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Cointegration in Frequency Domain* 
 

Abstract 

Existence of a cointegration relationship between two time series in the time domain 

imposes restrictions on the series zero-frequency behaviour in terms of their squared 

coherence, phase, and gain, in the frequency domain. I derive these restrictions by 

studying cross-spectral properties of a cointegrated bivariate system. Specifically, I 

demonstrate that if two difference stationary series, tX and tY , are cointegrated with a 

cointegrating vector [ ]b1  and thus share a common stochastic trend, then at the zero 

frequency, the squared coherence of ( ) tXL−1 and ( ) tYL−1 will equal one, their phase 

will equal zero, and their gain will equal b . 
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1. Introduction 

Since the introduction of cointegration and common trend analysis in 

econometrics and statistics by Engle and Granger (1987) and Stock and Watson 

(1988), integration and cointegration tests have by now become an essential part of 

the applied econometricians’ and macroeconomists’ standard tool kit. These tests are 

routinely applied to economic time series because the notion of cointegration has a 

natural economic interpretation: existence of a cointegration relationship between two 

variables indicates that the series “move together” in the long run, and so they share a 

common stochastic trend, although in the short run the series may diverge from each 

other. Since many economic theories make these kinds of long-run and short-run 

differential predictions about economic time series co-movements, many economic 

models (and particularly macroeconomic models) lend themselves naturally to 

cointegration testing (Engle and Grange, 1987). 

The cointegtation property is a long-run property, and therefore in frequency 

domain it refers to the zero-frequency relationship of the time series. Therefore, there 

is a frequency-domain equivalent of the time–domain cointegration property. 

Specifically, existence of a cointegration relationship between two time series in the 

time domain imposes restrictions on the series zero-frequency behavior in terms of 

their cross spectral measures in the frequency domain. The purpose of this paper is to 

use a bivariate setting to derive these frequency-domain restrictions in terms of the 

time series’ squared coherence, phase and gain, which are the measures practitioners 

typically consider when studying cross spectral properties of time series. 

Squared coherence is analogous to the square of the correlation coefficient and 

measures the degree to which one series can be represented as a linear function of the 

other. Phase measures the phase difference or the timing (i.e., lead or lag) between the 
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frequency components of the two series. Gain indicates how much the spectrum of 

one series has been amplified to approximate the corresponding frequency component 

of the other. It is essentially the regression coefficient of one series on another at 

frequencyω . Thus, the squared coherence, phase and gain are frequency-domain 

equivalents of the correlation coefficient, time-delay (lag), and regression coefficient, 

respectively, and, therefore, they have a natural interpretation in terms of the standard 

time domain regression analysis. 

The paper proceeds as follows: I derive cross spectral properties of a cointegrated 

bivariate system by beginning with two non-stationary time series that are 

cointegrated with a cointegration vector [ ]b1 , and using standard Fourier Transform 

methods and matrix algebra, I derive frequency domain properties of the series’ co-

movement in terms of their squared coherence, phase and gain. Specifically, I show 

that the squared coherence between such series, after differencing, will equal one, 

their phase will equal zero, while their gain will equal b . The paper ends with a brief 

conclusion in Section 3. 

  

2. Cross-Spectral Properties of a Cointegrated Bivariate System 

Let the time series of tX  and tY be difference stationary. Thus, let )1(I~tX  and 

)1(I~tY , so that they can be written as 

 
ttt uXX += −1  

 
and 

 
ttt vYY += −1 , 
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respectively, where )0(I~tu , and )0(I~tv . Moreover, let us assume that tX  and 

tY are cointegrated with the cointegrtaion vector [ ]b1 , so that they satisfy  

 
ttt bXY µ+= , 

 
where µ ~I ( )0 . Then, tX  and tY processes share a common stochastic trend and, 

therefore, can be written in a matrix notation 

 

)1(
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tt
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where tT is the common stochastic trend with the property 

( ) ( )2,0iid ~,1 zttt zzTL σ=−  is a white noise process, tx ~ I(0), and  ty ~ I(0). 

