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tail index > 2 does not exclude the Levy-stable regime
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Abstract: Power-law tail behavior and the summation scheme of Levy-stable distri-
butions is the basis for their frequent use as models when fat tails above a Gaussian
distribution are observed. However, recent studies suggest that financial asset re-
turns exhibit tail exponents well above the Levy-stable regime (0 < α ≤ 2). In this
paper we illustrate that widely used tail index estimates (log-log linear regression
and Hill) can give exponents well above the asymptotic limit for α close to 2, re-
sulting in overestimation of the tail exponent in finite samples. The reported value
of the tail exponent α around 3 may very well indicate a Levy-stable distribution
with α ≈ 1.8.
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1 Introduction

Levy-stable laws are a rich class of probability distributions that allow skewness
and fat tails and have many intriguing mathematical properties [1]. They have been
proposed as models for many types of physical and economic systems. There are
several reasons for using Levy-stable laws to describe complex systems. First of all,
in some cases there are solid theoretical reasons for expecting a non-Gaussian Levy-
stable model, e.g. reflection off a rotating mirror yields a Cauchy distribution (α =
1), hitting times for a Brownian motion yield a Levy distribution (α = 0.5, β = 1),
the gravitational field of stars yields the Holtsmark distribution (α = 1.5) [2, 3, 4].
The second reason is the Generalized Central Limit Theorem which states that
the only possible non-trivial limit of normalized sums of independent identically
distributed terms is Levy-stable [5]. It is argued that some observed quantities
are the sum of many small terms – asset prices, noise in communication systems,
etc. – and hence a Levy-stable model should be used to describe such systems.
The third argument for modeling with Levy-stable distributions is empirical: many
large data sets exhibit fat tails (or heavy tails, as they are called in the mathematical
literature) and skewness, for a review see [4, 6, 7]. Such data sets are poorly described
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by a Gaussian model and usually can be quite well described by a Levy-stable
distribution.

Recently, in a series of economic and econophysics articles the Levy-stability of
returns has been rejected based on the log-log linear regression of the cumulative
distribution function or the Hill estimator [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In
this paper we show that the cited estimation methods can give exponents well above
the asymptotic limit for Levy-stable distributions with α close to 2, which results in
overestimation of the tail exponent in finite samples. As a consequence, the reported
value of the tail exponent α around 3 may suggest a Levy-stable distribution with
α ≈ 1.8.

2 Levy-stable distributions

Levy-stable laws were introduced by Paul Levy during his investigations of the
behavior of sums of independent random variables in the early 1920’s [18]. The
lack of closed form formulas for probability density functions for all but three Levy-
stable distributions (Gaussian, Cauchy and Levy), has been a major drawback to the
use of Levy-stable distributions by practitioners. However, now there are reliable
computer programs to compute Levy-stable densities, distribution functions and
quantiles [19]. With these programs, it is possible to use Levy-stable models in a
variety of practical problems.

The Levy-stable distribution requires four parameters to describe: an index of
stability (tail index, tail exponent or characteristic exponent) α ∈ (0, 2], a skewness
parameter β ∈ [−1, 1], a scale parameter σ > 0 and a location parameter µ ∈ R.
The tail exponent α determines the rate at which the tails of the distribution taper
off, see Fig. 1. When α = 2, a Gaussian distribution results. When α < 2, the
variance is infinite. When α > 1, the mean of the distribution exists and is equal to
µ. In general, the p–th moment of a Levy-stable random variable is finite if and only
if p < α. When the skewness parameter β is positive, the distribution is skewed to
the right. When it is negative, it is skewed to the left. When β = 0, the distribution
is symmetric about µ. As α approaches 2, β loses its effect and the distribution
approaches the Gaussian distribution regardless of β. The last two parameters, σ
and µ, are the usual scale and location parameters, i.e. σ determines the width and
µ the shift of the mode (the peak) of the distribution.

2.1 Characteristic function representation

Due to the lack of closed form formulas for densities, the Levy-stable distribution
can be most conveniently described by its characteristic function φ(t) – the inverse
Fourier transform of the probability density function. However, there are multiple
parameterizations for Levy-stable laws and much confusion has been caused by these
different representations [20]. The variety of formulas is caused by a combination of
historical evolution and the numerous problems that have been analyzed using spe-
cialized forms of the Levy-stable distributions. The most popular parameterization
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of the characteristic function of X ∼ Sα(σ, β, µ), i.e. a Levy-stable random variable
with parameters α, σ, β and µ, is given by [21, 22]:

log φ(t) =



−σα|t|α{1 − iβsign(t) tan πα

2
} + iµt, α �= 1,

−σ|t|{1 + iβsign(t) 2
π

log |t|} + iµt, α = 1.
(1)

