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Abstract

In many real phenomena the behaviour of a certain variable, subjected
to different regimes, depends on the state of other variables or the same
variable observed in other subjects, so the knowledge of the state of the
latter could be important to forecast the state of the former. In this paper
a particular multivariate Markov Switching model is developed to represent
this case. The transition probabilities of this model are characterized by

the dependence on the regime of the other variables. The estimation of the
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transition probabilities provides useful informations for the researcher to
forecast the regime of the variables analyzed. Theoretical background and

an application are shown.
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1. Introduction

The Markov Switching (MS hereafter) model, introduced in econometrics by
Hamilton (1989), has been largely used for the study of phenomena with two
or more unobservable regimes, represented by states of a Markov chain. For ex-
ample, it was used for the representation of business cycle (Hamilton, 1989), for
the study of segmented trends in exchange rates (Engel and Hamilton, 1990, En-
gel, 1994), for the evaluation of monetary effects on output (Garcia and Schaller,
2002). Generally, univariate approaches are used for the applications in these
fields and the extensions to multivariate cases look for common states for the
same variable observed in different subjects (countries, markets, firms, etc.) or
for several different variables. For example, Kim and Nelson (1998) extract a
common component subjected to two different regimes from 4 economic variables
and interpret it as the common cycle; Krolzig (1997) extends the MS model to

the VAR case, considering a common state for all the variables considered.



The multivariate MS model has not received large attention, essentially be-
cause it does not provide easily interpretable results in terms of inference on the
regimes (see, for example, the results in Engel and Hamilton, 1990). Maybe this
fact is due to the common practice of econometricians to attribute to each regime
an economic interpretation; for example, in the analysis of the business cycle,
two states are considered representing respectively the recession and the growth
regimes. Anyway the correspondence between regimes and economic periods is
subjective (see, for example, the considerations in Anas and Ferrara, 2002), and
the inference on the regime is important only for particular phenomena, as the
business cycle, in which the purpose is to subdivide the time interval in spans
with a certain interpretation. When the interest is devoted to the forecast of the
regime, the focus is on the interpretations of the probabilities deriving by the
Markovian structure imposed in the model. The model proposed in this paper
deals with the latter kind of interest.

In this paper, we deal with n variables depending on a certain number of
regimes; they could be different variables or the same variable observed on n
subjects. The starting point runs from the considerations that it is well difficult
to suppose that the same regime structure is followed by all the n variables; this

could be a convenient hypothesis for the business cycle analysis again, to extract a



common component representing the comovements among variables. But in other
applications, such as disease diffusion, financial markets, economic development,
the regimes follow different dynamics in different variables. On the other hand,
some links among the dynamics of the unobserved regimes probably exist and
the regime of a variable could lead the regime of another variable; for example,
the economic growth of a “leader” country would influence the economy of other
countries in the next time and the knowledge of a regime for a variable could help
to forecast the regime of another variable.

In this paper we propose an MS model in a multivariate framework, allowing
different variables representing the regimes. The dynamics of the regime of a
variable depends on the dynamics of the regime in the other variables. We call
this model the Multi-State Markov Switching (MSMS) model. The aim of this
paper is to formalize the MSMS model and to show its usefulness.

In the next section the new model will be illustrated and in section 3 an appli-
cation will analyze the relationship existing between the turnover and new orders
series to show as the probabilities change when the state of the leading variable
changes; the results will be compared, in terms of forecasting performance, with

the multivariate MS model and two univariate MS models. Final remarks follow.



2. The Model Specification

Let y; an nx1 multivariate time series observed for n different variables. We

suppose that it follows a VAR process:

P
yi = Bug,+ Z DLyt n+ &, t=1,..T (2.1)

h=1

The vector pg, contains n constants and it is indicized by a multiple random vari-
able Sy = (S1.4, S2.ty -+, Sn,t). We call this variable the multiple regime (or multiple
state) at time ¢. The univariate random variable s;; (j = 1,...,n) represents the
state at time ¢ for the variable j and can assume k possible values; for the sake of
simplicity we suppose k = 2 and denote these states with 0 and 1 (the extension to
a generic k is simple but notationally cumbersome). The difference with respect
to the multivariate MS model is that the realization at time ¢ of the dichotomous
variable s;; can be different from the realization of s; (i # j). The nxn matrix
B ={b;} (i, =1,...,n) is a matrix of coefficients with elements on the diagonal
equal one. In practice, the intercept of the variable y;;, contained in the vector

