it was designed with the strictly stationary alternative analysed here

in mind.

3. FINITE SAMPLE SIMULATIONS

The augmented version of the DF test is based on fitting the model

yt = γ0zt + ρyt−1 +
pX
j=1

φj∆yt−j + ²t (6)

with corresponding elaborations of the modified tests. These modifications

are all designed to increase power, and the results of the previous section

show that, in very large samples, substantial power gains can be achieved.

In this section we assess the possibility of achievable power gains for sample

sizes of practical interest. To some extent, such gains have been previously

demonstrated for these modified tests, though there has been little explo-

ration of their hybrids. We consider the case where it is known that p = 0

in (6), and also the more realistic situation where p is unknown and is se-

lected through a data-dependent rule. The tests’ size in the latter case is

also considered, allowing for additional autoregressive and moving average

behaviour.

We generated data from the model (3) under Assumption 1 with σ2 = 1,

y1 and ²t normally distributed, for T = 75, 150. Then, we constructed the

DF test, its five modifications, and the six hybrid tests based on those

modifications tests from fitting (6) with p = 0. Table 2 shows the empirical

power for nominal 0.05-level tests, constant only and linear trend cases;

finite sample null critical values for the tests having being calculated by

setting c = 0 and y1 = 0. Here and throughout the remainder of the paper

results are based on 20000 replications. The rankings for DF and its five

modifications broadly mimic the asymptotic ones given in Table 1.1 The

1Throughout Tables 2-5 we establish rankings of tests based on informal comparisons

of the tests’ performance. A more rigorous approach would be to calculate, for any two

point estimates (cell entries) p̂1 and p̂2, the t−statistic (p̂1 − p̂2)/s.e.(p̂1 − p̂2) where
s.e.(p̂1 − p̂2) = {n−1p̂1(1− p̂1) + n−1p̂2(1− p̂2)}1/2

and n is the number of Monte Carlo replications, to test whether two true rejection
probabilities p1 and p2 are different. Given n = 20000, we find that any two of our
point estimates which differ by 0.02 or more are significantly different at the 0.05-level

of an approximating normal distribution. Hence, we can make a statistically meaningful

comparison of two tests’ relative performance whenever their entries differ by at least 0.02.
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only noticeable departure from this pattern is that in the constant only case

GLS performs more competitively when T = 75 than in the asymptotic

case, particularly in relation to the DF test. The REC, WS, and MAX

tests again behave very similarly to each other and emerge as the clearly

dominant trio, particularly in the constant only case. Of the six hybrid tests,

GLSWS and GLSMAX are dominated by the other four, whilst these four all

perform very similarly to REC, WS, and MAX. The only obvious virtue

of the hybrid tests is that the two hybrid variants GLSu perform rather

better than standard GLSu. That no hybrid variant dominates REC, WS,

and MAX is perhaps, however, not surprising, given that the near-optimal

large sample properties of these three would imply at best only very limited

scope for improvement.2

Using the same data generating model, Table 3 compares the tests’ em-

pirical power (at the nominal 0.05-level) when p in (6) is determined by the

data-dependent rule suggested by Ng and Perron (1995); that is downwards

testing of lagged difference terms at the 0.10-level, starting from pmax = 4.

Here, in computing the augmented MAX statistic, the same value of p was

used in the forward and reverse regressions, and selected from the forward

regression alone. The augmented variant of the WS test is specified in

Pantula et al (1994). As we might expect, the powers of all the tests are

rather lower than their p = 0 counterparts of Table 2. More interestingly,

however, is that tests based on weighted symmetric estimation generally

seem to perform more poorly in this downward testing environment than

in the previous fixed lag case, particularly with T = 75. Of the non-hybrid

tests the pair REC andMAX now appear quite clearly dominant, with the

latter showing a small advantage over the former. GLSMAX
u and RECMAX

appear dominant among the hybrid tests. Again, however, there would seem

no evidence to suggest that either hybrid test GLSMAXu or RECMAX should

be preferred to the standard MAX test.

Although the results of Table 3 suggest a preference for the REC and

MAX tests on the basis of empirical power, it is also important to check for

size robustness in more elaborate cases. We consider the ARMA(1, 1, 1)

generating model

(1− φL)∆yt = (1− θL)²t.