Applying difference operator ( )L−=∆ 1 to (1) yields a bivariate stationary 

process 
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with the special matrix  
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The diagonal elements of the f ( )ω matrix are the spectral density functions of 

( ) tXL−1  and ( ) tYL−1 , defined by: 

 

( ) )a4(
2
1 ττγ
π

τωdef i
XX

−
∞

∞−
∆∆ ∫=  
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( ) )b4(
2
1 ττγ
π

τωdef i
YY

−
∞

∞−
∆∆ ∫=  

 
where ( )τγ X∆ and ( )τγ Y∆  are the autocovariance functions of ( ) tXL−1  and ( ) tYL−1 ,  

defined by 

 
( ) ( )( )[ ] )a5(XtXtX XXE ∆∆+∆ −∆−∆= µµτγ τ  

 
( ) ( )( )[ ] )b5(,YtYty YYE ∆∆+∆ −∆−∆= µµτγ τ  

 
respectively, where X∆µ and Y∆µ denote the means of ( ) tXL−1  and ( ) tYL−1 , 

respectively. The off-diagonal elements of the f ( )ω matrix are the cross-spectral 

density functions of ( ) tXL−1  and ( ) tYL−1 , defined by 

 

( ) )a6(
2
1 ττγ
π

τωdef i
YXYX

−
∞
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∆∆∆∆ ∫=  

 

( ) )b6(
2
1 ττγ
π

τωdef i
XYXY

−
∞

∞−
∆∆∆∆ ∫=  

 
where ( )τγ YX∆∆ and  ( )τγ XY∆∆ are the crosscovariance functions of ( ) tXL−1  and 

( ) tYL−1 , and ( ) tYL−1  and ( ) tXL−1 , defined by 

 
( ) ( )( )[ ] )a7(YtXtYX YXE ∆∆+∆∆ −∆−∆= µµτγ τ  

 
( ) ( )( )[ ] )b7(,XtYtXY XYE ∆∆+∆∆ −∆−∆= µµτγ τ  

 
respectively. 
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To compute the elements of the f ( )ω matrix, first compute the autocovariance-

crosscovariance matrix of (2), which is given by: 
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where subscripts 1 and 2 denote x∆ and y∆ , respectively, for notational simplicity, 

the diagonal elements of the last matrix in (8) are the autocovariance functions, 

( )τγ X∆  and ( )τγ Y∆ , and the off-diagonal elements are the crosscovariance functions 

( )τγ YX∆∆  and ( )τγ XY∆∆ , respectively, as defined in (5a)-5(b) and 7(a)-7(b). 

Applying the Fourier Transform to both sides of equation (8), multiplying 

through by 
π2
1 , and using the spectrum and cross-spectrum definitions provided by 

(4a)-4(b) and 6(a)-6(b), we get the special matrix 
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which can be rewritten as 
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The cross spectrum in (10) can be written in Cartesian form because the spectral 

matrix f ( )ω is in general a complex valued function. Thus, for example, we can write 

 
)11(),()()( ωωω mnmnmn qicf −=  

 
where ( )ωmnc  denotes the cospectral density function of m  and n , and ( )ωmnq  denotes 

the quadrature spectral density function of m  and n . Therefore, using Priestley’s (1981, 

p. 668, Equation 9.1.53) result that ( ) ( )ωω nmmn ff = , (10) can be rewritten as 

 
where bar denotes a complex conjugate. Combining (12) with Cartesian representation 

of ( )ω1f  and ( )ω2zf , 

 
( ) ( ) ( ) )a13(111 ωωω zzz qicf −=   

 
and   

 
( ) ( ) ( ) )b13(222 ωωω zzz qicf −=  

 
yields 
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Now, consider the value of the spectral matrix f ( )ω at frequency ,0=ω which 

using (3) and (14) can be written as  
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Recall that tz is a white noise process, and therefore, its theoretical spectrum is flat and 

equals ( ) πσω 2/2
zzf = for all frequencies πωπ ≤≤− . In addition, x∆ and y∆ are 

