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Abstract

For many economic problems standard statistical analysis, based on the notion
of stationarity, is not adequate. These include modeling seasonal decisions of con-
sumers, forecasting business cycles and – as we show in the present article – modeling
wholesale power market prices. We apply standard methods and a novel spectral do-
main technique to conclude that electricity price returns exhibit periodic correlation
with daily and weekly periods. As such they should be modeled with periodically
correlated processes. We propose to apply periodic autoregression (PAR) models
which are closely related to the standard instruments in econometric analysis –
vector autoregression (VAR) models.
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1 Introduction

Conventional time series analysis is heavily dependent on the assumption of
stationarity. But this assumption is unsatisfactory for many physical processes
of interest. Periodically correlated (PC) processes offer an alternative. They
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are non stationary but possess many of the properties of stationary processes.
Hence, the numerous attempts to apply PC processes in various areas of sci-
ence and technology.

The theory of periodically correlated processes, begun by Gladyshev [1], has
developed along probabilistic lines and the emphasis has been on the under-
lying structure (for a review see [2,3]). However, significant consideration has
been also given to applications. A particularly interesting fact about PC pro-
cesses, which will be exploited in the last Section of this paper, is that they can
be viewed as stationary processes that take values in a larger space. For exam-
ple, finite variance PC sequences of period T are equivalent to T -dimensional
stationary vector sequences.

Periodically correlated processes exhibit a periodic ”rhythm” that is generally
much more complicated than periodicity in the mean (which is a manifesta-
tion of the classical notion of periodicity). This is due to the fact that for
a stochastic sequence to be periodically correlated its autocovariance func-
tion RX(m, n) = E[(Xm − µX(m))(Xn − µX(n))] has to be periodic with
the same period T as its mean, i.e. RX(m, n) = RX(m + T, n + T ) and
µX(n) = E(Xn) = µX(n + T ) for all integers m and n. This ”rhythm” has led
to the application of PC processes in such diverse disciplines as climatology
[4–6], hydrology [7–9], electrical engineering [10], signal processing [11,12] and
economics [13–18]. In this paper we pursue the latter application further and
study the periodic structure of electricity prices. Before we go on with the
empirical analysis, in the next Section we describe the methods for detecting
periodicity.

2 Methods for detecting periodicity

In the frequency domain the standard tool for detecting periodicity is the
sample analogue of the spectral density – the periodogram. It is defined as

PN(ωj) =
1

2πN
|IN(ωj)|

2,

where IN(ωj) is the discrete Fourier transform IN (ωj) =
∑N−1

n=0 Xne−2πiωjn,
{X1, . . . , XN} is the analyzed sample and ωj = j/N , j = 1, . . . N are the
frequencies. For many PC processes the periodogram correctly detects peri-
odicities, but there are also many for which it fails. For example, consider a
PC process of the form Xn = Sn · f

2(n), where f(n) = mod(n, 8), i.e. division
modulo 8, Sn = −0.3Sn−1 + 0.4Sn−2 + εn is a stationary time series and {εn}
denotes a white noise sequence. The periodogram does not exhibit any reg-
ularity and only methods based on sample coherence (defined below) detect
the proper period of T = 8, see Fig. 1.
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Fig. 1. A sample of N = 400 points (top panel) and tests for periodic correla-
tion of a PC process of the form Xn = Sn · f2(n), where f(n) = mod(n, 8),
Sn = −0.3Sn−1 + 0.4Sn−2 + εn and {εn} denotes a white noise sequence. The fol-
lowing test parameters were used: M=20, B=100 and α=0.01.

Since the classical frequency domain method often lets us down we have to seek
better techniques for detecting periodic correlation. A good starting point is
the comparison of the 2-dimensional spectral density structures of stationary
and of periodically correlated processes, see Fig. 2. It can be shown [19–21] that
the spectral density of the latter is characteristically constrained to be in the
intersection of the 2T−1 diagonal lines {(2πωp, 2πωq) : ωq = ωp−

k
T
, k = −(T−

1), . . . , T − 1} with the square [0, 2π)× [0, 2π). In case of stationary sequences
the support reduces to the diagonal of this square {ωq = ωp}. For this reason
we can reduce the 2-dimensional density of a stationary sequence to the 1-
dimensional one and estimate it using the periodogram. The same property is
responsible for the failure of the periodogram for many PC processes and at
the same time can provide us with techniques for testing periodic correlation.

To investigate the presence of periodic correlation we can use a very service-
able statistic which is a smoothed estimator of the normalized, 2-dimensional
spectral density function. It is called sample coherence and is defined as

|γ̂(p, q, M)|2 =
|
∑M−1

m=0 IN(ωp+m)IN(ωq+m)|2
∑M−1

m=0 |IN(ωp+m)|2
∑M−1

m=0 |IN(ωq+m)|2
, (1)

where 0 < p, q ≤ N , N is the sample length and M is the smoothness co-
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Fig. 2. Spectral mass location for a stationary and a periodically correlated (PC)
process.

efficient. Sample coherence takes only real values between 0 and 1. For PC
processes the values taken on the support lines are significantly different from
those taken for the intermediate frequencies. This property yields ”graphi-
cal” methods for detecting periodic correlation to be discussed in the next
paragraph.

