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Abstract

We establish the relationships between certain Bayesian and classical approaches to instrumental variable
regression. We determine the form of priors that lead to posteriors for structural parameters that have similar
properties as classical 2SLS and LIML and in doing so provide some new insight to the small sample behavior
of Bayesian and classical procedures in the limited information simultaneous equations model. Our approach
is motivated by the relationship between Bayesian and classical procedures in linear regression models; i.e.,
Bayesian analysis with a diffuse prior leads to posteriors that are identical in form to the finite sample density
of classical least squares estimators. We use the fact that the instrumental variables regression model can be
obtained from a reduced rank restriction on a multivariate linear model to determine the priors that give rise
to posteriors that have properties similar to classical 2SLS and LIML. As a by-product of this approach we
provide a novel way to determine the exact finite sample density of the LIML estimator and the prior that
corresponds with classical LIML. We show that the traditional Dréze (1976) and a new Bayesian Two Stage
approach are similar to 2SLS whereas the approach based on the Jeffreys’ prior corresponds to LIML.

1 Introduction

The instrumental variables (IV) regression or limited information simultaneous equations model has a long tra-
dition in econometrics. The main classical techniques of limited information maximum likelihood (LIML), due
to Anderson and Rubin (1949) and Hood and Koopmans (1953), and two-stage least squares (2SLS), due to
Theil (1953) and Baseman (1957) are well understood. Recent overviews of these procedures are given in Haus-
man (1983), Phillips (1983), Bowden and Turkington (1984), Dhrymes (1994) and Staiger and Stock (1997).
Asymptotic inference using 2S5LS or LIML is straightforward, provided instruments are not too weak, but exact
finite sample inference is difficult due to the complicated nature of the sampling densities of the 25LS and LIML
estimators. Lagging the classical literature, a corresponding Bayesian literature on single equation procedures
for analyzing the IV model evolved initialized by Dréze (1976) and reviewed by Dréze and Richard (1983), see
also Zellner (1971). This initial approach, hereafter referred to as the Dréze approach, was motivated by the
equivalence of Bayesian and classical procedures for the linear regression model using a suitably diffuse prior for
the parameters of the linear model. This literature mainly focussed on the relationship between prior information
and identification of structural parameters and computational problems involved in a Bayesian analysis resulting
from the computation of complicated high-dimensional integrals. The latter problems were seen as the major
obstacle to Bayesian analysis in simultaneous equations; see a.0. Kloek and van Dijk (1978), Richard and Tompa
(1980), Bauwens (1984), Steel (1991), Geweke (1996) and Bauwens and van Dijk (1989). The Dréze approach has
been advocated as a Bayesian version of LIML and has the apparent advantage over classical LIML of providing
exact inference for the IV model. Maddala (1976), however, criticized the Dréze approach for peculiar behavior
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in unidentified models and argued that it may have more similarities with 2SLS than with LIML. Partly due to
the interest in the effect of near nonidentification of structural parameters due to weak instruments on inference
in IV models, the issue of Bayesian analysis in simultaneous equation models has been revisited by Kleibergen
and van Dijk (1998) and Chao and Phillips (1998) and they propose other Bayesian single equation procedures
which partly overcome some of the shortcomings of the Dréze approach. In this paper, we build upon the analysis
of Kleibergen and van Dijk and Chao and Phillips (1998) to develop a better understanding of the relationship
between Bayesian and classical approaches to instrumental variables regression.

The finite sample and asymptotic properties of 2SLS and LIML estimation procedures are well understood
under both good and weak instruments but the properties of certain “diffuse prior” Bayesian procedures are
less well understood. To better understand the Bayesian procedures, we compare several key properties of the
finite sample distribution of 2SLS and LIML estimators with analogous properties of the posteriors resulting from
certain “diffuse prior” Bayesian procedures. The diffuse priors we consider are (1) diffuse prior for parameters of
the structural IV model (Dréze approach); (2) a new Bayesian two-stage approach constructed to mimic 2SLS;
(3) Jeflreys’ prior for the IV model; and (4) diffuse prior for the unrestricted reduced form of the IV model.
We specifically analyze the sensitivity of the resulting posteriors for the structural parameters to the ordering
of the endogenous variables, the addition of extra instruments and to the introduction of weak or superfluous
instruments. We show that the first two Bayesian procedures have more in common with 25LS than with LIML,
the approach based on the Jeffreys’ prior is the Bayesian counterpart of LIML and the approach using a diffuse
prior on the unrestricted form also has some properties in common with LIML.