Again, the tests are based on fitted models whose lag length is determined

by downwards testing from pmax = 4. Table 4 shows the empirical sizes

of the tests (nominal 0.05-level) for various choices of φ and θ. Generally

speaking, the empirical sizes are close to nominal sizes. The exception is

the case where θ = 0.5 in which case all the tests are quite badly over-sized,

particularly in the linear trend case when T = 75. Here, the WS test and

2This concurs with Shin and So (2001) who also found that hybrid tests which applied

their form of recursive demeaning to near-optimal tests yielded no finite sample power

gains.
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its hybrids, suffer slightly less from over-sizing, though there is very little to

choose between any of the tests once T = 150.

Finally, to check size and power robustness to non-normality, we gener-

ated data from the model (3) under Assumption 1 with y1 and ²t generated

from a highly skewed distribution, χ2(1) − 1, and also from a heavy-tailed

distribution, Students’ t with five degrees of freedom, t(5), (setting c = 0

and y1 = 0 for the null case). Tests were based on fitting (6) with p = 0,

using finite sample critical values derived under the normality assumption.

Table 5 shows the empirical size and power of nominal 0.05-level tests, in

the constant only case with T = 75. The empirical sizes are all very close

their nominal value. Under the alternatives, as c deviates from zero, for

both the χ2 and t disturbances, the picture remains almost identical to the

corresponding situation for normal disturbances seen in Table 2, with REC,

WS, and MAX emergent as the dominant trio. Thus, the possibility of

non-normality in the disturbance terms would not seem to a pertinent issue

in determining the choice of test.

4. CONCLUSIONS

It is now well known that the t−ratio variant of the Dickey-Fuller test has
inferior power compared with some quite easily implemented modifications.

We have analysed the performance of the DF test and eleven such modifi-

cations. Three of these are based on alternatives to OLS detrending prior

to fitting the usual DF regression, without intercept or trend, to the resid-

uals. Two others retain, at least implicitly, OLS detrending, but exploit

the coincidence of covariance structures of forward- and backward-looking

finite order stationary AR models under Gaussianity. Finally, six hybrid

tests result from applying the principles of this last pair to the residuals

from the three alternative detrending procedures. We have explored both

asymptotic and finite sample properties of all the tests. On the basis of our

results, for practical application we would recommend two tests in particu-

lar - either the REC test of Taylor (2002) or the MAX test of Leybourne

(1995). Our power and size simulations suggest there is generally very little

to choose between thee two, and there seems no material advantage to be

gained in combining the two tests together in hybrid fashion. The REC and

MAX tests also have the advantage that they are relatively straightforward

to compute (particularly the latter) and, unlike GLS-based tests, do not

depend on the choice of user-supplied parameters.
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APPENDIX

PROOF OF THEOREM 1. First we prove the constant only case. Note

that yrT =
PrT
s=2 ρ

rT−s²s+ρrT−1y1 and let ỹt = yt−y1. Since T−1/2PrT
s=2 ρ

rT−s²s ⇒
σWc(r) [by Phillips (1987)], ρ

rT → erc, and T−1/2y1 ⇒ σZc, we have

T−1/2ỹrT ⇒ σ{Wc(r) + (e
rc − 1)Zc} = σJc(r). By the continuous mapping

theorem, we can immediately obtain T−3/2
PT
t=2 ỹt−1 ⇒ σ

R 1
0 Jc(r)dr = σHc

and T−2
PT
t=2 ỹ

2
t−1 ⇒ σ2

R 1
0 J

2
c (r)dr = σ2Gc. Next consider

T−1
TX
2

ỹt−1²t = (2ρ)−1(T−1ỹ2T − T−1
TX
t=2

²2t − 2cT−2
TX
t=2

ỹ2t−1

−2cT−1/2y1T−3/2
TX
t=2

ỹt−1) + op(1)

⇒ σ2{0.5(Jc(1)2 − 1)− c(Gc + ZcHc)} = σ2Ec.

