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the one-period utility function.
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1 Introduction

In the context of dynamic discrete decision models, the difference between the utilities of two choice al-

ternatives is not identified even when the discount factor and the distribution of unobservables are known

(see Rust, 1994, pp. 3125-3130). This result contrasts with the case of static discrete choice models, where

utility differences are identified and they can be used to evaluate behavioral responses to counterfactual

changes in the utility function. Although differences between conditional choice value functions are identi-

fied in dynamic models (see Hotz and Miller, 1993, and Magnac and Thesmar, 2002), these value functions

cannot be used to evaluate the behavioral effects of changes in one-period utilities. This paper shows the

nonparametric identification of the difference between the value of choosing always the same alternative and

the value of deviating one period from this policy. We prove that, given these values, one can identify the

behavioral responses to policy interventions that modify one-period utilities.

2 Model

Time is discrete and indexed by t. At every period t an agent observes the vector of state variables st and

chooses an action at ∈ A = {1, 2, ..., J} to maximize the expected and discounted sum of current and future

utilities E
hP∞

j=0 β
j U(at+j , st+j) | at, st

i
, where β ∈ (0, 1) is the discount factor, and U(at, st) represents

the utility at period t. The agent has uncertainty on future values of state variables. His beliefs about future

states can be represented by a transition probability p(st+1|at, st). These beliefs are rational in the sense
that they are the true transition probabilities of the state variables. Let V (st) be the value function of this

problem. By Bellman principle of optimality this value function is the unique fixed-point of the contraction

mapping:

V (st) = max
a∈A

½
u(a, st) + β

Z
V (st+1) p(dst+1|a, st)

¾
(1)

The optimal decision rule α(st) is the arg maxa∈A of the term in brackets. From the point of view of the

observing researcher there are two types of state variables, st = (xt, εt), where the vector xt is observable to
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the econometrician and the vector εt is unobservable. The one-period utility is additive separable between

observable and unobservable variables: U(at, xt, εt) = u(at, xt) + ε(at), where εt(a) is the a-th component

of the vector of unobservable state variables εt = {εt(a) : a ∈ A}. We follow Rust (1994) and consider the
following assumptions on the joint distribution of the state variables.

ASSUMPTIONS: (1) The transition probability of the state variables factors as p(st+1|at, st) = g(εt+1)

f(xt+1|at, xt); (2) g is the density of εt and it is absolutely continuous with respect to the Lebesgue measure
in RJ ; and (3) xt has support X = {x(1), x(2), ..., x(M)}, where M is a finite integer.

Define the integrated value function S(xt) ≡
R
V (xt, εt)g(dεt). Taking into account the Bellman equation

in (1), we have that:

S(xt) =

Z
max
a∈A

©
u(a, xt) + εt(a) + β

P
x0∈X f(x0|a, xt) S(x0)

ª
g(dεt) (2)

The right-hand side of this equation is a contraction mapping in the integrated value function, and therefore

S(.) is the unique fixed point of this mapping (see Rust et al., 2002). Define also the integrated optimal de-

cision rules or optimal choice probabilities P (a|xt) ≡
R
I{α(xt, εt) = a}g(dεt). Finally, define the conditional

choice value functions v(a, xt) ≡ u(a, xt) + β
P

x0∈X f(x0|xt, a) S(x0).

3 Nonparametric identification of utilities

Suppose that there is a population of individuals who behave according to the previous model. We have

a random sample of n individuals from this population. In the sample we observe individuals’ decisions at

some period t, and observable state variables at periods t and t+1. We are interested in the nonparametric

estimation of the one-period utilities {u(a, x) : a ∈ A, x ∈ X}. Given the time-homogeneous Markov

structure of the model and Assumptions (1) to (3), we can identify nonparametrically from these data

the choice probabilities {P (a|x) : (a, x) ∈ A × X} and the transition probabilities {f(x0|x, a) : (a, x, x0) ∈
A×X ×X}.