In order to show that the Jeflreys’ prior is the Bayesian counterpart of LIML, we take a different route than
Chao and Phillips (1998) and use the fact that the instrumental variables regression model can be obtained from
a reduced rank restriction on a multivariate linear model (the unrestricted reduced form). We show that the
restriction imposed by the structural form of the IV regression model on the parameters of the multivariate linear
model is such that a unique expression exists of the posterior of the parameters of the structural form as the
conditional posterior of the parameters of the multivariate linear model given that the reduced rank restriction
holds, see Kleibergen (1998), and thereby avoids the Borel-Kolmogorov paradox, see Dréze and Richard (1983).
Using this approach, we provide an alternative representation for the exact finite sample density of the LIML
estimator as the conditional density of a transformed least squares estimator of a multivariate linear model given
that it has reduced rank. The key to this alternative representation is the Jacobian of the transformation from the
multivariate linear model to the reduced rank IV regression model. We then use this alternative representation
to determine that the Jeflreys’ prior for the IV model gives rise to a posterior for the structural parameters that
has the same form as the exact sampling density of the LIML estimator.

The Jacobian describing the mapping from the multivariate linear model to the IV model allows us to infer
the type of prior implied on the structural parameters of the IV model from a prior specified on the multivariate
linear model and vice-versa. This allows us to extend general classes of priors that exist for the parameters of
linear models, for example diffuse and natural-conjugate priors, to the parameters of nonlinear models like the IV
regression model. Further, in the multivariate linear model all properties of its prior are reflected in the marginal
posteriors which does not hold for the IV model since it is a nonlinear function of its parameters. The prior on
the parameters of the multivariate linear model resulting in the specified prior on the parameters of the restricted
reduced form is therefore a convenient tool for analyzing the effects on the marginal posteriors of the structural
parameters of the prior specified on the parameters of the restricted reduced form. We construct these implied
priors for the parameters of the multivariate linear model for the four aforementioned “diffuse prior” Bayesian
approaches and they reveal all the differences appearing in the resulting marginal posteriors for the structural
parameters. In particular, the priors of the Dréze and Bayesian Two stage approaches show that, relative to
the Jeflreys’ prior, they become more informative when superfluous instruments are added to the model. The
priors of the Dréze, Bayesian Two stage and Jeflreys’ approaches show that, relative to the diffuse prior on the
parameters of the unrestricted reduced form, they all conduct a kind of pretesting in overidentified models such
that the posteriors of the structural parameters are less sensitive to the addition of superfluous instruments than
the posterior resulting from the diffuse prior on the unrestricted reduced form.

The paper is organized as follows. Section 2 lays out the parameterizations of the IV regression model. Section
3 reviews the classical 25LS and LIML estimation procedures and section 4 discusses the Dréze and Bayesian
two-stage diffuse prior procedures. Section 5 develops the methodology to analyze the IV model as a reduced rank
restriction on a multivariate linear model and shows the relationship between the exact sampling density of the
LIML estimator and the posterior derived from the Jeffreys’ prior. Sections 6 and 7 give the posterior analysis of



structural parameters based on the Jeflreys’ prior for the IV model and a flat prior for the unrestricted reduced
form. Section 8 constructs the implied prior for the unrestricted reduced form parameters from the diffuse prior
specifications for the parameters of the IV model. Section 9 concludes the paper. Proofs and long derivations of
results are relegated to the appendices.

2 The Instrumental Variables Model and Its Parameterizations

The instrumental variables (IV) regression model in structural form (SF) is often represented as a limited infor-
mation simultaneous equation model (LISEM), see Hausman (1983),

o = YaB+Zy+e, (1)
Yo = XII+Z1 + Vs,

where y; and Y3 are a T'x 1 and 7' x (m — 1) matrix of endogenous variables, respectively, 7 is a T' X k; matrix of
included exogenous variables, X is a 7' X kg matrix of excluded exogenous variables (or instruments), €1 isa T x 1
vector of structural errors and V3 is T'x (m — 1) matrix of reduced form errors. The (m — 1) x 1 parameter vector
B contains the structural parameters of interest and the %; x 1 vector v, consists of structural parameters that are
not of direct interest. The variables in X and Z, which may contain lagged endogenous variables, are assumed
to be of full column rank, uncorrelated with £; and Vo and weakly exogenous for the structural parameter (.
The error terms e1; and Vo;, where €1, denotes the {-th observation on £; and Vo is a column vector denoting
the t-th row of V5, are assumed to be normally distributed with zero mean, and to be serially uncorrelated and
homoskedastic with m X m covariance matrix

€1t o1 Y12
Y =war = . 2
< Vo ) < Y1 Yo ) @
The degree of endogeniety of Y in (1) is determined by the vector of correlation coefficients defined by p =

22721/2122101711/2 and the quality of the instruments is captured by II.

