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Nonlinear Term Structure Dependence: Copula
Functions, Empirics, and Risk Implications

Abstract

This paper documents nonlinear cross-sectional dependence in the term structure of
U.S. Treasury yields and points out risk management implications. The analysis is
based on a Kalman filter estimation of a two-factor affine model which specifies the
yield curve dynamics. We then apply a broad class of copula functions for modeling
dependence in factors spanning the yield curve. Our sample of monthly yields in the
1982 to 2001 period provides evidence of upper tail dependence in yield innovations;
i.e., large positive interest rate shocks tend to occur under increased dependence.
In contrast, the best fitting copula model coincides with zero lower tail dependence.
This asymmetry has substantial risk management implications. We give an example
in estimating bond portfolio loss quantiles and report the biases which result from
an application of the normal dependence model.

Key words: affine term structure models, nonlinear dependence, copula functions,
tail dependence, value-at-risk
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1 Introduction

The class of affine term structure models (ATSMs) as proposed by Duffie and Kan (1996)

and further characterized by Dai and Singleton (2000), has recently become a benchmark

in modeling the term structure of default-free interest rates. Within the model class, the

term structure is characterized by the current realizations as well as the dynamics of a set

of state variables. Logarithmic bond prices are then affine functions of these state variables.

The class appeals by its analytical tractability and contains the well-known models by

Vasicek (1977), Cox et al. (1985), Chen and Scott (1992), and Longstaff and Schwartz

(1992), for example. However, recent empirical evidence indicates that term structure data

do not fully confirm the ATSM class. A series of articles document distinct nonlinearities

e.g. in the drift and volatility function of the short-rate, particularly implying that mean-

reversion in the short-rate depends on its level; see for example Äıt-Sahalia (1996) and

Stanton (1997). Ang and Bekaert (2000) focus on these findings and develop a Markovian

switching-model which captures such nonlinearities. Also, empirical results on one- and

two-factor ATSMs by Duan and Simonato (1999) indicate a rejection of the affine model

assumption when tested against local alternatives.1 In general, findings of nonlinearity

in the term structure of interest rates are important for at least three reasons. First,

only an exact assessment of state variable dynamics and their dependence allows for an

accurate modeling of the term structure. Second, derivatives pricing is frequently based

on assumptions imposed by the class of ATSMs. And lastly, effective bond portfolio risk

management builds upon models which give reliable risk implications.

While previous empirical studies have focused on time-series nonlinearities and disconti-

nuities in the process dynamics, this paper analyzes nonlinear cross-sectional dependence

between factors that span the yield curve. We show that the dependence structure of

the long and short end of the yield curve exhibits nonlinearity which can be character-

ized under a particular focus on extremal dependence. The starting point of our model

is the benchmark-class of ATSMs. Based on this theory, the term structure dynamics

in our study are given by a Gaussian two-factor generalized Vasicek model. This model

was applied for example by Babbs and Nowman (1998) who find that the two-factor ap-

proach provides a good description of the yield curves for a broad sample of mature bond

markets. Formulating a discrete time model in state-space representation allows for pa-

1Other specifications of the term structure include Ahn et al. (2002) as well as alternative formulations
of the short rate e.g. by Chan et al. (1992) and Aı̈t-Sahalia (1996). For an extense survey of models see
also Dai and Singleton (2002). Besides the linear structure, the distributional assumptions imposed by
ATSMs is critical: Björk et al. (1997) extend the diffusion driven ATSMs by allowing for jumps. Eberlein
and Raible (1999) study term structure models driven by general Lévy processes.
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rameter estimation. We then focus on cross-sectional dependence in the term structure by

modeling general forms of dependence in discrete factor innovations by a broad choice of

copula functions. While a Gaussian factor model allows for correlated factors only, copula

functions as outlined in Joe (1997) and Nelsen (1999), generalize the dependence concept

by separating the treatment of dependence and marginal behavior. Based on the model,

it is possible to characterize dependence in the center of the distribution independently

from dependence in the distribution tails. Hence, we can impose various combinations of

symmetric as well as asymmetric tail dependence on the factor innovations. Recent studies

which apply copula functions in finance such as for example Ané and Kharoubi (2001)

and Scaillet (2002) indicate that the concept appeals in modeling complex dependence

structures. Malevergne and Sornette (2002) argue that the hypothesis of the normal cop-

ula cannot be rejected for a variety of financial returns, including stock and exchange rate

returns. However, this finding may relate to the amount of data available and to issues of

power of the testing procedures in the presence of tail dependence. Indeed, the authors also

find that alternative copula models cannot be rejected either. Conditional copula functions

are studied by Patton (2001) who models conditional dependence in U.S.-Dollar exchange

rate returns and by Rockinger and Jondeau (2001) who examine conditional dependence

in international stock market returns. Within this literature, there is still debate on which

copula models are most appropriate. To our knowledge, no evidence for the dependence

structure within the term structure of interest rates has yet been provided.

In our empirical investigation we focus on the term structure of U.S.-Treasuries which

represent the largest government bond market worldwide. We use a sample of monthly

yield curve observations as in the empirical studies for example by Ang and Bekaert (2000)

and De Jong (2000). The sample covers the 20-year period from October 1982 to Decem-

ber 2001. We form two 10-year subsamples in order to check for the robustness of the

empirical results. The empirical investigation in the paper is then organized in two steps.

In the first step, we use the class of affine term structure models to specify the yield curve

dynamics. In particular, we choose a two-factor generalized Vasicek model characterized

by a jointly normal bivariate factor process. We then extract factors representing yields,

namely the interest rates on zero-coupon bonds with one year and five years to maturity.

The model parameters are estimated by Kalman filtering as supported by maximum like-

lihood arguments; this was also done in previous studies such as for example Lund (1997),

Duan and Simonato (1999), and Dewachter et. al. (2002). In the second step, we model

the dependence structure within the yield curve. We thereby focus on the dependence

relation between short-term and long-term interest rates as represented by the two yield

factors. To this aim, a broad set of different copula functions is used.
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Based on our empirical findings, we show that the class of elliptical copula functions –

including symmetric copulas such as the normal and the Student-t– has characteristics

which violate the observed complex dependence structure. Hence, the yield factor depen-

dence cannot be characterized by a correlation coefficient as in the normal model nor with

a symmetric Student-t model. While the copula function of the normal distribution does

not allow for dependence in the tails, the Student-t copula does not allow for asymmet-

ric tail dependence. However, dependence models contained in the class of Archimedean

copulas can indeed capture dependence in the yield curve which is characterized by dis-

tinct asymmetry and upper tail dependence. The Gumbel as well as a transformed Frank

copula turn out to be more suitable choices than the student-t copula. Considering all

candidate models used in our study, we find the transformed Frank copula to be the most

appropriate model. Moreover, the goodness-of-fit tests for the two subsamples indicate

that our main conclusions are robust within the observation period.

Given our empirical findings, we demonstrate the risk management implications in a bond

portfolio setting. Based on the affine model of factor dynamics and the alternative copula

models of factor dependence, we study the pricing effects of nonlinear dependence in the

yield factors. Particularly, we use the ATSM implication that bond prices are exponential

affine functions of the state variables. By sampling from one year and five year yield factors

under the fitted copula functions we then estimate loss quantiles for bond portfolios with

alternative durations. Our analysis highlights that the normal copula function –which

is implied by the assumption of linear dependence in affine term structures– yields a

substantial bias in the assessment of portfolio risk. When compared to the transformed

Frank copula which captures the asymmetric dependence in the data, we report a bias

structure in the upper and lower bond portfolio loss quantiles which yields values as high

as 6 percent as compared to the normal model.

The remainder of this paper is organized as follows. In the next section, we outline the

model used in the analysis. Term structure time series dynamics are given with the class of

ATSMs. Cross-sectional dependence in bivariate term structure innovations is modeled by

two candidate classes of copula functions. The empirical investigation and the estimation

results are given in Section 3. The application to bond portfolio risk management which

points out risk implications of nonlinear factor dependence is given in Section 4. Section

5 concludes.
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2 The Term Structure Model

The starting point of our model is the class of benchmark ATSMs. We model the term

structure time series dynamics within a continuous time two-factor generalized Vasicek

model. A state-space representation allows for observational noise and prepares estima-

tion based on discrete time vector autoregressive version of the model. We then focus

on cross-sectional dependence in the term structure by modeling dependence in factor

innovations by copula functions. The functions stem from two broad classes of copula

functions. Based on the copula model, we can impose various combinations of symmetric

as well as asymmetric tail dependence on the factor innovations.