From (4) we have

T (ρ̂− ρ) = (0, 1)

"
1 T−3/2

PT
t=2 ỹt−1

T−3/2
PT
t=2 ỹt−1 T−2

PT
t=2 ỹ

2
t−1

#−1 "
T−1/2

PT
t=2 ²t

T−1
PT
t=2 ỹt−1²t

#
+ op(1)

⇒ (0, 1)A−1f Bf

where

Af =

"
1 σHc

σHc σ2Gc

#
, Bf =

"
σW (1)

σ2Ec

#
.

Using the fact that T−1
PT
t=2 ²̂

2
t

p→ σ2, it can be shown that (ρ̂−ρ)vâr(ρ̂)−1/2 ⇒
(0, 1)A−1f Bfσ

−1{(0, 1)A−1f (0, 1)0}−1/2. Note that DFf = c{Tvâr(ρ̂)}−1/2+
(ρ̂− ρ)vâr(ρ̂)−1/2 ⇒ c(Gc −H2

c )
1/2 + {Ec −HcW (1)}(Gc −H2

c )
−1/2 which

simplifies to the result in the theorem.

Now we consider the reverse regression (5). Given that the reverse data

generating process is

vt = ρvt−1 + ηt

where ηt = (1− ρ2)yT+1−t − ρ²T+2−t, we have

T (ρ̃−ρ) = (0, 1)
"

1 T−3/2
PT
t=2 ṽt−1

T−3/2
PT
t=2 ṽt−1 T−2

PT
t=2 ṽ

2
t−1

#−1 "
T−1/2

PT
t=2 ηt

T−1
PT
t=2 ṽt−1ηt

#

where ṽt = vt−y1. It can be shown that T−3/2PT
t=2 ṽt−1 ⇒ σHc, T

−2PT
t=2 ṽ

2
t−1 ⇒

σ2Gc, T
−1/2PT

t=2 ηt ⇒ −σ{W (1) + 2c(Hc + Zc)} and T−1
PT
t=2 ṽt−1ηt ⇒
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−σ2{Ec + 1 + 2c(Gc + ZcHc)}. Hence, we have T (ρ̃ − ρ) ⇒ (0, 1)A−1r Br
where

Ar = Af , Br =

"
−σ{W (1) + 2c(Hc + Zc)}

−σ2{Ec + 1 + 2c(Gc + ZcHc)}

#
. (7)

The above result together with T−1
PT
t=2 η̃

2
t

p→ σ2 implies that (ρ̃−ρ)vâr(ρ̃)−1/2 ⇒
(0, 1)A−1r Brσ−1{(0, 1)A−1r (0, 1)0}−1/2. Note that DFr = c{Tvâr(ρ̃)}−1/2 +
(ρ̃−ρ)vâr(ρ̃)−1/2 ⇒ c(Gc−H2

c )
1/2+{−Ec−1−2cGc+Hc(W (1)+2cHc)}(Gc−

H2
c )
−1/2 which simplifies to the result in the theorem. Once we obtain these

two results, then we have MAX = max(DFf ,DFr) ⇒ max(F0, R0) by the

continuous mapping theorem.

We now turn to the trend case. Since the proof is very similar to the

constant only case, its detail is not presented. The only additional part is

to establish the following limits:

T−5/2
TX
t=2

tỹt−1 ⇒ σ

Z 1

0
rJc(r)dr = σMc

T−3/2
TX
t=2

t²t = T−1/2ỹT − T−3/2
TX
t=2

ỹt−1 − cT−5/2
TX
t=2

tỹt−1

−0.5cT−1/2y1 + op(1)
⇒ σ{Jc(1)−Hc − c(Mc + 0.5Zc)}

T−5/2
TX
t=2

tṽt−1 = T−3/2
T−1X
t=1

ỹt − T−5/2
T−1X
t=1

tỹt + op(1)

⇒ −σ(Mc −Hc)

T−3/2
TX
t=2

tηt = −2cT−3/2
T−1X
t=1

yt + 2cT
−5/2

T−1X
t=1

tyt − ρT−1/2
TX
t=2

²t−1

+ρT−3/2
TX
t=2

t²t−1 + op(1)

⇒ σ{Jc(1)− (1 + 2c)Hc + cMc −W (1)− 1.5cZc}.
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Table 1. Asymptotic local power at nominal 0.05-level.

constant case trend case

c -5 -10 -15 -20 -25 -5 -10 -15 -20 -25

ENV .20 .52 .83 .97 1.0 .10 .24 .49 .74 .91

DF .13 .33 .62 .86 .97 .09 .19 .38 .62 .83

GLS .19 .44 .63 .76 .84 .10 .24 .46 .68 .83

GLSu .15 .38 .69 .90 .98 .10 .24 .47 .73 .91

REC .19 .50 .81 .96 1.0 .10 .24 .49 .74 .91

WS .20 .51 .83 .96 1.0 .10 .24 .49 .74 .91

MAX .20 .50 .82 .96 1.0 .10 .24 .49 .74 .91
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Table 2. Finite sample power at nominal 0.05-level, p = 0.