2.1 The coherent and incoherent statistics

Hurd and Gerr [22] proposed two tools for determining the presence of periodic
correlation – the coherent and the incoherent statistics. The former is defined
as

|γ̂(0, d, N)|2,

i.e. the sample coherence, given by formula (1), evaluated for M = N , whereas
the latter is given by

δ(d, M) =
1

L + 1

L
∑

p=0

|γ̂(pM, pM + d, M)|2,

where L = [N−1−d
M

] and d = |q − p|. Since both statistics depend on the differ-
ences between frequencies, the plots against d (or ωd) are the most indicative.
Moreover, the statistics are usually plotted only in the interval (0, N

2
), because

the values in the interval (N
2
, N) are a mirror image of the values in the former

one. Peaks at points ωd, ω2d, ω3d, etc. indicate periodic correlation with period
of length T = 1

ωd
. Note that both methods do not detect the exact period of

the process but the periods of its harmonic components. As a result we may
see more than one spike, see Fig. 1. The coherent and incoherent statistics are,
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Fig. 3. A sample of N = 400 points (top panel) and tests for periodic correla-
tion of a PC process of the form Xn = Sn · exp[8 · {1 + sin(πn

2 ) · 4
5ξn}], where

Sn = −0.3Sn−1 + 0.4Sn−2 + 1
2ηn is a stationary time series; {ξn} and {ηn} denote

independent white noise sequences. The test parameters used are the same as in
Fig. 1, i.e. M=20, B=100 and α=0.01. Only the MoF statistic returns the true
period of T = 4.

in general, much better than the periodogram. However, it is still pretty easy
to find examples of PC processes for which these techniques fail, see Fig. 3.

2.2 The MoF statistic

To cope with the moderate efficiency of the coherent and incoherent statistics
a new technique was proposed recently [23]. The measure of fitness (MoF)
statistic is based on the bootstrap methodology and is defined by

MoF(d, M) =
1

N

N
∑

p=1

κα(p, p + d, M),

where

κα(p, q, M) =











1 |γ̂(p, q, M)|2 ≥ ĉα,

0 |γ̂(p, q, M)|2 < ĉα,
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α is the confidence level and ĉα is the estimator of the critical value, which is
computed using the Moving Blocks Bootstrap (MBB) procedure [24,25]. Like
the coherent and incoherent statistics, the MoF statistic takes real values in the
interval [0, 1] and – due to the symmetry – is plotted only in the interval (0, N

2
).

Peaks at points ωd, ω2d, ω3d, etc. indicate periodic correlation with period of
length T = 1

ωd
. What distinguishes the MoF statistic from the former two is the

summation scheme in which only significant (at some level) values of sample
coherence are used. It is not the value of sample coherence that is important
but its value relative to values at other frequencies. Thus the MoF statistic
detects periodic correlation even for processes exhibiting extreme volatility,
see Fig. 3.

3 Electricity prices

Having described methods for detecting periodicity we are ready to apply
them to market data. The analyzed data set contains spot prices from the
Nord Pool [26] power exchange for delivery of electricity in the Nordic region
for every hour since January 1st, 1997 until December 31st, 2001. It was kindly
provided by SKM Market Predictor AS.

Due to the nature of electricity trade, spot prices exhibit a behavior not ob-
served in other financial or commodity markets. Climate and working hours
driven seasonal fluctuations in demand translate into seasonal behavior of
spot prices [27–29]. In addition, limited flexibility of the supply side coupled
with outages, transmission limitations and extreme weather conditions cause
the spot electricity prices to exhibit infrequent, but large jumps and an anti-
persistent behavior with the Hurst exponent ranging from 0.25 to 0.42 [30–32].

In this paper we ask ourselves whether electricity spot prices are governed
by a PC process. To this end we investigate the returns of spot prices. Due
to the computational complexity of the MoF technique we split the analysis
into two steps. First we test all five years of daily data (260 weeks, 1820 data
points) with the returns calculated from average daily prices, see Fig. 4. As
it turns out, all methods detect a 7 day period; peaks appear at frequencies
being multiples of 1

7
. This is in agreement with earlier observations [27,33]. In

the next step we zoom in to see the dependencies at a finer time scale and
analyze 100 days (January 1st – April 10th, 1997) of hourly data, see Fig. 5.
Again all methods detect a distinct period, this time of T = 24 hours (peaks
appear at frequencies being multiples of 1

24
).