2.1 Term Structure Dynamics

2.1.1 Affine Term Structure Models

The affine term structure model is a class of models in which the yields to maturity are

affine functions of some state variable vector. The state vector X is assumed to obey the

following dynamics

dX(t) = κ(θ −X(t)) dt+ Σ
√
S(t) dW (t), (1)

where W is a d-dimensional standard Brownian motion, θ is a d-vector, κ and Σ are

d×d matrices, and S(t) is a d×d diagonal matrix with diagonal elements which are affine

functions of the state vector X. Provided that a parameterization is admissible, the price

of a zero bond P (t, τ) in time t with time to maturity τ can be expressed as

P (t, τ) = exp
(
A(τ) +B(τ)>X(t)

)
, (2)

where A is a scalar function, and B is a d-dimensional vector function. The instantaneous

interest rate is, as usual, defined as

r(t) = − lim
τ↘0

lnP (t, τ)

τ
. (3)

Duffie and Kan (1996) show that P (·, ·) is generically exponential affine, i.e. in the form of

equation (2), if and only if the mean and variance in equation (1), and the short rate r are

affine functions in the state variable X. Moreover, A and B in equation (2) are obtained

as solutions to ordinary differential equations. Let R(t, τ) denote the time-t continuously

compounded yield on a zero bond with maturity τ . The yield to maturity of this bond is

R(t, τ) = − lnP (t, τ)

τ
. (4)
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2.1.2 The Gaussian Two-Factor Model

The special case of the two-factor generalized Vasicek model is given by

r(t) = R0 +X1(t) +X2(t),

dX(t) = −κX(t) dt+ Σ dW (t), (5)

where W is a 2-dimensional standard Brownian motion, and

κ =

(
κ1 0
0 κ2

)
, and Σ =

(
σ1 0

ρ σ2

√
1 − ρ2 σ2

)
.

The parameter R0 is the mean level of the instantaneous rate r, the state processes X1 and

X2 fluctuate around zero with mean reversion rates κ1, κ2, and diffusion coefficients σ1, σ2,

and correlation ρ. Details on the functions A and B describing the term structure implied

by the two-factor model are given in Duffie and Kan (1996) and Babbs and Nowman

(1998); see also Appendix A.1. These functions are given by the factor parameters defined

above and by γ1 and γ2 ∈ IR, which represent the risk premia of factor one and factor

two, respectively.

2.1.3 State-Space Representation

Estimation of the above term structure model can be carried out via transformation to

state-space representation; see for example Babbs and Nowman (1998, 1999) and Duan

and Simonato (1999) for term structure estimation applications and Harvey (1989) for a

general treatment of state-space models.

Assume that the yields for different maturities are observed with error. After the addition

of measurement error, the yield to maturity, using the bond pricing formula (2), can be

written as

R(t, τ) =
−A(τ)

τ
+

−B(τ)>X(t)

τ
+ ε(t, τ), (6)

where ε(t, τ) is assumed to be a normally distributed error term with mean zero and stan-

dard deviation σετ
. Hence, given that N bond yields for different maturities are observed,

the N corresponding yields have the following representation:



R(t, τ1)

...
R(t, τN )


 =




−A(τ)
τ1
...

−A(τ)
τN


+




−B(τ)>

τ1
...

−B(τ)>

τN


 X(t) +



ε(t, τ1)

...
ε(t, τN)


 . (7)
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In terms of the state-space model, this equation is referred to as the measurement equa-

tion. To obtain the transition equation for the state-space model, the expressions for the

conditional mean and variance for the unobserved state variable process over a discrete

time interval of length h have to be derived. Define m(X(t); h) = IE{X(t+ h) |X(t)} and

Φ(X(t); h) = Var(X(t+ h) |X(t)), then the transition equation reads

X(t+ h) = m(X(t); h) + Φ(X(t); h)1/2 η(t, h), (8)

where η(t, h) is a d-vector of Gaussian white noise with Φ(X(t); h)1/2 denoting the Cholesky

decomposition of Φ(X(t); h).

The two-factor model (5) defines the state variables as Gauss-Markov processes and thus

the conditional mean and the conditional variance are:

m(x; h) = (mh
i,j)2×2 · x =

(
e−κ1 h 0

0 e−κ2 h

)
x, (9)

Φ(x; h) = (Φh
i,j)2×2 =

(
σ2
1

2κ1
(1 − e−2κ1 h) ρ σ1 σ2

κ1+κ2
(1 − e−(κ1+κ2)h)

ρ σ1 σ2

κ1+κ2
(1 − e−(κ1+κ2)h)

σ2
2

2κ2
(1 − e−2κ2 h)

)
. (10)

Given observations of the yield vector in (6) and under a discrete sampling scheme with

interval h, the exact likelihood function can be established based on the Kalman filter

estimate of the unobservable state variable process X.

2.2 Nonlinear Term Structure Dependence

2.2.1 The Discrete-Time Factor Process

Section 2.1 above outlined the two-factor affine term structure model which we apply in

our study for capturing the term structure dynamics. The generalized Vasicek model (5)

is based on continuous time factor dynamics dX driven by two-dimensional Brownian

motion.

The factor process given by transition equation (8) is linear in the drift and non-stochastic

in the diffusion coefficient. Hence, given (9) and (10), a discrete-time sample of X under

h = 1, dropping h superscripts, is given by a vector autoregressive process of order one

X1,t = m1,1X1,t−1 + (Φ1/2)1,1η1,t + (Φ1/2)1,2η2,t,

X2,t = m2,2X2,t−1 + (Φ1/2)2,1η1,t + (Φ1/2)2,2η2,t, (11)
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with t = 0, 1, ..., T . The variables ηi,t, i = 1, 2 are uncorrelated iid standard normal

innovations. In this setting, factor dependence is completely characterized by the correla-

tion coefficient ρ. Generalizing the above model, we now rewrite the discrete-time factor

dynamics as

X1,t = m1,1X1,t−1 + Z1,t,

X2,t = m2,2X2,t−1 + Z2,t, (12)

and assume that the innovations (Z1,t, Z2,t) are iid vectors with common joint distribution

function H(z1, z2). This relaxes the assumption of joint normality as imposed by the class

of ATSMs.

2.2.2 Copula Functions

Based on (12), copula functions allow us to treat general versions of factor dependence in

the two-factor generalized Vasicek model (5). The copula concept dates back to seminal

papers by Hoeffding and Sklar; recent methodological overviews are given for example by

Joe (1997) and Nelsen (1999). For the present application, we restrict the exposition to

the two-dimensional case.

Let FZ1
and FZ2

denote the continuous marginal distribution functions of Z1 and Z2,

i.e. H(z1,∞) and H(∞, z2), respectively. By transformation we obtain uniform random

variables as U = FZ1
(Z1) and V = FZ2

(Z2). The copula function C : [0, 1]2 → [0, 1] for

the bivariate random vector (Z1, Z2) is defined as the joint distribution function of the

uniform random vector (U, V ) = (FZ1
(Z1), FZ2

(Z2)), that is, C(u, v) = IP[U ≤ u, V ≤ v].

Hence, it follows

H(z1, z2) = C(FZ1
(z1), FZ2

(z2)), (13)

which is known as Sklar’s Theorem. The result generally implies that for multivariate dis-

tribution functions the univariate margins and the dependence structure can be separated.

Given that the marginal distribution functions are continuous, dependence is represented

by a unique copula function C.

Apart from a separate treatment of dependence and marginal behavior, copula functions

may characterize dependence in the center of the distribution differently while showing

identical limiting properties in characterizing dependence in the distribution tails, as

well as vice versa. Given the stylized fact of fat-tails in financial return distributions,

tail dependence is therefore an interesting characteristic of copula functions. One can

distinguish lower and upper tail dependence as defined below.
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Definition 2.1 The copula function C is lower tail dependent if

lim
u→0

IP[U ≤ u, V ≤ u]

u
= lim

u→0

C(u, u)

u
= λL, λL ∈ (0, 1],

and C is upper tail dependent if

lim
u→1

IP[U > u, V > u]

1 − u
= lim

u→1

1 − u− u+ C(u, u)

1 − u
= λU , λU ∈ (0, 1].