Y¢, 1s equal to

/J“s];t + ﬂjluslvt +o ﬂjnusmt



in which it is possible to separate an “autonomous” intercept p s from the effect

due to the other variables. ®;, (h =1,...,p) is a matrix of unknown coefficients.
The n-vector of disturbances €; is uncorrelated along the time but correlated

across the variables, to take into account their mutual influence. We suppose that

€; 1s normally distributed with mean 0 and covariance matrix:
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where p;; represents the correlation between couples of disturbances (1,j=1,...,n).

Using this notation, we mean that also the variance and the covariances change
with the multiple regime S;. Clearly the number of coefficients to be estimated
increases with n, so, in some cases, it will be convenient to adopt some reparame-
terization for the coefficients p;;; for example, if the n variables represent spatial

units, we can use:

Pis = /)dij

where d;; 1s a known distance measure between the units 72 and j. In the example



of section 3, we use only 2 variables, so reparameterization does not need.

Of course (2.1) can be modified considering an MA structure or constraining
some coeflicients to be zero. If the multiple regime S; is a single variable, the
previous model is a simple MS model, with the same regime for all the variables.

The multiple regime S; is not observable and its distribution is unknown; we
suppose that it follows an ergodic Markov chain, in which the probability of a
particular realization of S; depends only on the realization of S;_;. The possible
realizations of S; are 2", so the Markovian transition probability matrix contains

2"x2" elements; the generic element of this matrix will be:

Pr [St|St71] = Pr [Sl,t; 8925 -3 Snt|S1,t-1,52,t—15 -+, Sn,tfl] .

The states s1¢, Sog, ...y Sy, conditional on Sy 1 = (S14-1,524 1,--s Sne-1), are

mutually independent so that:

Pr [St|St,1] =Pr [31,t|St,1] Pr [82’t|St71:| ... Pr [sn,t|St,1] . (22)

The probabilities Pr[s;;|S; 1] can be parameterized with logistic functions' to

!Filardo (1994) and Diebold et al. (1994) use the logistic function to parameterize the time-
varying transition probabilities of a univariate MS model.



take into account the influence of the regimes relative to the other variables:

Prloye— Ofsyr s — 0,8 0 — —2 a0 O i) g
1+ exp <19j,00 + OQ’OS,j,t,l)
exp <19j,00 + OQ’OS,j,t,l)
1+exp <19j,00 + OQ’OS,M, 1)
exp <19j,11 + Ogyls,j,t,l)
1+exp <19j,11 + Bgyls,j,t,l)
exp <T9j,11 + 9;,1Sfj,t71)
1+ exp <19j,11 + Ogyls,j,t,l)

Pr [Sj,t = 1|3j,t71 = O)S,j’tfl] = 1-—

Pr [Sj,t = 1|8j,t71 = 1;Sfj,t71] =

Pris;; =0|s;;-1=1,S_,: 1] = 1—
In this case 8,, = <19j,L17 e 9506-1), g4y - - -T9j,m)/ (t=0,1)isa (n—1)-vector
of unknown parameters and S_;, ; is equal to the multiple regime vector S,_;,
excluding the j — th element s;; ;.

The estimation of the vectors 8;, (v = 0,1) provides the estimation of the
conditional probabilities for each regime and the estimation of the full matrix with
elements expressed by (2.2). Of course, the number of parameters to be estimated
could result large and could affect the goodness of the estimation procedure;
anyway, generally the priors of the researcher would constraint some parameters
in 8,, equal zero, as we will see in the successive section.

The estimation of the transition probabilities matrix can be utilized to perform

the well-known procedure of filtering proposed by Hamilton (1990) and Kim (1994)



for simple MS models and to provide the 2" filtered probabilities Pr [S;|¥,], where
W, represents the information available at time ¢. In practice, this procedure is
valid for a generic ¢—states MS model; the same procedure can be utilized for the
MSMS model, putting ¢ = 2" and imposing (2.2) and the parameterization (2.3)
to obtain the transition probabilities matrix. The filtering procedure is presented
in the final appendix.