For numerical purposes, it is often useful [23] to use a different parameterization:

log φ0(t) =



−σα|t|α{1 + iβsign(t) tan πα

2
[(σ|t|)1−α − 1]} + iµ0t, α �= 1,

−σ|t|{1 + iβsign(t) 2
π

log(σ|t|)} + iµ0t, α = 1.
(2)

The S0
α(σ, β, µ0) parameterization is a variant of Zolotariev’s [3] (M)-parameterization,

with the characteristic function and hence the density and the distribution function
jointly continuous in all four parameters. In particular, percentiles and convergence
to the power-law tail vary in a continuous way as α and β vary. The location pa-
rameters of the two representations are related by µ = µ0 −βσ tan πα

2
for α �= 1 and

µ = µ0 − βσ 2
π

log σ for α = 1.
For simplicity, in Section 3 we will analyze only non-skewed (β = 0) Levy-stable

laws. This is not a very restrictive assumption, since most financial asset returns
exhibit only slight skewness. For β = 0 both representations are equivalent, however,
in the general case the S0 representation is preferred.

2.2 Simulation of Levy-stable variables

The complexity of the problem of simulating sequences of Levy-stable random vari-
ables results from the fact that there are no analytic expressions for the inverse
F−1 of the cumulative distribution function. The first breakthrough was made by
Kanter [24], who gave a direct method for simulating Sα(1, 1, 0) random variables,
for α < 1. It turned out that this method could be easily adapted to the general
case. Chambers, Mallows and Stuck [25] were the first to give the formulas.

The algorithm for constructing a random variable X ∼ Sα(1, β, 0), in represen-
tation (1), is the following [22]:

• generate a random variable V uniformly distributed on (−π
2
, π

2
) and an inde-

pendent exponential random variable W with mean 1;

• for α �= 1 compute:

X = Sα,β × sin(α(V + Bα,β))

(cos(V ))1/α
×
(

cos(V − α(V + Bα,β))

W

)(1−α)/α

, (3)

where

Bα,β =
arctan(β tan πα

2
)

α
,

Sα,β =
[
1 + β2 tan2 πα

2

]1/(2α)

;
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Figure 1: A semilog plot of symmetric (β = µ = 0) Levy-stable probability density
functions for α = 2, 1.95, 1.8, 1.5 and 1. Observe that the Gaussian (α = 2) density
forms a parabola and is the only Levy-stable density with exponential tails.
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Figure 2: A double logarithmic plot of the right tails of symmetric Levy-stable
cumulative distribution functions for α = 2, 1.95, 1.8, 1.5 and 1. For α < 2, the
power tails are clearly visible. Moreover, the smaller the tail index the stronger is
the power decay behavior. Recall that the Gaussian tails decay much faster, i.e.
exponentially.
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• for α = 1 compute:

X =
2

π

[(
π

2
+ βV

)
tan V − β log

(
π
2
W cos V
π
2

+ βV

)]
. (4)

Given the formulas for simulation of standard Levy-stable random variables, we
can easily simulate a Levy-stable random variable for all admissible values of the
parameters α, σ, β and µ using the following property: if X ∼ Sα(1, β, 0) then

Y =




σX + µ, α �= 1,

σX + 2
π
βσ log σ + µ, α = 1,

is Sα(σ, β, µ). The presented method is regarded as the fastest and the best one
known. It is widely used in many software packages, including S-plus and STABLE
[19].

2.3 Tail behavior

Levy [18] has shown that when α < 2 the tails of Levy-stable distributions are
asymptotically equivalent to a Pareto law. Namely, if X ∼ Sα<2(1, β, 0) then as
x → ∞:

P (X > x) = 1 − F (x) → Cα(1 + β)x−α,

(5)

P (X < −x) = F (−x) → Cα(1 − β)x−α,

where

Cα =
(

2
∫ ∞

0
x−α sin xdx

)−1

=
1

π
Γ(α) sin

πα

2
.

The convergence to a power-law tail varies for different α’s and, as can be seen in
Fig. 2, is slower for larger values of the tail index. Moreover, the tails of Levy-stable
distribution functions exhibit a crossover from a power decay with exponent α > 2
to the true tail with exponent α. This phenomenon is more visible for large α’s and
will be investigated further in the next Section.

3 Estimation of the tail index

The problem of estimating the tail index (as well as other parameters) is in general
severely hampered by the lack of known closed–form density functions for all but a
few members of the Levy-stable family. Fortunately, there are numerical methods
that have been found useful in practice.