Since the tail dependence measures λL and λU are limit properties of a copula we can write

λL = λL(C) (λU = λU(C)) or λL = λL(θ) (λU = λU(θ)) if C is member of a parametric

family Cθ with parameter vector θ. For the sake of simplicity, we may write λ whenever

λL = λU .2 We next introduce and characterize two standard classes of copula functions.

a) Elliptical copulas

The class of the elliptical copulas is widely used as a benchmark model. Elliptical

copulas are commonly defined as copulas of elliptical distributions. In particular, this

includes the copula of the student-t and the normal distribution function:

(a) The t-copula Ct is given by

Ct(u, v) = Tν,ρ (T←ν (u), T←ν (v)) , (14)

where Tν,ρ is the bivariate standardized student-t distribution function with ν de-

grees of freedom and correlation ρ, while Tν denotes the univariate standardized

student-t distribution function. The upper and lower tail dependence parameter λ

for ν > 2 is:3

λ = 2

(
1 − Tν+1

(√
ν + 1

√
1 − ρ√
1 + ρ

))
. (15)

2Note that one can not be sure from a finite iid sample observation whether the underlying copula
function is tail dependent or not. However, recent empirical studies e.g. by Ané and Kharoubi (2001) and
Malevergne and Sornette (2002) exhibit that the concept of tail dependence is a useful tool to describe
observed dependence structures in financial data.

3See Embrechts et al. (2002). Note that the above expression for λ even holds in the case 0 < ν ≤ 2
then with a different interpretation of ρ.
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(b) For ν → ∞ the t-copula degenerates to the copula of the normal distribution

CN(u, v) = Nρ (N←(u), N←(v)) , (16)

where Nρ(·) and N(·) denote the standard bivariate and the standard univariate

normal distribution functions, respectively. From equation (15), it is obvious that

zero tail dependence, i.e. λ = 0, results.

b) Archimedean copulas

Elliptical copulas as outlined above are restricted to symmetry. For this reason, we

outline the more general class of Archimedean copulas. They are described by a generator

function ϕ as given in the proposition below.

Proposition 2.2 Let ϕ : [0, 1] → [0, ∞] be continuous and strictly decreasing with

ϕ(1) = 0. The function C : [0, 1]2 → [0, 1] given by

C(u, v) = ϕ[−1] (ϕ (u) + ϕ (v)) (17)

is a copula if and only if ϕ is convex.

Here ϕ[−1] : [0, ∞] → [0, 1] denotes the pseudo-inverse of ϕ. The copula constructed by

(17) is called Archimedean. The function ϕ is called generator of the copula. A generator

ϕ is called strict if ϕ(0) = ∞ and in this case ϕ[−1] = ϕ−1.The following Archimedean

copulas are utilized in this paper:

(a) The independence copula with generator ϕΠ(q) = − ln q and

CΠ (u, ν) = uν. (18)

The copula exhibits neither lower nor upper tail dependence, i.e.: λL = λU = 0.

(b) The Gumbel copula with generator ϕG(q) = (− ln q)δ where δ ∈ [1, ∞) and

CG (u, v) = exp

(
−
[
(− ln u)δ + (− ln v)δ

] 1

δ

)
. (19)

It exhibits asymmetric tail dependence with zero lower tail dependence λL = 0 and

upper tail dependence λU = 2 − 2
1

δ . Note that overall dependence can be modeled

only if upper tail dependence is non-zero, i.e. if δ > 1.
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(c) The Frank copula with generator ϕF (q) = − ln e−ϑ·q−1
e−ϑ−1

where ϑ ∈ (−∞, ∞) \ {0}
and

CF (u, v) = −1

ϑ
ln

(
1 +

(
e−ϑu − 1

) (
e−ϑv − 1

)

e−ϑ − 1

)
. (20)

This copula is neither lower nor upper tail dependent, i.e. as for the independence

copula we have: λL = λU = 0.

(d) In order to broaden the class of copula functions which may proof suitable for

our modeling needs, we use a transformation rule as introduced by Nelsen (1999).

The rule states that if ϕ is a generator and δ ≥ 1, then ϕδ (q) = ϕ (q)δ is also

a generator.4 Once we apply the transformation rule to the Frank copula CF , the

transformed Frank copula CTF has generator ϕTF = (ϕF )δ where the parameter

vector is ω = (ϑ, δ) ∈ (−∞, ∞) \ {0} × [1, ∞). It follows that CTF is given by:

CTF (u, v) = ϕ−1
TF (ϕTF (u) + ϕTF (v))

= − 1
ϑ

ln

[
1 +

(
e−ϑ − 1

)
exp

[
−
((

− ln
[
e−ϑ·u−1
e−ϑ−1

])δ
+
(
− ln

[
e−ϑ·v−1
e−ϑ−1

])δ) 1

δ

]]
.

(21)

It can be shown that the transformed Frank copula CTF has zero lower tail depen-

dence, λL = 0, while it is upper tail dependent with λU = 2− 2
1

δ ; in contrast to the

Gumbel copula CG defined in (19), it allows for overall dependence even if upper

tail dependence is zero with δ = 1 where it follows CTF = CF . Also, CTF converges

to the Gumbel copula CG for ϑ→ 0; see Junker and May (2002) for details.

3 Empirical Analysis of Nonlinear Term Structure

Dependence

Our program for the empirical analysis is as follows. First we briefly introduce the zero-

coupon yield dataset. Then we estimate the term structure parameters of the two-factor

model based on Kalman filter approach as outlined in Section 2.1.2. The empirical analysis

of dependence between unpredictable innovations in the long end and the short end of

the yield curve is based on an examination of our different parametric copula functions

as given in Section 2.2.2. We argue that the theoretical properties of the copula functions

4Hence, the Gumbel copula CG for example, follows immediately from the independence copula CΠ.
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given above, jointly with careful empirical testing, allow us to identify a suitable model

which is consistent with the dependence in the yield structure.

3.1 The Sample

As pointed out in the introduction, our empirical analysis of the U.S.-Treasury term

structure is based on a sample of monthly zero-coupon yields. The yield observations are

obtained from the refined Fama-Bliss zero-coupon yield dataset as introduced in Fama and

Bliss (1987). The maturities range from one to five years. The sample covers the period

October 1982 to December 2001 with 231 monthly observations. Of course, the amount of

sample information comes with a trade-off concerning stationarity. We did therefore not

extend the sample back to periods in the early eighties when a much different economic

policy regime prevailed. Still, with the given dataset covering nearly twenty years, a check

of robustness of the empirical results with respect to sample choice is important. We

hence form two subsamples covering the October 1982 to December 1991 and the January

1992 to December 2001 period, which yields 111 monthly observations and 120 monthly

observations, respectively.

In the following, we consider the monthly zero-coupon yields R(t, τi), t = 0, ..., 230 with

τi denoting the i-year to maturity bond with i = 1, 2, 3, 4, 5. All yields are given on an

annualized continuously compounded basis. The length of the discrete sampling interval,

h, equals 1 month. Table 1 reports summary statistics for the entire sample period as well

as for the two subperiods.

(Table 1 about here)

The statistics in Table 1 exhibit an on average increasing yield curve. The sample au-

tocorrelation coefficients indicate typical first order linear dependence in monthly bond

yields. Comparing the results for the subsamples with those for the entire period indicates

lower levels of interest rates together with lower levels of volatility in yield changes for

the second subsample.

3.2 Term Structure Model Estimation

This section presents the term structure estimation results based on Kalman filtering as

outlined in Section 2.1.2. In general, the application of the Kalman filter requires the
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state process X to have normally distributed innovations which is typically violated in

estimation applications. This means that the parameter estimation approach is based on

a quasi-likelihood function.5

(Table 2 about here)

Based on the Kalman filter approach, maximum likelihood (ML) estimation yields an esti-

mate of the parameter vector ψ = (R0, κ1, κ2, γ1, γ2, σ1, σ2, ρ) of the two-factor generalized

Vasicek model (5). We assume a diagonal covariance structure of the measurement errors

ε(t, τ) in (7) where the diagonal elements are denoted by σ2
εi
. The estimation results are

given in Table 2. All parameter estimates contained in ψ, apart from those of γ1, turn out

to be significantly different from zero at usual confidence levels. The estimated standard

errors σ̂εi
are relatively homogeneous for all maturities with a slight tendency for larger

measurement error variability for the 1-year maturity yields. These results are are in line

with those of previous empirical research.