Resuming, the main results of the estimation procedure are:

1. the estimates of the probabilities Pr[s;:|S; 1]: they show how the proba-
bility to stay in the same regime or to change it for the variable j changes

when the regimes relative to the other variables change;

2. the estimate of the transition probabilities matrix P = {Pr [S;|S; ;]}: putting
the possible states at time £ — 1 in correspondence to the rows of P and the
possible states at time ¢ in correspondence to the columns of P, the rows
will indicate what is the most probable scenario (a particular combination
of regimes for the various variables) at time ¢ given a certain scenario at

time t — 1.

These interpretations would be clarified in the next sections, applying the

(2.1)—(2.2) model to real series.



3. An Example: Forecasting the Italian Turnover Index

In this section we show a simple example in which the prior informations about
the phenomenon can help to specify the dependencies among the states, favoring
the specification of a particular MSMS model.

It is a common practice to consider the industrial new orders as a leading
indicator of the industrial turnover. We consider the monthly trend-cycle series
of indices of the Italian new orders and turnover from January 1990 to June 2002
(obtained using the TRAMO-SEATS routine, Gémez and Maravall, 1996). To
specify the MSMS model we can use this prior information, in the sense that we
can use a model in which the new orders can determine the level and the regime
of the turnover, but not vice-versa. We use a model like (2.1) with p = 1; in
addition, in the matrix ®; only the diagonal elements were significant. Labeling
with 1 the turnover and 2 the new orders, the model for the first differences of

the logs of the variables is:

1 p @11 O
yr = Hs, + Yi-1+ &
01 0 by
2
Ol,su pal,sl,tOQ,SQ,t
e, ~ IIN|o.
2
pal,sl,tOQ,SQ,t 02,527t
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For the estimation of the transition probabilities matrix we use the parameteriza-
tion (2.3); using our priors on the dependence relationships, they are parameter-

1zed as:

€xXp (191,00 + V1,0252,4-1)
1+ exp (V1,00 + P1,0252,6-1)
exp (192,00)
1+ exp (Y2,00)
exp (U1,10 + U1,1252,0-1)
1+ exp (V1,10 + U1,1252,-1)
exp (192,10)
1 + exp (92,10)

Pr [Sl,t = 0|31,t71 =0, 32,#1] =

Pr [32,t = 0|32,t71 =0, 31,1&71] =

Pr [Sl,t = 1|81’t,1 = 1) 821t71] =

Pr [SQ’t = 1|82’t,1 = 1) Slytfl] =

The estimates of the coefficients are shown in Table 1. Note that the intercept
of the turnover index (g, + Bitg,, h,7 = 0,1) changes with the regimes s;; and
S9t, adapting to the various scenarios; in particular it will be -0.33, -0.01, 0.24,
0.56.

Of more interest is the estimation of probabilities in (2.3), because we have
a clear interpretation of the possibility to change the regime for a single series,
given a certain scenario in the previous month. Let:

P = Prls;e =ils1e 1 = h,ss; 1 =1] i=1,2 i hr=0,1

11



These probabilities are shown in Table 2.

The influence of s9; on the changes in regime for the turnover are evident; in
fact, the probability of variable 1 to stay in regime 0, when the variable 2 was
in regime 0 in the previous month, is 0.95, but decreases to 0.48 when variable 2
was in regime 1. In a similar way, the turnover remains in regime 1 with a 8%
of chances, when the new orders was in the same regime, but switches to regime
0 with a probability equal to 47% (p((ﬂo =1- p%o) when the variable 2 was in
regime ().

Let us denote:

Dinpro = Pr [Sl,t =1,89¢ = h|81,t71 =T,82¢t-1= U] , t,horv=0,1;

we can obtain by (2.2) the transition probability matrix shown in Table 3.

The rows of this matrix sum up to one. In this case we can deduce the most
probable scenario at time ¢, given the scenario at the previous month. When both
the variables are in the same state at time ¢ — 1, it is probable to maintain this
scenario in the next month. When the new orders index is in a different state
with respect to the turnover at time ¢ — 1, the most probable scenario at time ¢

will be the persistence of this scenario or the alignment of turnover to the same

12



scenario of new orders.