Currently there exist three estimation procedures for estimating Levy-stable law
parameters worth recalling. The first one is based on a numerical approximation of
the Levy-stable likelihood function. The ML method, as it is called, was originally
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developed by DuMouchel [26] and recently optimized by Nolan [27]. It is the slowest
of the three but possesses well known asymptotic properties.

The second method uses a regression on the sample characteristic function. It
is both fast and accurate (as long as we are dealing with a sample generated by a
Levy-stable law). The regression procedure was developed in the early 1980’s by
Koutrouvelis [28, 29] and recently improved by Kogon and Williams [30].

The last, but not least, is the quantile method of McCulloch [31]. It is the fastest
of the three, because it is based on tabulated quantiles of Levy-stable laws. Yet it
lacks the universality of the other two, since it is restricted to α ≥ 0.6.

All presented methods work pretty well assuming that the sample under consider-
ation is indeed Levy-stable. However, if the data comes from a different distribution,
these procedures may mislead more then the Hill and direct tail estimation methods.
And since there are no formal tests for assessing the Levy-stability of a data set we
suggest to first apply the ”visual inspection” or non-parametric tests to see whether
the empirical densities resemble those of Levy-stable laws.

3.1 Log-log linear regression

The simplest and most straightforward method of estimating the tail index is to plot
the right tail of the (empirical) cumulative distribution function (i.e. 1−F (x)) on a
double logarithmic paper, as in Figs. 2-7 (see also Refs. [13, 14, 15, 16]). The slope
of the linear regression for large values of x yields the estimate of the tail index α,
through the relation α = −slope.

This method is very sensitive to the sample size and the choice of the number
of observations used in the regression. Moreover, the slope around −3 may indicate
a non-Levy-stable power-law decay in the tails or the contrary – a Levy-stable
distribution with α ≈ 1.8. To illustrate this, we simulated (using Eq. (3)) samples
of size N = 104 and 106 of standard symmetric (β = µ = 0, σ = 1) Levy-stable
distributed variables with α = 1.95 and 1.8. Next, we plotted the right tails of the
empirical distribution functions on a double logarithmic paper. For α close to 2 the
true tail behavior (5) is observed only for very large (also for very small, i.e. the
negative tail) observations, see Figs. 3 and 5, after a crossover from a temporary
power-like decay. Moreover, the obtained estimates still have a slight positive bias:
0.03 for α = 1.8 and 0.12 for α = 1.95, which suggests that perhaps even larger
samples than 106 observations should be used.

To test the method for extremely large data sets we also simulated samples of size
N = 108 of standard symmetric Levy-stable distributed variables with α = 1.95 and
1.8. As can be seen in Fig. 7 the improvement over one million records samples is not
substantial. The tail index estimate (2.02) is closer to the true value of α = 1.95, but
still outside the Levy-stable regime. Similarly, for α = 1.8 the method overestimated
the tail exponent and returned α = 1.82.

If a typical size data set is used, i.e. 104 observations or less as in Refs. [10, 17]
and some data sets in Refs. [14, 15, 16], the plot may be quite misleading. An
empirical cumulative distribution function of a Levy-stable sample of size 104 and
α > 1.5 does not exhibit the true tail behavior (x−α decay), but a temporary power-
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like decay with the slope (more precisely: absolute value of the slope) significantly
greater then 2: |slope| = 4.99 for α = 1.95 and 2.89 for α = 1.8; see Figs. 4 and 6
and compare with Figs. 3 and 5, respectively. Slight differences in the slope of the
initial temporary power-like decay (4.91 in Fig. 3 compared to 4.99 in Fig. 4 and
2.95 in Fig. 5 compared to 2.89 in Fig. 6) are caused by inaccurate estimation for
large observations in the smaller samples.

Figures 3-7 clearly illustrate that the true tail behavior of Levy-stable laws is
visible only for extremely large data sets. In practice, this means that in order to
estimate α we must use high-frequency asset returns and restrict ourselves to the
most ”outlying” observations. Otherwise, inference of the tail index may be strongly
misleading and rejection of the Levy-stable regime unfounded. In Figures 3, 5 and 7
we used only the upper 0.5% or less of the records to estimate the true tail exponent.
In general, the choice of observations used in the regression is subjective and can
yield large estimation errors.