The structure of the model implies two sets of restrictions on one-period utilities (see Magnac and

Thesmar, 2002). The first set of restrictions comes from Hotz-Miller invertibility Proposition (Hotz and

Miller, 1993). This Proposition establishes that there is a one-to-one relationship between the vector of value

differences ṽ(xt) ≡ {v(a, xt)− v(J, xt) : a ∈ A−J} and the vector of choice probabilities P (xt) ≡ {P (a|xt) :
a ∈ A−J}, where A−J = {1, 2, ..., J − 1}. Let Q(.) be this one-to-one mapping such that ṽ(xt) = Q(P (xt)),

and let Q(a, P (xt)) be the a−th element of this mapping, such that v(a, xt)−v(J, xt) = Q(a, P (xt)). Taking

into account the definition of v at the end of section 1, we can write these restrictions in matrix form as:

u(a)− u(J) + β (F (a)− F (J)) S = Q(a, P ), (3)

where u(a) is a vector with the M utilities associated with alternative a; F (a) is the M ×M matrix of

transition probabilities of x conditional to the choice of alternative a; S is the M × 1 vector with the values
S(x); and Q(a, P ) is the M × 1 vector with values Q(a, P (x)). An important property of the mapping Q is

that it depends on the distribution of the unobservables but not on any other primitive of the model (i.e.,

discount factor, utilities and beliefs).
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The second set of restrictions comes from the integrated Bellman equation in (2). Taking into account

that E (maxa∈A v(a, xt) + εt(a)) =
P

a∈A Pr (a|xt) E (v(a, xt) + εt(a) | xt, α(st) = a), we can re-write this

Bellman equation in matrix form as:

S =
¡
I − β F̄

¢−1
( ū(P ) + ē(P ) ) (4)

F̄ =
P

a∈A P (a) ∗ F (a) is the M ×M matrix of unconditional transition probabilities, where P (a) is the

vector of choice probabilities {P (a|x) : x ∈ X}, and ∗ is the element-by-element or Hadamard product.
ū(P ) =

P
a∈A P (a) ∗ u(a) is the M × 1 vector of expected utilities. ē(P ) =

P
a∈A P (a) ∗ e(a, P ) is the

M × 1 vector of expected epsilons, where e(a, P ) is the vector {e(a, P (x)) : x ∈ X} and e(a, P (x)) ≡
E(εt(a)|xt = x,α(st) = a). A corollary of Hotz-Miller invertibility Proposition is that the conditional

expectations e(a, P (x)) depend on the set of choice probabilities P (x) = {P (a|x) : a ∈ A} and on the
distribution of the unobservables, but they not depend on the discount factor, utilities or beliefs.

If we solve expression (4) into equation (3), we get that for any a ∈ A, u(a)− u(J) + β (F (a)− F (J))¡
I − βF̄

¢−1
( ū(P ) + ē(P ) ) =Q(a, P ). This system ofM(J−1) equations represents all the restrictions that

the model imposes on one-period utilities. It is straightforward to show that, without further restrictions,

the utility differences {u(a)−u(J) : a ∈ A−J} are not identified. Instead, we consider here the identification
of the following set of value differences:

ũ(a) ≡
n
u(a)− β F (a) (I − β F (J))−1 u(J)

o
−
n
u(J)− β F (J) (I − β F (J))−1 u(J)

o
(5)

In the right-hand-side of this expression, the second term in brackets is a vector with the expected present

values of choosing alternative J now and in the future. The first term in brackets is a vector with the present

values of choosing alternative a today, and then choosing alternative J forever in the future. Therefore, ũ(a)

is the vector of values of deviating one period from the policy of choosing always alternative J .