The performance of the MSMS specification with respect to the classical mul-
tivariate MS model and the univariate MS model can be evaluated in terms of
forecasts of the turnover index. We estimate a multivariate MS (MMS) model,

with a similar specification of the previous MSMS:

Yo = Mg, +Pryr 1+,

2

Ol,sM pal,sl,tJZSQ,t
e, ~ IIN|o.
2
PO1,51,02,85, 02,527t
¢11 ¢1,2

’

where s; 1s the common state variable and ®; = (the coefficient

0 9y,

¢, In this case has resulted significant). The inadequacy of a multivariate model
with a common state is confirmed by the fact that, for both the variables, the
intercepts in the two states were not significantly different. In practice, for MMS
model, only the variances are switching.

Some improvement is obtained estimating univariate MS models only for the
turnover. Two models are adopted for this case: a purely autoregressive model

(UMS) and a model with new orders as explicative variable (UXMS); the latter

13



1s:

Yie = Mg, + Pryi1+ 1y,

si ~ 1IN (0,07,,).

Of course, y; ¢ indicate the turnover index whereas ®, = l D11 Do ] , and UMS
can be obtained by UXMS constraining ¢, , = 0.2

The forecasting performance is evaluated with four typical indices (Root Mean
Squared Error-RM SE, Mean Absolute Error-M AE, Theil U statistic-U, Theil U
statistic measured on percentage changes-Up; see, for example, Greene, 2000, sec-
tion 7.11.2). For the MSMS model, the forecast y;, conditional on the information

at time ¢, is obtained by (the hat indicates the estimates):

2 2
Ye=>_> (Bﬁst + ‘1’1th1) Pr sy = 1,89 = h|W,],

i=1h=1

2 Another univariate model, the time varying transition probability one (Filardo, 1994,
Diebold et al., 1994), was estimated to forecast the turnover, using the lagged new orders as
exogenous variable in the transition probabilities time varying formula, but it has not produced
good results, so it is not furthermore described.

14



whereas for the MMS, UMS, UXMS models:

2

Vi :Z <ﬁst + (i’l)’tA) Pr[s; =i|W¥].

=1

In Table 4 the results are showed. For all the loss functions, the best perfor-
mance 1s shown by the MSMS model, which strongly improves the MMS and the
UMS approaches. The good results in terms of Theil statistics, with respect to
the other models, reflects the ability of MSMS model to track the turning points
in the series.

The presence of the new orders as exogenous variable in UXMS helps to im-
prove the univariate model, obtaining results slightly worse than MSMS model;
anyway, the MSMS model provides various additional information about the co-

movements between the variables and the probable scenarios.
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Table 3.1: Estimates of the MSMS model and relative standard errors

H1o0 Ha1 Hao Hoy &} P11 Paa
—0.06 051 —-0.04 0.23 —-1.16 0.75 0.77
(0.05) (0.05) (0.04) (0.06) (0.40) (0.02) (0.03)

910 g1 920 021 P

0.14 0.11 0.31 0.43 0.66

(0.02) (0.01) (0.02)  (0.03)  (0.04)

191,00 191,02 192,00 191,10 191,12 192,10

289 —295 145 0.12 1.71 1.16

(0.84) (1.11) (0.49)  (0.63)  (1.02)  (0.35)

Table 3.2: Conditional probabilities for the regimes of each series

(1)

(1)

(1)

Po.oo | Po.o1 Piio

0.947 | 0.485 0.531

Pﬁl P(()Q(%O = P(()Q%O ng(%l = Pﬂl
0.862 | 0.809 0.762
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Table 3.3: Estimated transition probabilities matrix

Doo,.. DPoi,. Pro. Pi1,.

w00 | 0.767 0.181 0.042 0.010
o1 ]0.115 0.369 0.123 0.393
L0 0.380 0.089 0.430 0.101
L1111 0.033 0.105 0.205 0.657

VTR T

Table 3.4: Loss functions to evaluate the forecasts with several models.