3.2 Hill estimator

Hill [32] proposed a method for estimating the tail index that does not assume a para-
metric form for the entire distribution function, but focuses only on the tail behavior.
The Hill estimator is used to estimate the (Pareto) tail index α, when the upper tail
[33] of the distribution is of the form: 1−F (x) = Cx−α. If X(1), X(2), ..., X(N) is the
order statistics, i.e. original sample ordered so that X(1) ≥ X(2) ≥ ... ≥ X(N), drawn
from a population with law F then the Hill estimate of α based on the k largest
order statistics is:

αHill(k) =

(
1

k

k∑
n=1

log
X(n)

X(k+1)

)−1

. (6)

Unfortunately, it is difficult to choose the right value of k. In practice, αHill(k) is
plotted against k and one looks for a region where the plot levels off to identify
the correct order statistic [6, 34]. Algorithms for choosing ”optimal” k have been
proposed in the literature (see e.g. Refs. [35, 36]), but usually give numbers in the
vicinity of the plateau.

To illustrate the performance of the Hill estimator for Levy-stable laws, we sim-
ulated (using Eq. (3)) samples of size N = 104, 106 and 108 of standard symmetric
(β = µ = 0, σ = 1) Levy-stable distributed variables with α = 1.95, 1.8, 1.5 and 1.
Next, we plotted the Hill statistic αHill(k) vs. k and compared estimated and true
values of α.

Figure 8 presents the results of the analysis for Levy-stable samples of size 104.
As has been reported in the literature [34, 37, 38], for α ≤ 1.5 the estimation is
within reasonable limits but as α approaches 2 the Hill estimate is well above the
Levy-stable regime. In the ”extreme” case of α = 1.95 there is no single value of
k that gives the right value of the tail exponent! For the 1.8-stable sample Hill
estimates are close to the true value of α only for k < 50, whereas the plateau and
”optimal” order statistic [36] are in the range k ∈ (200, 400) yielding αHill ≈ 2.85.
Actually the results are very close to those of the log-log linear regression, see Figs.
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Figure 3: A double logarithmic plot of the right tail of an empirical symmetric
1.95-stable distribution function for sample size N = 106. Circles represent outliers
which were not used in the estimation process. Even the far tail estimate α = 2.07
is above the Levy-stable regime.
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Figure 4: A double logarithmic plot of the right tail of an empirical symmetric
1.95-stable distribution function for sample size N = 104. Circles represent outliers
which were not used in the estimation process. This example shows that inference
of the tail exponent from samples of typical size is strongly biased.
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Figure 5: A double logarithmic plot of the right tail of an empirical symmetric
1.8-stable distribution function for sample size N = 106. Circles represent outliers
which were not used in the estimation process. The far tail estimate α = 1.83 is
slightly above the true value of α.
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Figure 6: A double logarithmic plot of the right tail of an empirical symmetric
1.8-stable distribution function for sample size N = 104. Circles represent outliers
which were not used in the estimation process. This example shows that inference
of the tail exponent from samples of typical size is strongly biased and the reported
value of the tail exponent around 3 may very well indicate a Levy-stable distribution
with α ≈ 1.8.
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Figure 7: A double logarithmic plot of the right tail of an empirical symmetric
1.95-stable distribution function for sample size N = 108. Circles represent outliers
which were not used in the estimation process. Even the far tail estimate α = 2.02
is above the Levy-stable regime.
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Figure 8: Plots of the Hill statistics αHill vs. the maximum order statistic k for
1.95, 1.8, 1.5 and 1-stable samples of size N = 104. Dashed lines represent the true
value of α. For α close to 2, the Hill tail estimator has a large positive bias resulting
in overestimation of the tail exponent.
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Figure 9: Plots of the Hill statistics αHill vs. the maximum order statistic k for 1.95
and 1.8-stable samples of size N = 106. Dashed lines represent the true value of
α. For better visibility, right plots are a magnification of the left plots for small k.
For α = 1.8 a good estimate is obtained only for k = 50, ..., 400 (i.e. for k < 0.04%
of sample size), whereas for α = 1.95 the estimate is always above the Levy-stable
regime.
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Figure 10: Plots of the Hill statistics αHill vs. the maximum order statistic k for
1.95 and 1.8-stable samples of size N = 108. Dashed lines represent the true value
of α. For α = 1.8 a good estimate is obtained only for k = 25000, ..., 60000 (i.e. for
k < 0.06% of sample size), whereas for α = 1.95 the estimate is in the Levy-stable
regime only for k < 20000 (i.e. for k < 0.02% of sample size).
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4 and 6 and Table 1, since in both methods estimates are obtained from the largest
order statistics.

Table 1: Pareto (power-law) tail index α estimates for Levy-stable samples of size
104.