T = 75.

constant case trend case

c -5 -10 -15 -20 -25 -5 -10 -15 -20 -25

DF .13 .34 .66 .89 .98 .09 .20 .41 .68 .88

GLS .19 .50 .78 .92 .97 .10 .25 .51 .78 .93

GLSu .15 .40 .73 .93 .99 .10 .24 .49 .76 .92

REC .19 .51 .83 .97 1.0 .10 .25 .51 .78 .94

WS .20 .52 .84 .97 1.0 .10 .25 .51 .78 .94

MAX .19 .51 .84 .97 1.0 .10 .25 .51 .78 .94

GLSWS .19 .50 .77 .90 .96 .10 .25 .51 .77 .92

GLSWS
u .20 .52 .84 .97 1.0 .10 .25 .51 .78 .94

RECWS .19 .51 .83 .97 1.0 .10 .25 .51 .78 .93

GLSMAX .19 .50 .77 .91 .97 .10 .25 .52 .78 .93

GLSMAXu .19 .51 .84 .97 1.0 .10 .25 .51 .79 .94

RECMAX .19 .51 .84 .97 1.0 .10 .25 .51 .78 .94

T = 150.

constant case trend case

c -5 -10 -15 -20 -25 -5 -10 -15 -20 -25

DF .12 .33 .63 .87 .97 .09 .19 .39 .65 .85

GLS .19 .46 .72 .85 .92 .10 .25 .49 .75 .90

GLSu .14 .38 .69 .91 .96 .10 .24 .49 .75 .92

REC .18 .50 .82 .97 1.0 .10 .24 .49 .76 .92

WS .19 .50 .83 .97 1.0 .10 .25 .50 .77 .93

MAX .19 .50 .83 .97 1.0 .10 .24 .50 .76 .93

GLSWS .19 .47 .72 .86 .92 .10 .25 .49 .74 .90

GLSWS
u .19 .51 .83 .97 1.0 .10 .25 .50 .77 .93

RECWS .18 .50 .82 .97 1.0 .10 .25 .50 .76 .93

GLSMAX .19 .47 .72 .86 .92 .10 .25 .49 .75 .90

GLSMAXu .18 .50 .82 .97 1.0 .10 .24 .49 .76 .93

RECMAX .19 .50 .82 .97 1.0 .10 .25 .50 .76 .93
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Table 3. Finite sample power at nominal 0.05-level, pmax = 4.

T = 75.

constant case trend case

c -5 -10 -15 -20 -25 -5 -10 -15 -20 -25

DF .13 .30 .54 .74 .84 .08 .17 .32 .51 .69

GLS .17 .40 .61 .72 .77 .09 .20 .38 .58 .73

GLSu .15 .34 .59 .78 .86 .09 .20 .38 .59 .74

REC .18 .43 .69 .82 .88 .09 .21 .40 .60 .74

WS .17 .40 .62 .76 .84 .09 .19 .36 .53 .67

MAX .18 .43 .71 .86 .92 .09 .20 .40 .62 .79

GLSWS .17 .37 .54 .64 .67 .09 .20 .36 .51 .62

GLSWS
u .17 .40 .62 .76 .83 .09 .20 .36 .53 .65

RECWS .17 .40 .61 .75 .82 .09 .20 .35 .52 .63

GLSMAX .18 .42 .64 .75 .80 .09 .21 .41 .62 .77

GLSMAXu .18 .44 .71 .85 .91 .09 .22 .42 .64 .78

RECMAX .18 .43 .71 .86 .91 .09 .21 .41 .63 .79

T = 150.