RMSE | MAE | U(10%) | Ua
MSMS | 0.2744 | 0.2124 | 0.2795 | 0.4036
MMS | 0.2878 | 0.2228 | 0.2932 | 0.4223
UMS | 0.2874 | 0.2253 | 0.2928 | 0.4201
UXMS | 0.2769 | 0.2169 | 0.2822 | 0.4059

17



4. Concluding Remarks

In this paper a new approach to analyze multivariate series subject to changes in
regimes was proposed and we name it MSMS model. It consists in an extension
of the classical MS model to the multivariate case, but allowing separate not
independent state variables for each series. The main novelty of this model is
that the state of each variable does not depend only on its state at the previous
time, but also on the states of the other variables. In this way it is possible to
capture the comovements among variables and their dependencies. In particular,
the MSMS model provides useful interpretation in the dynamics of the states,
pointing out the most probable scenarios for the next time, given the actual
states, and the effects of changes in regimes of the other variables.

The structure of the MSMS model seems to be proper for the analysis of
the same variable observed in different countries (space-time series) and variables
linked by leading-lagging relationships. Our example deals with economic vari-
ables, but this model could be useful in biometrics (for example for the study of
disease diffusion among countries) or in social sciences.

In this paper we have stressed the specification aspects and the methodolog-

ical background, whereas the hypothesis test theory was not treated. It will be

18



interesting to analyze if the methodologies developed for the classical MS models
to detect the number of regimes (Hansen, 1992 and 1996, Garcia, 1995, Otranto
and Gallo 2002) could be extended to the MSMS models.

The extension to k > 2 states is conceptually simple,but the dimension of
the transition probabilities matrix will increase to k"xk™; the estimators could
be inefficient and their convergence would not be guaranteed. Computational
techniques developed for MS models (for example, MCMC algorithms described
in Kim and Nelson, 1999) could help.

Other possible extensions can consider as switching also the AR coefficients in

(2.1) or insert exogenous observed variables in (2.3), to obtain the time-varying

transition probabilities (Filardo, 1994, Diebold et al., 1994).

Appendix

In this appendix the steps to filter the series and obtain the various probabilities
explained in the paper are detailed. The filter is a simple extension of the well-
known filter of Hamilton (1990) and Kim (1994); the reader is referred to the
chapter 22 of Hamilton (1994) for the proofs of the following relationships, whereas
here the only algorithms of filtering and smoothing are described.

Let &, the (2"x1) vector containing the probabilities of each possible multiple

19



states, conditional on the information at time ¢; in other terms, the generic element
of ft‘t isPr{siy =1,890=7,...8 = k|¥. Furthermore, let 1, the (2"x1) vector
containing the densities of y; corresponding to the 2" possible multiple states; for
the normality of the n-vector €; in (2.1), the generic element of 7, is the density

of y; conditional on a particular multiple state S;:

—-n — 1 p ! B P
(2m) " |2, | exp {—5 (yt —Bug,— ) (I)hYth> DI (Yt —Bpg,— ) q’hYth) }
h=1 h=1

Denoting with ® the element-by-element product and with 1 a (2"x1) vector with

all the elements equal 1, the filter is composed by the following two steps:

1 ‘Ett _ Eet-10M
| 1’<€t|t—1®"7t)

Note that the denominator of the point 1) is the density of a mixture of 2" Nor-
mal distributions and represents the density function f (y.|¥;), not conditional
on the multiple state. Iterating the two steps for t = 1,...,T", the log-likelihood
;T:l log f (y¢|¥,) will be obtained.

To start the algorithm, a starting value &,y has to be chosen. Using the prop-

erties of the ergodic Markov chains, an appropriate choice are the unconditional

20



probabilities:

€t =Pr [Sl,t = Z‘782’t = j). . -Sn,t = ]{7],

they can be obtained by (see Hamilton, 1994):
€t = (D/D)il D/i2'n.<|,17

where igny is the (2"41)-th column of a (2"+1)x(2"+1) identity matrix and:

where Ipn is the (2"x2") identity matrix.
To obtain the smoothing probabilities for each multiple state, it is sufficient

to iterate for t =T"— 1, ..., 1,the following formula:

'ft\T = €t\t © {P [€t+1\T <_) €t+1\t”

where (<) denotes the element-by-element division. In this case, the starting val-
ues &7y, &, and &, ), are provided by the previous filtering. If we are interested

in the inference on the regime, Pr[s;; = i|®y| (j = 1,...,n, i = 0,1) is obtained

21



summing the 2" ! elements of &yr with ;¢ = 1.
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