Estimation method
Simulated α Log-log regression Hill

1.95 4.99 4.4 – 4.6
1.8 2.89 2.8 – 2.9
1.5 — 1.5 – 1.6
1.0 — 1.0 – 1.1

Figures 9 and 10 present a detailed study of the Hill estimator for samples of
size N = 106 and 108. Since for α ≤ 1.5 the results were satisfactory even for
much smaller samples, in this study we restricted ourselves to α = 1.95 and 1.8.
When looking at the left panels of Fig. 9, i.e. for k < 10% of the sample size (as
in Fig. 8), the flat regions suggest similar values of αHill as did the Hill plots in
Fig. 8. However, when we enlarge the pictures and plot the Hill statistics only for
k < 0.1% of the sample size we can observe a much better fit. For the 1.8-stable
sample Hill estimates are very close to the true value of α for k ∈ (150, 400). But
for the ”hopeless” case of α = 1.95 again there is no single value of k that gives
the right value of the tail exponent. Yet this time the estimates are very close to
the Levy-stable regime. Like for smaller samples, the Hill estimates agree quite
well with log-log regression estimates of the true tail, see Figs. 3 and 5. For the
extreme case of 108 observations the results are similar. The flat regions suggest
almost the same values of αHill as did the Hill plots in Fig. 9. In fact the Hill plots
for k < 10% of the sample size look so much alike, that in Fig. 10 we plotted only
the counterparts of the right plots of Fig. 9, i.e. the enlarged plots for k < 0.1%
of the sample size. We can see that for α = 1.8 a good estimate is obtained only
for k = 25000, ..., 60000 (i.e. for k < 0.06% of sample size), whereas for α = 1.95
the estimate is in the Levy-stable regime only for k < 20000 (i.e. for k < 0.02% of
sample size).

4 Conclusions

In the previous Section we showed that widely used tail index estimates (log-log
linear regression and Hill) can give exponents well above the asymptotic limit for
Levy-stable distributions with α close to 2. As a result, tail indices are significantly
overestimated in samples of typical size. Only very large data sets (106 observations
or more) exhibit the true tail behavior and decay as x−α. In practice, this means
that in order to estimate α we must use high-frequency asset returns and analyze
only the most outlying values. Otherwise, inference of the tail index may be strongly
misleading and rejection of the Levy-stable regime unfounded.
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Recently extremely large data sets have become available to the researchers. The
largest ones studied in the literature so far (in the context of tail behavior) are (i)
the 40 million data points record of 5 minute increments for 1000 U.S. companies
during the two year period 1994-95 [13, 15] and (ii) the 1 million data points record
of 1 minute increments for the Standard&Poor’s 500 index during the 13-year period
1984-96 [13, 14]. However, the former data set is not homogeneous. It is formed
out of 1000 data sets of 40000 records for individual companies. Therefore strong
correlations, which can conceal the true nature of asset returns, are present in the
data. The estimated tail indices for individual companies (see Fig. 1(b) in Ref. [15])
were found to range from α = 1.5 to 5.5. As we have shown in the previous Section
these values can be easily obtained for samples of Levy-stable distributed variables.

On the other hand, the second (ii) data set may be regarded as homogeneous
[39]. The tails of the distribution of 1 minute returns were reported to decay in a
power-law fashion with an exponent α = 2.95 for positive and α = 2.75 for negative
observations [14]. In an earlier paper by the same authors [13] the tail exponents
were reported to be 2.93 and 3.02, respectively, which shows that the log-log linear
regression method is very sensitive to the choice of observations used. Moreover, in
both papers the tails of the empirical cumulative distribution function curl upward
for extreme returns [40], see Fig. 1(c) in [13] and Fig. 4(a) in [14]. This suggests
that for very large and very small observations the distribution could be fitted by
a power-law with a much smaller exponent. For example, if in Fig. 4(a) of [14] we
plot an approximate regression line for negative returns in the region 20 ≤ g ≤ 100
we find that the power-law exponent is less then 2. This may indicate that the tail
exponents reported in both papers did not refer to the true tail behavior, but to the
initial power-like decay (see Figs. 3 and 5) and that the rejection of the Levy-stable
regime was not fully justified.

In this paper we have shown that the reported estimated tail exponent around
3 may very well indicate a Levy-stable distribution with α ≈ 1.8 [41]. This is
consistent with earlier findings (for a review see [7]) where the returns of numerous
financial assets (individual stocks, indices, FX rates, etc.) were reported to be Levy-
stable distributed with α ∈ (1.65, 2]. However, nothing we have said demonstrates
that asset returns are indeed Levy-stably distributed. Although the analyzed tail
index estimates are not sufficient to reject Levy-stability, by no means can we rule
out a leptokurtic non-Levy-stable distribution that has power-law tails with α > 2.
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