The combined two step analysis leaves us with a clear signal that electricity
spot price returns are periodically correlated. Hence, we should either desea-
sonalize the data with respect to the daily and the weekly cycle and then
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Fig. 4. Daily returns of Nord Pool electricity spot prices during the period January
1st, 1997 – December 25th, 2001 (top panel) and plots of all statistics for these
returns (260 weeks, 1820 data points). Returns were calculated based on average
daily prices. The test parameters used are the same as in Figs. 1 and 3, i.e. M=20,
B=100 and α=0.01.

model the residuals via a stochastic process (like in [28,29]) or seek models of
electricity price dynamics in the class of PC processes. In the next Section we
follow the latter approach and describe a prominent class of PC models.

4 Periodic autoregression models

As McLeod [34] observes, periodically correlated series should not be modeled
with the widely used in econometrics seasonal autoregressive moving-average
(SARMA) class. This is because SARMA models, contrary to their name,
are actually stationary models with large (in absolute value) autocovariances
at lags that are multiples of the period. A flexible class of models that have
the desirable properties is the class of periodic autoregressive moving-average
(PARMA) models. Analogous to ARMA models and short memory stationary
series, PARMA models are fundamental periodic and periodically correlated
time series models [8,17,35].
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Fig. 5. Hourly returns of Nord Pool electricity spot prices during the period January
1st, 1997 – December 25th, 2001 (top panel) and plots of all statistics for hourly
returns since January 1st until April 10th, 2001 (100 days, 2400 data points). The
test parameters used are the same as in Figs. 1, 3 and 4, i.e. M=20, B=100 and
α=0.01.

A PARMA(p, q) system is defined by

x(n) −
p

∑

k=1

φk(n)x(n − k) =
q

∑

k=1

θk(n)ξn−k + ξn, (2)

where the scalar sequences {φk(n)} and {θk(n)} are periodic in n with the same
period T ≥ 1 and {ξn} is a white noise sequence. Observe that T = 1 reduces
the model to a classical ARMA system. Periodic moving-average processes do
not appear to be useful in economics [17]. Hence, the econometric analysis
of periodically correlated time series concentrates on periodic autoregressive
(PAR) processes of the form

x(n) −
p

∑

k=1

φk(n)x(n − k) = ξn. (3)

The key to the deeper analysis of periodic and periodically correlated processes
lies in adoption of a vector representation [8,36]. PAR models are associated to
vector autoregression (VAR) models – the two models are parallel in the sense
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that there is a one-to-one correspondence between solutions of the systems.
To see this arrange coefficients of the sum in formula (3) into a T × (l + 1)T
matrix with l ≥ 1 + p/T





























1 −φ1(0) −φ2(0) . . . −φp(0) 0 0 . . . 0

0 1 −φ1(1) . . . −φp−1(1) −φp(1) 0 . . . 0

0 0 1 . . . −φp−2(2) −φp−1(2) −φp(2) . . . 0
...

...

0 0 0 . . . 1 −φ1(T − 1) . . . −φp(T − 1) . . .





























and denote the consecutive T × T blocks of the matrix by Φ0,. . ., Φl, then (3)
can be written as the T -dimensional VAR system

X(n) −
l

∑

k=1

ΦkX(n − k) = Ξn, (4)

where the column vectors X(n) and Ξn are given by X(n) = [x(nT ), x(nT −
1), . . . , x((n−1)T +1)]

′

and Ξn = [ξnT , ξnT−1, . . . , ξ(n−1)T+1]
′

. System (3) has a
unique periodically correlated solution if and only if (4) has a unique stationary
solution. The same result holds for PARMA and VARMA systems. Therefore
the analysis of PAR (PARMA) models reduces to the examination of VAR
(VARMA) systems. Luckily, a lot is known about the latter as they have been
extensively studied in econometrics since the pioneering work of Sims [37]
in 1980. Vector autoregression models are by now standard instruments in
econometric analysis and parameter estimation schemes are well known [38–
40]. However, a lot of technical issues arise when analyzing data sets of a few
thousand observations.

5 Conclusions

Periodic and periodically correlated processes have not been very widely ap-
plied in economics to date. Nevertheless, a number of studies show that pe-
riodic and PC processes can arise naturally from the application of economic
theory to modeling decisions in economic context and their role should not be
dismissed as unimportant. Examples include Osborn [14] who argues that a
process of periodic structure arises when modeling seasonal decisions of con-
sumers, Hansen and Sargent [15] who suggest that PC processes could also
arise from seasonal technology, and Ghysels [41] who explores the periodic
nature of U.S. business cycle turning points. Despite their applicability, pre-
diction and likelihood evaluation methods for generic PC processes remain rel-
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atively unexplored [42]. Fortunately, estimation techniques exist for the special
case of PAR (PARMA) models discussed in Section 4.

In the present paper we have looked at the power market and studied the
behavior of spot electricity prices as traded at the Nord Pool power exchange.
By applying spectral domain techniques (including the novel MoF statistic
[23]) we concluded that electricity price returns exhibit periodic correlation
with daily (24 hours) and weekly (7 days or 168 hours) periods. As such they
could be modeled with PC processes like the periodic autoregression (PAR)
system. Although the general estimation scheme, through vector autoregres-
sion (VAR) models, is known a lot of technical issues remain unsolved and
will be the subject of further research.
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