3.3 Derivation of Term Structure Innovations

Given the estimate of ψ in Table 2, we can derive unpredictable innovations for our term

structure sample. By choosing two observable yields, namely the short end τs-year and the

long end τl-year maturity yield, R(t, τs) and R(t, τl), the dynamics of the two-dimensional

yield factor X can be expressed in terms of the estimated term structure parameters; see

Appendix A.2 for details on the yield factor representation. For the Gaussian two-factor

model it follows
(
R(t, τs)
R(t, τl)

)
= µR + AR

(
R(t− 1, τs)
R(t− 1, τl)

)
+

(
ετs,t
ετl,t

)
, (22)

where µR and AR are functions of the parameter vector ψ and especially, (ετs,tετl,t)
> is

a linear transformation of (Zτs,tZτl,t)
>, i.e. (ετs,tετl,t)

> = B (Zτs,tZτl,t)
>. Accordingly, the

5Inference based on the Kalman iteration and likelihood maximization faces two specification issues.
Firstly, the Kalman Filter estimates of Xt do not exactly correspond to the conditional expectations
given the observed yields since the filter relies on a linear projection. Secondly, in a non-Gaussian model,
the filtering errors –the differences between Xt and the linear projections– are not normally distributed.
Brandt and He (2002) discuss the first-order approximation for non-normalities introduced by affine factor
dynamics. Duan and Simonato (1999) discuss the estimation of square-root models by Kalman filtering
and show in a simulation study that the biases are small, and, as also the results in Lund (1997) indicate,
economically insignificant.
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common joint distribution function G(ετs , ετl) of the innovations is completely determined

by H(zτs, zτl) and B which is a function of ψ, see Appendix A.2 for derivation of B.

In the following we choose the one-year and the five-year maturity yield, R(t, 1) and

R(t, 5), to represent the short and the long yield factor, respectively. Based on the Kalman

filter estimate ψ̂, we can derive the estimates µ̂R and ÂR. The time t − 1 conditional

expectation IEt−1,ψ̂ is defined by equation (22). We then obtain the sequence of bivariate

empirical yield innovations as

(
ε̂1,t
ε̂5,t

)
=

(
R(t, 1) − IEt−1,ψ̂{R(t, 1)}
R(t, 5) − IEt−1,ψ̂{R(t, 5)}

)
, t = 1, ..., T, (23)

with T = 230.

3.4 Analysis of the Term Structure Innovations

Estimation of the copula parameter vector based on sample innovations is widely used

in empirical research. Given the parameter estimates for the term structure dynamics

above, the empirical marginal distribution functions are determined for each component

of the bivariate yield innovation series (23). We thereby check for the joint normality

assumption which is imposed by the ATSM. In the second step, parametric estimation of

the copula functions is carried out. In order to avoid parametric model misspecification

at the margins, we base our inference on the empirical marginal distributions and then

derive the parameter estimates for the copula functions. The copula functions introduced

in Section 2.2.2 are our respective candidate dependence models for the bivariate yield

innovation series.

3.4.1 Distributional Properties of the Term Structure Innovations

The Kalman filtering estimates of Section 3.2 result in the bivariate yield innovation series

(ε̂1,t, ε̂5,t)t=1,...,T as defined by equation (23).

a) Univariate Properties

Closer inspection of the series’ univariate distributional properties reveals that the

assumption of uncorrelated normally distributed innovations appears to be a suitable

approximation.
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(Figure 1 about here)

(Figure 2 about here)

The empirical marginal (univariate) distribution functions F·,T are determined for each

component separately. They are given as

F·,T (x) =
1

T

∑T

t=1
I{·t≤x}. (24)

Figure 1 shows QQ-plots of the marginal distributions of the innovations where the quan-

tiles of the empirical distributions are plotted against those of the standard normal dis-

tribution. The two plots indicate a reasonably close approximation by the normal distri-

bution, where the fit in the lower tail is better for the long maturity factor innovations.

Additional results from the univariate chi-square test indicate that normality cannot be

rejected with p-values of 0.40 for ε̂1 and 0.15 for ε̂5. We next consider the innovations’ time-

series properties. Figure 2 shows the sample autocorrelation functions for the univariate

and the squared univariate series with lags up to order 23. The estimated autocorrelations

for the raw innovations stay within the 95% confidence intervals with one exception in the

ε̂1-plot which is an expected violation under the given confidence level. For the squared

innovations we find six coefficients to exceed the 95% confidence interval in both plots.

These irregular exceedances are evidence of some heteroskedasticity in both series, though

they are weak as compared to what is otherwise typically observed for financial return

series.

b) Multivariate Properties

While the above results support the marginal model assumptions of the affine model, a

brief graphical analysis of the joint distribution of the factor innovations in Figure 3 casts

doubt on the assumption of joint normality of the factor innovations.

(Figure 3 about here)

Figure 3 gives a scatterplot representation of the joint density of the yield innovations for

the overall sample and the two subsamples. Apart from standard scatterplot representa-

tions of (ε̂1,t, ε̂5,t), the figure contains plots of the mapped observations

(ε̂1,t, ε̂5,t)t=1,...,T 7−→ (ût, v̂t)t=1,...,T = (Fε1,T (ε̂1,t) , Fε5,T (ε̂5,t))t=1,...,T . (25)
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As an empirical application of Sklar’s theorem (13), the mapped observations are defined

on the uniform space [0, 1] × [0, 1] = [0, 1]2. The (ε̂1,t, ε̂5,t)-plots in the figure reveal a

somewhat stronger linear factor dependence during the second subsample period. All

three (ût, v̂t)-plots reveal some clustering of observations in the upper right-hand corner

of [0, 1]2 which indicates upper tail dependence. In contrast, graphical inspection gives

little evidence of lower tail dependence as would be indicated by clustering in the lower

left-hand corners of the plots. In the next three paragraphs, we estimate our parametric

copula functions and analyze which models may capture the observed factor dependence.

3.4.2 Copula Estimation Methodology

Given the above results supporting the univariate model assumptions of the affine model,

we assume in the following that the marginal distributions of the yield innovations are

normal with mean zero and variances σ2
1,· and σ2

5,·, respectively. Hence, we can write Sklar’s

Theorem (13) as

G· (ε1, ε5) = C· (N (ε1/σ1,·) , N (ε5/σ5,·)) , (26)

where the notation ‘ · ’ indicates the choice of one of the respective copula functions Ct,

CN , CTF and CG. For the different copula functions, the parameter vectors are given as

ωt = (ρ, ν), ωN = (ρ), ωTF = (ϑ, δ), and ωG = (δ). We use ML-estimation to obtain

simultaneous estimates of the parameters (ω·, σ1,·, σ5,·) of the joint distribution function

G·. Note that these estimates are optimal for the overall joint distributional assumption

imposed by G·, which includes the marginal distributions as well as the dependence struc-

ture. With the joint density function g·(ε1, ε5) derived from (26) the log likelihood function

reads

lnL· (ω·, σ1,·, σ5,·; ε1,t, ε5,t) =

=

T∑

t=1

ln

[
1

σ1,·σ5,·
c· (N (ε1,t/σ1,·) , N (ε5,t/σ5,·)) N

′

(ε1,t/σ1,·) N
′

(ε5,t/σ5,·)

]
, (27)

where N
′

denotes the density of the standard normal distribution and c· is one of our

respective copula densities. As the estimates of the copula parameters ω̂T will have ML-

properties, the estimates of the tail dependence parameters, λ̂T = λ(ω̂T ) will be consistent

and asymptotically normally distributed with

√
T (λ̂T − λ)

d→ N
(
0, σ2

λ

)
. (28)
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Given that λ (·) are suitably smooth functions, the variance σ2
λ above can be approximated

by a first order Taylor series expansion of the form

σ2
λ̂

=

p∑

i=1

(
∂λ(ω̂T )

∂ωi

)2

σ2
ω̂i
,

where p = #{ω} denotes the number of parameters of the copula model and σω̂i
denotes

the ML standard errors of the respective copula parameter estimates.

3.4.3 Diagnostics for the Estimated Copula Models

Based on our estimates of the parametric copulas, we compare the in-sample model fit

based on a set of different goodness-of-fit test procedures. These include seven statistics

which are given as follows.

A general goodness-of-fit test is the bivariate version of the well-known χ2-test which in

our application is defined on the space [0, 1]2. With a grid of k cells ci ⊂ [0, 1]2 of identical

size, we calculate the chi-square test statistic as

χ2
df =

k∑

i=1

(
IEG·

(ci) − # {(ut, vt), t = 1, ..., T : (ut, vt) ∈ ci}
IEG·

(ci)

)2

, (29)

with IEG·
(ci) denoting the number of expected observations in a cell ci under the model

G·. The statistic follows a χ2-distribution with k−1−#{(ω·, σ1,·, σ5,·)} degrees of freedom

(df). Based on a grid of 6 × 6 = 36 cells for the overall sample, this implies 32 degrees of

freedom for the normal and the Gumbel copula and 31 degrees of freedom for the t-copula

and the transformed Frank copula. For the two subsamples, we use a grid of 4 × 4 = 16

cells and adjust the degrees of freedom accordingly.