PROPOSITION 1: Suppose that the discount factor and the distribution of unobservables are known. Then,

the values {ũ(a) : a ∈ A} are nonparametrically identified. For any a ∈ A:

ũ(a) = Q(a, P )− β (F (a)− F (J) ) (I − β F (J))−1
¡
Q̄(P ) + ē(P )

¢
, (6)

where Q̄(P ) =
P

a∈A P (a) ∗Q(a).
Proof: If we multiply (element-by-element) the system of equations (3) by P (a), we sum the result over

a, and we solve for ū(P ), we have that: ū(P ) = u(J) + Q̄(P ) + β (F (J)− F ) S. Solving this expression

into (4), rearranging terms, and taking into account that (I − βF (J)) is a non-singular matrix, we get:

S = (I − β F (J))−1
¡
u(J) + Q̄(P ) + ē(P )

¢
. Solving this expression in (3) and taking into account that

I + βF (J) (I − βF (J))−1 is equal to (I − βF (J))−1, we get:

u(a)− u(J) + β (F (a)− F (J)) (I − β F (J))−1
¡
u(J) + Q̄(P ) + ē(P )

¢
= Q(a, P ) (7)

Rearranging terms and using the definition of ũ(a), we obtain equation (6). The elements in the right hand

side of this equation depend only on the discount factor, the distribution of the unobservables, choice proba-

bilities, and transition probabilities. Therefore, under the conditions in the Proposition, ũ(a) is identified.¥
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4 Counterfactual policy experiments

Proposition 2 shows that knowledge of the values {ũ(a) : a ∈ A} can be used to identify the behavioral
responses to policy interventions that modify one-period utilities.

PROPOSITION 2: Consider a policy intervention that modifies one-period utilities such that utilities after

the intervention are u∗(a) = u(a) + d(a). Utility levels u(a) and u∗(a) are unknown, but the intervention
d(a) is known to the econometrician. Suppose that the discount factor, the distribution of unobservables,

and the values {ũ(a) : a ∈ A} are also known. Then, the (counterfactual) optimal choice probabilities after
the intervention, P ∗ ≡ {P ∗(a) : a ∈ A}, are identified. More specifically, P ∗ is the unique fixed point of a
mapping Φ(P ) = {Φ(a, P ) : a ∈ A−J} such that:

Φ(a, P ) =

Z
1

½
a = argmax

k∈A
¡
ũ∗(k) + β F (k)

¡
Q̄(P ) + ē(P )

¢
+ ε(k)

¢¾
g(dε) , (8)

where 1{.} is the indicator function.
Proof: First, by definition:

ũ∗(a) = ũ(a) +
n
d(a)− β F (a) (I − β F (J))−1 d(J)

o
−
n
d(J)− β F (J) (I − β F (J))−1 d(J)

o
(9)

And it is clear from this expression that the values ũ∗(a) are known to the econometrician. Second, by
Proposition 1(a) in Aguirregabiria and Mira (2002), the vector of choice probabilities P ∗ is the unique fixed
point of a mapping Ψ(P ) = {Ψ(a, P ) : a ∈ A−J} such that:

Ψ(a, P ) =

Z
1

½
a = argmax

k∈A

³
u∗(k) + β F (k)

¡
I − βF̄ ∗

¢−1
(ū∗(P ) + ē(P )) + ε(k)

´¾
g(dε) (10)

Taking into account that (see the proof of Proposition 1 above)
¡
I − βF̄ ∗

¢−1
(ū∗(P ∗) + ē(P ∗)) = (I − βF (J))−1¡

u(J) + Q̄(P ∗) + ē(P ∗)
¢
, it is straightforward to show that Ψ(P ∗) = Φ(P ∗). Therefore, the vector of optimal

choice probabilities P ∗ is a fixed point of the mapping Φ. It remains to show that P ∗ is the unique fixed point
of Φ. Suppose that Φ has two fixed points, say P ∗1 and P ∗2 . That would imply that there are two vectors of
values that solve the the integrated Bellman equation: i.e., S∗1 = (I − βF (J))−1

¡
u∗(J) + Q̄(P ∗1 ) + ē(P ∗1 )

¢
and S∗2 = (I − βF (J))−1

¡
u∗(J) + Q̄(P ∗2 ) + ē(P ∗2 )

¢
. However, this is not possible because the integrated

Bellman equation is a contraction mapping. Therefore, P ∗ is the unique fixed point of Φ.
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