I )1(− , and therefore their zero-frequency spectral density, cross spectral density and 

cospectral density functions equal zero. Thus, every element of the second matrix of 

the right hand side of (15) vanishes, and therefore the spectral matrix, evaluated at 

frequency 0=ω , becomes 
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To see the implications of this result for the behavior of the theoretical squared 

coherence, phase and gain, recall from polar representation of f ( )ω  that 

 
( ) ( ) ( ) ( )[ ] )17(122 −
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and 
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( ) ( ) ( )[ ] )19(,1−
∆∆∆∆∆ =Γ ωωω XYXYX ff  

 
where Im ( )[ ]ωYXf ∆∆ and Re ( )[ ]ωYXf ∆∆  denote the imaginary and real parts of 

( )[ ]ωΑ∆∆Xf , and ( ),2 ωYXK ∆∆ ( )ωφ YX∆∆ , and ( )ωYX∆∆Γ denote the squared coherence, 

phase, and the gain of ( ) tXL−1  and ( ) tYL−1 , respectively (Jenkins and Watts, 1968). 

Then, using the matrix (16) along with the definitions of squared coherence, phase, 

and gain provided in (17), (18) and (19), we get that at the zero frequency the 

following equalities hold. 

For the squared coherence of ( ) tXL−1  and ( ) tYL−1 , (16) and (17) imply that at 

frequency 0=ω , 
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To determine the phase of ( ) tXL−1  and ( ) tYL−1 , note that from the Cartesian 

representation of ( )ωYXf ∆∆ , we can write 

 
( ) ( ) ).21(ωωω YXYXYX qicf ∆∆∆∆∆∆ −=   

 
However, from (16) we know that at zero frequency 
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Rewrite (21) for ,0=ω  

 

 
( ) ( ) ( ) )23(000 YXYXYX qicf ∆∆∆∆∆∆ −=
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and compare the resulting equation (23) to equation (22). The equality of the two 

equations requires that their right hand sides be equal. However, we know that for a 

complex number to equal a real number, it is necessary that the imaginary part of the 

complex number be zero. In other words, it is necessary that the imaginary part of the 

complex number be zero. In other words, for equality of (22) and (23), it is necessary 

that at the frequency 0=ω , the cospectrum of ( ) tXL−1  and ( ) tYL−1  satisfy 

 
( ) ( )[ ]

)24(
2

0Re0
2

π
σ z

YXYX

b
fc

=
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and the quadrature spectrum of ( ) tXL−1  and ( ) tYL−1  satisfy 

 

 

Substituting (24) and (25) into the definitions of phase (18) for the frequency 

,0=ω we find that 

 

Finally, to determine the gain of ( ) tXL−1  and ( ) tYL−1 , we need to combine (16) 

and (19) and evaluate the result for the frequency .0=ω  This yields 
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where b is the coefficient that measures the extent of the long run relationship between 

tX  and tY . That is, b is the coefficient in the cointegration relationship, 

ttt bXY µ+= , where ).0(~ Itµ  

Equations (20), (26) and (27) establish the main results of this paper: if two 

difference stationary series, tX  and tY , are cointegrated with the cointegtrating vector 

[ ]b1 , then the zero frequency squared coherence, phase, and gain of ( ) tXL−1  and 

( ) tYL−1 will equal one, zero, and ,b respectively. This is a generalization of Levy 

(2000), which only focuses on the behaviour of squared coherence and gain, and only 

for the case .1−=b  

 

3. Conclusion 

The contigration property is a long-run property, and therefore in the frequency 

domain, it refers to the zero-frequency relationship of the time series. Therefore there 

is a frequency-domain equivalent of the time-domain cointegration property: existence 

of a cointegration relationship between two time series in the time domain, imposes 

restrictions on the series zero-frequency behavior in terms of their squared coherence, 

phase, and gain in the frequency domain. In this paper, I derive these frequency-

domain restrictions in a bivariate setting. Specifically, I demonstrate that if two 

difference stationary series, tX  and tY , are cointegrated with the cointegrating vector  

[ ]b1 , then the zero frequency squared coherence, phase, and gain of ( ) tXL−1  and 

( ) tYL−1 will equal one, zero, and ,b respectively. 
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It is well known that the standard time series cointegration tests have a low 

power. The results derived in this paper suggest that it may be useful to test for 

cointegration in the frequency domain. Future work should examine limiting null 

distributions and finite sample properties of such tests, in order to assess their 

practical usefulness. 
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