Three additional tests of the overall model fit are based on the maximized log-likelihood

function lnL·. These include the Akaike information criterion, AIC = −2 lnL· + 2p,

and the Bayesian information criterion, BIC = −2 lnL· + p lnT . While the Bayesian

criterion puts a heavier penalty on the number of model parameters, both statistics are

based on probability of the observations within a given model. In contrast to that, the

entropy criterion measures the probability of a given model. The model entropy is given

as the expected value of the negative logarithm of the maximized density function, EN =

IE(− ln g·(ε1, ε5)), where we approximate the expectation by Monte Carlo simulation.

The χ2-test can be interpreted as a measure of the differences in the densities. Alternative

goodness of fit statistics in the literature, such as the Kolmogorov/Smirnov-test, are based
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on distances of observed deviations between the empirical and the parametric distribution

function. As both, the empirical and the theoretical distribution function have to converge

to zero at the lower tail and one at the upper tail, their representation of fit in the

tails is weak by construction. A test statistic which is superior in this respect dates

back to Anderson and Darling (1952). The Anderson and Darlington test uses relative

instead of absolute deviations between the distribution functions and thereby gives a

better representation of the fit in the tails. We use the integrated version outlined by the

authors and denote it by AD.

Our last goodness-of-fit diagnostic particularly focuses on the fit in the distribution tails.

The AD statistic, due to its use of the cumulative distribution function, has the drawback

of a smoothing effect particularly present in the upper tail. When considering model fit in

the tails, we therefore apply a diagnostic which is based not on the overall probability de-

viations, but on the probability deviations at a particular quantile of the joint distribution

function. Let CT denote the empirical copula function

CT (u, v) =
1

T
# {(ut, vt), t = 1, ..., T : (ut, vt) ≤ (u, v)} , (30)

and CT denote the empirical survival copula function

CT (u, v) =
1

T
# {(ut, vt), t = 1, ..., T : (ut, vt) > (u, v)} . (31)

With these empirical copulas we measure deviations at the upper and the lower tail

independently. The relative lower tail probability deviation PDp is defined as the deviation

of the model probabilities from the empirical probabilities measured at a point (q, q) in

the lower corner of the set [0, 1]2. Here, q = C←T (p), 0 ≤ p ≤ 1 and C←T is the inverse of the

diagonal section of the empirical copula function CT . The relative lower tail probability

deviation PDp is given as

PDp =
G·
(
F←ε1,T (C←T (p)) , F←ε5,T (C←T (p))

)
− p

p
. (32)

Based on survival functions, the upper tail relative probability deviation is defined by the

survival probability deviation PDp at the point (q, q) in upper corner of [0, 1]2. It is given

as

PDp =
G·
(
F
←

ε1,T

(
C
←

T (p)
)
, F

←

ε5,T

(
C
←

T (p)
))

− p

p
. (33)

Setting p equal to a small positive value, the probability deviations PDp and PDp allow

us to measure deviations in the tails. Note that pT observations are available for the
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calculation of the empirical distribution function and –given that pT is sufficiently large–

ensure convergence towards the theoretical distribution function.

3.4.4 Copula Estimation Results

Tables 3, 4 and 5 give the estimation results for the overall sample 1982-2001 and the

two subsamples 1982-1991 and 1992-2001, respectively. We give the standard deviation

estimates for the marginal distributions as well as the estimates of the parameters in the

copula parameter vectors ωt, ωN , ωTF , and ωG. In Table 6 we compare the goodness-of-fit

for the competing copula models for the overall sample as well as for the two subsamples.

For the evaluation we use the seven statistics χ2, AIC, BIC, EN, AD, PD and PD as

defined above.

(Table 3 about here)

(Table 4 about here)

(Table 5 about here)

Table 3 summarizes the estimation results for the joint distribution functions in the overall

sample period. The normal copula yields an estimate of the correlation coefficient of

0.85 which indicates a quite strong positive linear dependence in the yield factors. The

subsample results in Tables 4 and 5 indicate comparable linear dependence, with an

estimate of 0.89 in the first and 0.79 in the second subsample. The results also show that

the estimates of the standard deviations for the marginal distributions vary somewhat

depending on the copula model, where the Gumbel copula assigns the largest standard

deviations to the margins. Considering the subsamples, this highlights that the standard

deviations in the yield factor realizations were higher in earlier subsample period 1982-

1991 than in the later 1992-2001 period. This is also visible in the plots of Figure 3. A

graphical illustration of the estimated 1982-2001 joint distribution functions under the

different copula functions is given in Figure 4. The plotted joint density contour lines

visualize the dependence implications of the different copulas, while the plotted yield

innovations allow for a first visual inspection of model fit.

(Figure 4 about here)

(Table 6 about here)
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We next turn to the goodness-of-fit tests in Table 6. Given the size of the data set we have

to point out that it is impossible to strictly reject any of the copula models. However, it

turns out that the transformed Frank copula shows best overall fit.

Starting with the overall sample, our results clearly indicate that the transformed Frank

copula is the superior dependence model. All seven statistics including those which penal-

ize for the number of model parameters (χ2, AIC and BIC) happen to favour the CTF -

model where the second best model follows with some diagnostic distance. Considering

the symmetric models, the student-t shows advantages in the chi-square and the entropy

statistic, but not for AIC and BIC. It is remarkable that the AD test always shows very

high deviations values for the student model as compared to the other models. Consid-

ering Figure 4, an explanation for this finding is that the contours of the student model

narrow most quickly in the overall region of the lower left quadrant [−∞, 0]×[−∞, 0] of

the joint distribution function causing large relative deviations in the empirical versus

theoretical distributions for moderate negative values. Additionally, due to the sample

size, the AD statistic should be interpreted with some caution; the number of 230 ob-

servations may not fully guarantee convergence of the empirical distribution functions,

which is a requirement for the AD statistic. For the probability deviations in the tails,

PD and PD, we choose p = 0.05 which yields 11 observations for the calculation of the

marginal distribution function. The PD and PD results indicate that the transformed

Frank copula has lowest deviations from the empirical observations in the upper as well as

the lower tail. The symmetric models tend to overestimate the probability of observations

in the lower tail, which is demonstrated by large positive values for PD. The Gumbel

copula shows a tendency to overestimate the probability of observations in the upper tail

showing a large deviation PD; note that the Gumbel copula models overall dependence

and upper tail dependence jointly via the δ parameter which implies strong upper tail

dependence under strong linear dependence and vice versa.

We next turn to the subsamples, i.e. the 1982-1991 and 1992-2001 subsample results.

Note that the PD and PD statistics are now based on p = 0.1 which, under a subsamples

sizes of roughly T/2, implies a number of tail observations roughly equal to these for

the full sample diagnostics. For the subsamples, the assignment of the best goodness-

of-fit statistics in Table 6 shows notable variations across the models. This is due to

the substantial decrease in sample size, which makes the interpretation of the results

less conclusive than for the overall sample. However, the transformed Frank copula still

obtains the best results when evaluated by the number of best fit-results among all models.

Also, the CTF -copula function is never assigned one of the worst-fit results, which does

not hold for the other models. Given a smaller data set, the statistics χ2, AIC and
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BIC considerably penalize the two-parameter copula functions. At the same time, the Ct
parameter estimate of ν in Table 4 as well as the CTF parameter estimate of δ in Table

5, exhibit high standard errors with corresponding low respective t-values. A relatively

stable pattern in Table 6 is provided by the PD statistics; high deviations for the overall

sample as well as for the subsamples point out that a drawback of the Gumbel copula is

its tendency to overestimate the upper tail.

Turning to the first subsample, 1982-1991, CTF shows the best fit according to the EN ,

AD and PD statistics. The one-parameter copula models CN and CG also perform rela-

tively well. The normal model even gives best fit according to the chi-square test statistic.

In the second subsample, 1992-2001, as mentioned above, we report lower estimates of the

volatility in the marginal distributions. However, our results do not indicate that the de-

pendence structure is much different in the two subsamples. The CTF -copula again yields

results better than for the other models with best fit as measured by the BIC, the EN

and the upper tail fit PD. The student-t model has the worst AD statistic; still it has

the best fit according to the χ2 and AIC measures. The normal copula performs notably

well having the best AD statistic and none of the worst fir results. To summarize the

subsample comparison results, we can state that – given a high variability in the statistics

– the Gumbel copula provides a second best fit in the first subperiod while the normal

copula provides a second best fit in the second subperiod. In both subperiods however,

the statistics indicate that the transformed Frank copula has best overall fit.

4 Application: Measuring Bond Portfolio Risk

Based on the affine term structure model of Section 2.1.2, the term structure of interest

rates is completely described by two risk factors. Clearly, the dependence characteristics of

the joint distribution of the 1-year yield and the 5-year yield influences the risk measure-

ment of portfolios. In this section we analyze the different distributional specifications’

impact on risk management decisions.