constant case trend case

c -5 -10 -15 -20 -25 -5 -10 -15 -20 -25

DF .13 .32 .57 .78 .89 .09 .19 .36 .56 .74

GLS .18 .41 .61 .83 .80 .09 .22 .41 .61 .75

GLSu .15 .37 .63 .82 .91 .10 .22 .41 .63 .79

REC .18 .45 .72 .87 .93 .10 .22 .42 .64 .79

WS .18 .44 .70 .85 .93 .09 .21 .40 .60 .75

MAX .18 .46 .74 .90 .96 .10 .22 .43 .66 .83

GLSWS .18 .40 .59 .70 .77 .09 .22 .39 .56 .69

GLSWS
u .18 .44 .70 .85 .93 .09 .21 .40 .59 .73

RECWS .17 .43 .69 .84 .92 .09 .21 .39 .58 .72

GLSMAX .18 .42 .63 .76 .82 .10 .23 .43 .64 .78

GLSMAXu .18 .45 .74 .89 .95 .10 .22 .44 .66 .81

RECMAX .18 .46 .74 .90 .96 .10 .22 .44 .65 .82

15



Table 4. Finite sample size at nominal 0.05-level, pmax = 4.

T = 75.

constant case trend case

φ, θ 0.5,0 -0.5,0 0,0.5 0,-0.5 0.5,0 -0.5,0 0,0.5 0,-0.5

DF .04 .05 .12 .05 .04 .05 .19 .05

GLS .04 .05 .11 .05 .04 .05 .18 .05

GLSu .05 .05 .13 .06 .04 .05 .19 .06

REC .04 .05 .13 .05 .04 .05 .18 .05

WS .05 .05 .11 .05 .04 .05 .16 .05

MAX .04 .05 .13 .05 .04 .05 .18 .05

GLSWS .05 .04 .10 .05 .04 .04 .14 .04

GLSWS
u .05 .05 .11 .05 .05 .04 .15 .04

RECWS .04 .05 .11 .04 .04 .05 .15 .04

GLSMAX .04 .05 .11 .05 .04 .05 .16 .05

GLSMAXu .04 .05 .13 .05 .03 .05 .17 .04

RECMAX .04 .04 .13 .05 .04 .05 .17 .05

T = 150.

constant case trend case

φ, θ 0.5,0 -0.5,0 0,0.5 0,-0.5 0.5,0 -0.5,0 0,0.5 0,-0.5

DF .05 .05 .09 .05 .05 .05 .12 .05

GLS .05 .05 .09 .05 .05 .05 .12 .05

GLSu .05 .05 .10 .05 .05 .05 .12 .05

REC .05 .05 .10 .04 .04 .05 .12 .05

WS .05 .05 .09 .04 .05 .05 .11 .04

MAX .05 .05 .10 .04 .04 .05 .12 .05

GLSWS .05 .05 .08 .04 .05 .05 .10 .04

GLSWS
u .05 .05 .09 .04 .05 .05 .11 .04

RECWS .04 .05 .09 .04 .04 .05 .11 .04

GLSMAX .05 .05 .09 .05 .04 .05 .11 .05

GLSMAXu .04 .05 .10 .04 .04 .05 .11 .04

RECMAX .05 .05 .10 .04 .05 .05 .12 .05
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Table 5. Finite sample size and power at nominal 0.05-level, constant case,

p = 0, T = 75.

χ2(1)− 1 t(5)

c 0 -5 -10 -15 -20 -25 0 -5 -10 -15 -20 -25

DF .05 .12 .34 .66 .89 .98 .05 .12 .34 .66 .89 .98

GLS .04 .18 .51 .79 .92 .95 .05 .18 .50 .78 .91 .96

GLSu .05 .14 .40 .73 .93 .99 .05 .15 .40 .73 .93 .99

REC .04 .18 .51 .84 .96 .99 .05 .18 .51 .84 .97 1.0

WS .05 .18 .52 .84 .96 .99 .05 .18 .52 .85 .97 1.0

MAX .05 .18 .52 .84 .96 .99 .05 .18 .51 .84 .97 1.0

GLSWS .04 .18 .51 .79 .91 .94 .05 .18 .50 .77 .90 .95

GLSWS
u .05 .18 .52 .84 .96 .99 .05 .18 .52 .84 .97 1.0

RECWS .04 .17 .51 .84 .96 .99 .05 .18 .51 .83 .97 1.0

GLSMAX .04 .18 .51 .80 .92 .95 .05 .18 .50 .78 .91 .96

GLSMAXu .04 .18 .52 .84 .96 .99 .05 .18 .51 .84 .97 1.0

RECMAX .04 .17 .51 .84 .97 .99 .05 .18 .51 .84 .97 1.0
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