We start with a graphical illustration of the copula function estimation results of Sec-

tion 3. Figure 5 contains four plots of the fitted conditional densities of the 5-year yield

given a fixed realization of the 1-year yield. Each plot represents one of the four different

copula models. As can be seen, the conditional densities show large structural differences

especially including the probability of joint upper or lower tail events. For example, given

a negative shock to the short rate of –0.02 in the transformed Frank model, the condi-

tional density for the five year yield has high variance while, given a positive shock, the
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conditional density has low variance. As is illustrated, the structure looks much different

for the symmetric models.

(Figure 5 about here)

We next apply the estimated dependence structures to quantify the risk of different bond

portfolios and compare the results. We consider portfolios which invest in the 1-year zero

bond at price P (t, 1) and the 5-year zero bond at price P (t, 5) and then study the return

of this investment after 1 month of time. Denote by RΛ the return of the portfolio which

has initial portfolio duration Λ. As a risk measure % we utilize Value-at-Risk (VaR), i.e.

the quantile of the profit-and-loss distribution of the portfolio. When adjusted for the

expected portfolio return VaR is

% = F←RΛ
(α) − IE{RΛ},

where α is the confidence level and FRΛ
is the cumulative distribution function of RΛ.

We introduce the superscript ‘+’ to the risk measure % when measuring the risk of a long

position, and the superscript ‘−’ for measuring the risk of a short position, respectively.

Additionally, the subscript at the risk measure % indicates the copula applied for defining

the dependence structure. The confidence levels we discuss are α = 99% and α = 99.9%

for which the VaR numbers %+
N , %+

t , %+
G, %+

TF , and %−N , %−t , %−G, %−TF are calculated.

We compare the risk measures % by fixing the risk measure induced by the normal copula

which is the standard risk measure, and calculate the relative deviations from this measure.

The relative deviations are

∆· =
%· − %N
%N

,

where‘ · ’ indicates the choice of one of the three copula functions Ct, CTF , and CG. The

relative deviations ∆· for long and short bond portfolio holdings as a function of the initial

duration Λ are plotted in Figure 6.

(Figure 6 about here)

The results for holding a long position in the interest rate portfolio ∆+
· are displayed at

the top of Figure 6. The results for t-copula model ∆+
t are indicated by the solid line.

As can be seen at the top left in Figure 6, the t-copula produces VaR numbers which

are close to the normal copula model for the 99% confidence level. When increasing the

confidence level to 99.9% at the top right in Figure 6, the maximum relative deviation
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increases from 0.2% to 3% which reflects the property of the t-copula to adopt to the

(upper) tail dependence existing in our data set. A similar pattern is observed for the

model given by transformed Frank copula (see the dashed line). The relative deviation

∆+
TF takes a maximum value of approximately 4% for the 99.9% confidence level, and the

VaR is persistently larger than the numbers based on the t-copula model. The Gumbel

copula (dashed-dotted line) generates the highest VaR. The maximum relative deviation

∆+
G is 2.5% for the 99% confidence level, and around 4.5% for the 99.9% confidence level,

respectively.

At the bottom of Figure 6 the results ∆−· are shown for a short position in bond portfolios

with initial duration Λ. The relative deviation of the t-copula model ∆−t has similar

characteristics as in the case of the long position. The VaR turns out to be relatively close

to the VaR given under the normal copula, where the positive deviations tend to become

overall larger when the confidence level is increased from 99% to 99.9%. The t-copula

quantiles exceed the normal ones because the t-copula features lower tail dependence

which is not present in the data. In contrast to the t-copula, the transformed Frank copula

and the Gumbel copula both produce negative relative deviations of the VaR measures

when compared to the normal copula. The maximum relative deviation is around 3% for

the 99% confidence level and around 6% for the 99.9% confidence level.

The above findings can be interpreted as follows. In Section 3.4.4, the transformed Frank

copula proved to be the dependence model which reflects the observed dependence struc-

ture in the most appropriate way. Assuming that the data are generated by a joint distri-

bution with normal margins and a transformed Frank copula then implies that the normal

copula produces a systematic bias in measured VaR.

For long bond portfolio positions, the normal copula tends to underestimate VaR where

the lack in risk capital may approximately amount to up to 4% in our example. Clearly,

the negative bias in VaR produced by the normal copula is related to the upper tail

dependence which is present in the data but not a characteristic of the normal dependence

model. The t-copula results in VaR numbers which are much closer to the transformed

Frank numbers than the normal numbers with a maximum deviation of approximately

1%. This finding is due to the upper tail dependence which is incorporated in the t-

copula. The Gumbel copula features characteristics which are present in the analyzed

data set: upper tail dependence and asymmetry. The VaR numbers are of reasonable

quality especially for the high confidence levels of 99.9%. For the 99% confidence level, the

Gumbel copula produces the maximum relative deviation to transformed Frank numbers.

For this particular case, the Gumbel copula performs poorly compared to the alternative
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dependence models (Figure 6, top, left).

For short bond portfolio positions, the normal copula overestimates VaR. The maximum

relative deviation takes a value around 6%. Though the data were not found to show lower

lower tail dependence in Section 3.4.4, which is in accordance with the normal copula,

bias is again present having opposite sign. The explanation for this finding is reasonably

simple. As the upper and lower tail of the normal copula are estimated simultaneously, the

realized estimate is a balanced result of both shortcomings of the normal copula, namely

its of lack of tail dependence and its symmetry characteristic. Also, due to its symmet-

ric structure, the absolute biases generated by the t-copula are high when compared to

the transformed Frank model. Hence, the t-copula turns out to produce overestimated

VaR numbers for short positions. As it turns out, even for moderate confidence levels of

99%, the copula functions’ ability to reproduce a complex observed dependence structure

becomes important: The Gumbel copula is a parsimoniously parameterized model which

captures upper tail dependence. The relative deviations for the best-fitting transformed

Frank model indicate that the normal model can produce VaR biases of up to 6% in the

given example.

5 Conclusion

As is well-known, the concept of linear dependence breaks down under non-normality.

However, as the present investigation documents, statistical theory offers more flexible

models of dependence which are relevant to financial modeling.

Based on the benchmark model given by the affine class of term structures which assumes

joint normality in yield innovations, this paper analyses cross-sectional nonlinearity in

the term structure of U.S.-Treasury yields. The nonlinearities documented in the data

represent a profound statistical characteristic which is shown to be of economic significance

as well. Deviations from linear dependence have implications on risk management when

financial risk is for example measured by the commonly used VaR methodology. Most

strikingly, we conclude that the normal copula as a benchmark model of dependence

imposes two main problems, namely absence of tail dependence and symmetry, which

both prevent accurate risk measurement. Our findings are not limited to bond pricing

and bond portfolio VaR applications. The model bias due to the normality assumption

should be even more pronounced when the pricing implications for nonlinear contracts,

e.g., for interest rate derivatives, are considered.
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A Appendix

A.1 Affine Models

We briefly review the concept of ATSMs following Duffie and Kan (1996), and Dai and

Singleton (2000). In contrast to the considerations above, we start with an equivalent

martingale measure Q, and later on we work out the link to the real world under the

so-called physical measure P . Absent arbitrage opportunities, the time t price of a zero-

coupon bond that matures at time t+ τ , denoted P (t, τ), is given by

P (t, τ) = IEQ
t

{
exp

(
−
∫ t+τ

t

R(s) ds

)}
, (34)

where IEQ
t { · } denotes a conditional expectation under the risk neutral measure Q. A d-

factor affine term structure model is obtained under the assumption that the instantaneous

short rate R is an affine function of a d-dimensional vector process of state variables

X = (X1, ..., Xd):

R(t) = R0 + a1X1(t) + ... + adXd(t) = R0 + a>X(t) , (35)

and that X follows an affine diffusion:

dX(t) = κQ(θQ −X(t)) dt+ Σ
√
S(t) dWQ(t) , (36)

where WQ is a d-dimensional standard Brownian motion under the measure Q, θQ is a

d-vector, κQ and Σ are d × d matrices, and S(t) is a d × d diagonal matrix with the ith

diagonal element:

{S(t)}ii = αS i + βS i
>X(t) , (37)

Provided that a parameterization is admissible, we know from Duffie and Kan (1996):

P (t, τ) = exp
(
A(τ) +B(τ)>X(t)

)
, (38)

where A and B are satisfy the ordinary differential equations:

dA(τ)

dτ
= θ>Qκ

>
QB(τ) +

1

2

d∑

i=1

[
Σ>B(τ)

]2
i
αS i − R0 , (39)

dB(τ)

dτ
= −κ>QB(τ) +

1

2

d∑

i=1

[
Σ>B(τ)

]2
i
βS i − a . (40)
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The particular specification of the Q-dynamics of X in Equation (36) and the definition

of R in Equation (35) allow the exponential affine representation of the bond prices in

Equation (38). It is well known that the measure Q is generated by a change of measure

with respect to the empirical/physical measure P that describes the behavior of the

stochastic factors in the “real world”. To obtain an affine structure for X under both

measures P and Q, we restrict the measure change in terms of the market price of risk Λ

to:

Λ(t) =
√
S(t)γ , (41)

where γ is a d-vector of constants. Thus, the P -dynamics of the state process X are:

dX(t) = κ(θ −X(t)) dt+ Σ
√
S(t) dW (t) , (42)

where W is a d-dimensional standard Brownian motion under P and:

κ = κQ − ΣΨ , (43)

θ = κ−1 (κQθQ + Σφ) . (44)

The ith row of the d×d matrix Ψ is filled in by γiβS i
> and φ is a d-vector whose ith element

is given by γiαS i. The functions A and B describing the two-factor generalized Vasicek

model of Babbs and Nowman (1998) are given by the parameters R0 ∈ IR, κ1, κ2, σ1, σ2 ∈
IR+, ρ ∈] − 1, 1[, and γ1, γ2 ∈ IR in the following way:

A(τ) =
∑

i=1,2

[
−πi (Bi(τ) + τ) − σ2

i

4 κi
Bi(τ)

2

]
− R0τ + Aρ(τ) , (45)

B(τ) = (B1(τ), B2(τ))
> =

(
e−κ1 τ − 1

κ1

,
e−κ2 τ − 1

κ2

)>
, (46)

where π1 = σ1 γ1
κ1

− σ2
1

2κ2
1

, π2 =
σ2 (ρ γ1+

√
1−ρ2 γ2)

κ2
− σ2

2

2κ2
2

, and:

Aρ(τ) =
ρ σ1 σ2

κ1 + κ2

[
1

κ1
(B1(τ) + τ) +

1

κ2
(B2(τ) + τ) − B1(τ)B2(τ)

]
. (47)

A.2 Yield-Factor Representation

A distinct feature of ATSM framework is that the latent state variables can be transferred

to an appropriate set of yields, see Duffie and Kan (1996). Moreover, the affine structure

of the latent variables is preserved for the yields, and the yields can be viewed at as a
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new set of state variables provided some technical conditions hold. Given a d-factor ATSM

with state variable X = (X1, ..., Xd)
>. For a set of maturities (τ1, ..., τd) the corresponding

yields Y = (Y1, ..., Yd)
> are given by Equation (38):

Y (t) = A +BX(t) (48)

where

A =




−A(τ1)
τ1
...

−A(τd)
τd


 , B =




−B1(τ1)
τ1

. . . −Bd(τ1)
τ1

...
. . .

...

−B1(τd)
τd

. . . −Bd(τd)
τd


 . (49)

Provided B is non-singular, we can state the analogue of Equation (42), i.e. the state

equation for the yield vector Y :

dY (t) = κ̃(θ̃ − Y (t)) dt+ Σ̃

√
S̃(t) dW (t) , (50)

where

κ̃ = B κB−1 , θ̃ = B θ + A , Σ̃ = B Σ , and S̃(t) = {α̃i + β̃>i Y (t)} , (51)

and α̃i = αS i − βS i
>B−1A, and β̃i = B−1> βS i. We briefly discuss the yield dynamics

implied by the two-factor generalized Gaussian model. Here, we find θ = 0, and S(t) = Id
what results into κ̃ = B κB−1, θ̃ = A, Σ̃ = B Σ, and S̃(t) = Id:

dY (t) = B κB−1(A− Y (t)) dt+BΣ dW (t) , (52)

where B κB−1 describes the mean reversion including cross-dependencies between Y1

and Y2, and the covariance is given by B Σ Σ>B>.

Setting (R(·, τs), (R(·, τl))> = (Y1, Y2), it follows from the affine structure

(
R(t, τs)
R(t, τl)

)
= A + BXt =

(
−A(τs)/τs
−A(τl)/τl

)
+

(
−B(τs)

>/τs
−B(τl)

>/τl

)
Xt.

Due to the autoregressive structure of X in (12) this results in

(
R(t, τs)
R(t, τl)

)
= (I2 − BAB−1)A + BAB−1

(
R(t− 1, τs)
R(t− 1, τl)

)
+ B

(
Zτs,t
Zτl,t

)
,

which is Equation (22) where µR = (I2 − BAB−1)A and AR = BAB−1.
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Figure 1: QQ-plots of the marginal distributions of ε̂1 and ε̂5 each against the standard
normal distribution. Sample period 1982 to 2001.
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Figure 2: Plots of the autocorrelations of the innovations ε̂1 and the squared innovations
ε̂25. The dotted straight line indicates the 95% confidence interval under the Null of un-
correlatedness. Sample period 1982 to 2001.

31



•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

• •

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

• •

•

•

•

•

•

• •

•
•

•

•

•

•

•

•

• •

•

•

••

•

•

•
•

•
•

•
•

•

•

•

•

• •

••

•

•

• •

•

•
•

•

••

•

•

•

• •

••

•

•

•

•

• •

•

•

•

••

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

••
•

•
••

•
•

••

•

••

•
•

•

•

•
•

•

•
••

•

•

••

•

•

•

•

••
••

•

•
•

•
••

•

•

•
•

•

••
•

•

•
•

• •

•

•

•

•

•

•

•
••

•
•

• •
•

•

• •

•

•

• •

•
•

-0.010 -0.005 0.0 0.005 0.010

-0
.0

1
0

-0
.0

0
5

0
.0

0
.0

0
5

0
.0

1
0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

• •

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

••

•

••

•

•
•

•

•

•

•

•

•
•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•

•

• •

•

•

•
•

•

•

•
•

•
•

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

• •

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

• •

•

•

•

•

•

• •

•
•

•

•

•

•

•

•

• •

•

•

••

•

•

•
•

•
•

•
•

•

•

•

•

• •

••

•

-0.010 -0.005 0.0 0.005 0.010

-0
.0

1
0

-0
.0

0
5

0
.0

0
.0

0
5

0
.0

1
0

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

• •

•

•
•

•

••

•

•

•

• •

••

•

•

•

•

• •

•

•

•

••

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

••
•

•
••

•
•

••

•

••

•
•

•

•

•
•

•

•
••

•

•

••

•

•

•

•

••
••

•

•
•

•
••

•

•

•
•

•

••
•

•

•
•

• •

•

•

•

•

•

•

•
••

•
•

• •
•

•

• •

•

•

• •

•
•

-0.010 -0.005 0.0 0.005 0.010

-0
.0

1
0

-0
.0

0
5

0
.0

0
.0

0
5

0
.0

1
0

•
•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

••

•

••

•

•
•

•

•

•

•

•

•
•

•

•

•

•

• •

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ε1ε1

ε1ε1

ε1ε1

ε 5ε 5

ε 5ε 5

ε 5ε 5

us82.01 copula observations us82.01

us82.91 copula observations us82.91

us92.01 copula observations us92.01

Figure 3: Scatterplot representation of the yield innovations and the yield innovation
copula densities. Sample period 1982 to 2001 and subsamples 1982 to 1991 and 1992 to
2001.
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Figure 4: Contourlines of the estimated densities under the different copula assumptions
with normal margins. Sample period 1982 to 2001.
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Figure 5: Conditional densities under the different fitted copula functions. Sample period
1982 to 2001.
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Relative deviation from the n-copula model

Figure 6: Relative deviations ∆+ (top) and ∆− (bottom) of the risk measures from the
normal copula model for the α = 99% (left) and α = 99.9% (right) quantiles. The solid
line belongs to the t-copula, the dashed-dotted line to the Gumbel copula, and the dashed
line to the transformed Frank copula. Sample period 1982 to 2001.
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Table 1
Summary statistics (sample mean, sample standard deviation, and first order sample

autocorrelation) for the monthly U.S. Treasury zero-coupon yield data. Sample period 1982 to

2001 and subsamples 1982 to 1991 and 1992 to 2001.

October 1982 to December 2001

Maturity Mean Std. Dev. Autocorr.

1 year 0.0638 0.0201 0.9852

2 years 0.0675 0.0206 0.9859

3 years 0.0701 0.0204 0.9854

4 years 0.0721 0.0205 0.9851

5 years 0.0732 0.0205 0.9858

October 1982 to December 1991

Maturity Mean Std. Dev. Autocorr.

1 year 0.0794 0.0157 0.9641

2 years 0.0837 0.0165 0.9707

3 years 0.0863 0.0165 0.9709

4 years 0.0886 0.0166 0.9696

5 years 0.0897 0.0167 0.9708

January 1992 to December 2001

Maturity Mean Std. Dev. Autocorr.

1 year 0.0494 0.0109 0.9712

2 years 0.0526 0.0098 0.9581

3 years 0.0550 0.0088 0.9447

4 years 0.0569 0.0082 0.9371

5 years 0.0579 0.0080 0.9387
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Table 2
Estimation results for the two-factor generalized Vasicek model with monthly observations on

1, 2, 3, 4 and 5 year maturity yields. Sample period 1982 to 2001 and subsamples 1982 to 1991

and 1992 to 2001. Kalman filter recursions are initialized with the values of the stationary

mean and variance of the unobserved state variables. Maximization of the log-likelihood

function is based on a sequential quadratic programming algorithm. White (1982)

heteroskedasticity-consistent standard errors of the parameter estimates given in parenthesis.

Kalman Filter Estimates

Parameters Oct. 82 to Dec. 01 Oct. 82 to Dec. 91 Jan. 92 to Dec. 01

R
0

0.0589 0.0637 0.0286

(0.0291) (0.0254) (0.0176)

κ
1

0.0691 0.1225 0.1918

(0.0227) (0.0285) (0.0143)

σ
1

0.0203 0.0260 0.2402

(0.0034) (0.0048) (0.0151)

γ
1

-0.1850 -0.0465 -0.4359

(0.1400) (0.1696) (0.1465)

κ
2

0.3719 0.4954 0.2131

(0.0413) (0.0610) (0.0162)

σ
2

0.0188 0.0230 0.2385

(0.0033) (0.0047) (0.0158)

γ
2

1.3358 1.4057 1.5395

(0.1838) (0.2509) (0.2310)

ρ -0.7807 -0.8199 -0.9991

(0.0797) (0.0774) (0.0001)

σε1 0.0014 0.0008 0.0014

(0.0001) (0.0002) (0.0001)

σ
ε2

0.0004 0.0006 0.0002

(0.0001) (0.0001) (0.0001)

σ
ε3

0.0006 0.0007 0.0003

(0.0001) (0.0001) (0.0001)

σ
ε4

0.0006 0.0008 0.0002

(0.0001) (0.0001) (0.0001)

σ
ε5

0.0005 0.0006 0.0005

(0.0001) (0.0001) (0.0001)
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Table 3
Parametric ML-estimates of the joint distribution function G under the alternative copula

models. Standard errors and t-values of the parameter estimates given in parenthesis. Sample

period 1982 to 2001.

October 1982 to December 2001

T = 230 σ̂1,· σ̂2,· ρ̂ ν̂ λ̂L λ̂U
Ct 3.4291E-3 3.4730E-3 0.8556 10.2957 0.3681 0.3681

s.e. (0.1806E-3) (0.1701E-3) (0.0196) (7.6051) (0.1716) (0.1716)

t-value (18.99) (20.42) (43.76) (1.35) (2.14) (2.14)

CN 3.4517E-3 3.4510E-3 0.8537 - 0 0

s.e. (0.1845E-3) (0.1679E-3) (0.0190) - - -

t-value (18.71) (20.55) (44.97) - - -

σ̂1,· σ̂2,· ϑ̂ δ̂ λ̂L λ̂U
CTF 3.4152E-3 3.4738E-3 4.1759 1.8101 0 0.5334

s.e. (0.17785E-3) (0.1665E-3) (1.1523) (0.2463) - (0.0764)

t-value (19.20) (20.86) (3.62) (3.29) - (6.98)

CG 3.5237E-3 3.5433E-3 - 2.8805 0 0.7279

s.e. (0.18045E-3) (0.16912E-3) - (0.2047) - (0.0218)

t-value (19.53) (20.95) - (9.19) - (33.46)
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Table 4
Parametric ML-estimates of the joint distribution function G under the alternative copula

models. Standard errors and t-values of the parameter estimates given in parenthesis. Sample

period 1982 to 1991.

October 1982 to December 1991

T = 110 σ̂1,· σ̂2,· ρ̂ ν̂ λ̂L λ̂U
Ct 4.2012E-3 4.0293E-3 0.8871 27.6529 0.2008 0.2008

s.e. (0.2740E-3) (0.2684E-3) (0.0206) (77.8816) (0.6241) (0.6241)

t-value (15.33) (15.01) (43.13) (0.36) (0.32) (0.32)

CN 4.2051E-3 4.0202E-3 0.8868 - 0 0

s.e. (0.2746E-3) (0.2627E-3) (0.0202) - - -

t-value (15.31) (15.31) (43.79) - - -

σ̂1,· σ̂2,· ϑ̂ δ̂ λ̂L λ̂U
CTF 4.1678E-3 4.0233E-3 1.9274 2.6545 0 0.7016

s.e. (0.2619E-3) (0.2596E-3) (1.8253) (0.6329) - (0.0808)

t-value (15.91) (15.50) (1.06) (2.61) - (8.68)

CG 4.2200E-3 4.0745E-3 - 3.2772 0 0.7645

s.e. (0.2507E-3) (0.2526E-3) - (0.3146) - (0.0251)

t-value (16.83) (16.13) - (7.24) - (30.48)
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Table 5
Parametric ML-estimates of the joint distribution function G under the alternative copula

models. Standard errors and t-values of the parameter estimates given in parenthesis. Sample

period 1992 to 2001.

January 1992 to December 2001

T = 119 σ̂1,· σ̂2,· ρ̂ ν̂ λ̂L λ̂U
Ct 2.5580E-3 2.9075E-3 0.8148 6.2034 0.4188 0.4188

s.e. (1.8802E-3) (0.1980E-3) (0.0342) (3.1757) (0.1185) (0.1185)

t-value (13.60) (14.68) (23.83) (1.95) (3.53) (3.53)

CN 2.5634E-3 2.7780E-3 0.7886 - 0 0

s.e. (0.1864E-3) (0.1686E-3) (0.0366) - - -

t-value (13.75) (16.48) (21.52) - - -

σ̂1,· σ̂2,· ϑ̂ δ̂ λ̂L λ̂U
CTF 2.5364E-3 2.8771E-3 5.8523 1.3362 0 0.3201

s.e. (0.1847E-3) (0.1764E-3) (2.7736) (0.3693) - (0.2408)

t-value (13.73) (16.31) (2.11) (0.91) - (1.33)

CG 2.5802E-3 2.9629E-3 - 2.4207 0 0.6684

s.e. (0.1895E-3) (0.1963E-3) - (0.2360) - (0.0372)

t-value (13.62) (15.09) - (6.02) - (17.98)
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Table 6
Goodness-of-fit statistics for the ML-estimates of the joint distribution function G under the

alternative copula models. +indicates best model fit for a given statistic, −indicates worst

model fit for a given statistic. Sample period 1982 to 2001 and subsamples 1982 to 1991 and

1992 to 2001.

October 1982 to December 2001

T = 230 Ct CN CTF CG
χ2

31,32 (p-value) 0.34 0.25− 0.90+ 0.30

AIC -4204.30 -4204.24 -4215.34+ -4203.88−

BIC -4188.54− -4191.93 -4199.58+ -4191.57

EN -9.15 -9.15 -9.19+ -9.14−

AD 21.61− 0.69 0.52+ 0.63

PDp=0.05 22.58%− 20.26% 6.19%+ 9.67%

PDp=0.05 -4.08% -7.21% -3.67%+ 21.76%−

October 1982 to December 1991

T = 110 Ct CN CTF CG
χ2

11,12 (p-value) 0.65 0.73+ 0.47 0.37−

AIC -1954.91− -1956.80 -1960.44 -1961.27+

BIC -1942.11− -1946.70 -1947.64 -1951.17+

EN -8.92 -8.91− -8.96+ -8.94

AD 14.6768− 0.6751 0.6134+ 0.6489

PDp=0.1 7.25%− 6.36% -0.91%+ -1.86%

PDp=0.1 0.57% 0.40%+ 7.66% 14.29%−

January 1992 to December 2001

T = 119 Ct CN CTF CG
χ2

11,12 (p-value) 0.86+ 0.78 0.76 0.12−

AIC -2267.39+ -2255.23 -2265.22 -2254.10−

BIC -2244.28 -2244.89 -2252.10+ -2243.76−

EN -9.49 -9.51 -9.56+ -9.47−

AD 6.0714− 0.2756+ 0.3732 0.2796

PDp=0.1 0.72%+ -9.81% -7.35% -12.81%−

PDp=0.1 4.35% -5.68% 0.41%+ 16.22%−
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