Substituting the reduced form equation for Y5 into the structural equation for y; gives the nonlinearly restricted
reduced form (RRF) specification

yi = XIB+Z(IB+7)+uv, (3)
Yo = XII+ZT + Vs,

where v; = &1 + V23 and, hence, (vi; V4,)’ has covariance matrix
Qovar (0 Y= @ %2 ) _pyp (4)
Vai Qo1 Qa2 ’

1 0
6 Imfl

The unrestricted reduced form (URF) of the model expresses each endogenous variable as a linear function of
the exogenous variables and is given by

where F' =

y = Xm+Zs+wu (5)
Yo = XII+ZI'4+ Vs

Since the URF is a multivariate linear regression model all of the reduced form parameters are identified. It
is assumed that ko > m — 1 so that the structural parameter vector 3 is “apparently” identified by the order
condition. We call the model just-identified when k; = m — 1 and the model over-identified when ko > m — 1
and we denote by d = ko — m + 1 the degree of overidentification. The identifying restrictions tying together the
parameters of (3) and (5) are

W_Hﬁ - 07§_F6:’Y7 (6)
o1 = wir — 20001 + 6’0928, Xo1 = Qo1 — 5'Qo2, Yoo = Qoo



and, absent any restrictions on ¥, 3 is identified if and only if rank(IT) = m — 1. The extreme case in which g is
totally unidentified occurs when II = 0 and, hence, rank(Il) = 0. The case of “weak instruments”, as discussed
by Nelson and Startz (1990), Staiger and Stock (1997), Wang and Zivot (1998), and Zivot, Nelson and Startz
(1998), occurs when 1II is close to zero or, as discussed by Kitamura (1994), Dufour and Khalaf (1997) and Shea
(1997) when 1I is close to having reduced rank.

Since the focus of our analysis is on 3, we can simplify the presentation of the results by setting v = 0 and
I' = 0 so that Z drops out of the model. In what follows, let & = ko denote the number of instruments. We
note that the form of the analytical results for £ in this simplified case carry over to the more general case where
v # 0 and I" # 0 using the Frisch-Waugh-Lovell theorem by interpreting all data matrices as residuals from the
projection on Z.

3 Classical Single Equation IV Estimators

In this section we briefly discuss two commonly used classical single equation estimators for 3: two stage least
squares (2SLS) and limited information maximum likelihood (LIML). Our purpose here is to summarize several
key properties of these estimators that we will use to compare and contrast with key properties of certain Bayesian
posterior density estimates for 5. For a more complete discussion of classical single equation procedures, we refer
the reader to Hausman (1983), Phillips (1983), Bowden and Turkington (1984) and Dhrymes (1994).

3.1 Two Stage Least Squares

Since the reduced form equations for Y3 are linear, a first stage estimate of 1I can be obtained by ordinary least
squares (OLS) giving I = (X’ X) 1 X'Y;. Substituting II into the reduced form equation of y; gives the second
stage regression

= XIB +e, (7)
where ¢ = v; + X (I — I1) 3, and applying OLS to (7) leads to the 2SLS estimator of 3,
Basrs = (X' XTN) 'II'X"yy = (Yy PxY2) 'Yy Pxus, (8)

where Py = A(A’A) ' A’ for any matrix A of full rank.

Regarding asymptotic properties, B2SL ¢ is consistent for 8 and is asymptotically normally distributed with
covariance matrix %011(1_[’2)()( 1_[)’17 where X x x = plimyr_, %X’X7 under fairly weak conditions provided § is
identified and instruments are not too weak. If instruments are weak, Staiger and Stock (1997) show that Byg; s
is asymptotically biased with the bias depending on 2521221 = 0}{22521/2p, the population regression coeflicient
of ¢; on Va, and has a nonstandard asymptotic distribution'. Turning to finite sample properties, 32 srg 18 less
biased than BOLS and is biased in the same direction as BOLS. Further, both the bias and tails of the finite sample
distribution of 32 s1.s depend on the degree of overidentification, d, of the structural equation. The moments of
the finite sample distribution exist up to/including the degree of overidentification and also exhibit a bias which
depends on this degree, see Phillips (1983). As a consequence, adding superfluous variables to X, i.e. variables
whose true reduced form coefficients are zero, makes B2SL g more accurate but about a more biased estimate.
This occurs because as superfluous variables are added to X lower rank values of X1I become less likely, which
explains the existence of higher order moments, and the correlation between X Il and Vs increases, which explains
the increased bias of Bz <15 towards the correlation between £; and V. Nelson and Startz (1990) show that these

results are accentuated under weak instruments and a high degree of endogeneity. Finally, when m = 2, By4;7.4 is

~—1 e _
not invariant with respect to the ordering of y; and ya, i.e. B35, 7 Tasrg, Where n= 81,

LStaiger and Stock specify the weak instrument case by assuming that I = C'/+/T. In this parameterization the so-called normalized
concentration parameter MQ = TII'll = C'C remains fixed as the sample size grows.



3.2 Limited Information Maximum Likelihood

The LIML estimator, B 1ML+ 18 obtained from the log-likelihood function of (1) concentrated with respect to II
and X, see Hausman (1983) and Davidson and MacKinnon (1993),
y1 — Ya3)' Mx (y1 — Ya03)
(y1 — Y208) (y1 — YoP)
1 —-Y253) P -Y
= Llreg (y1 —Y25) x (y1 —Y20) ‘
2 (y1 — Ya8) (1 — Y29)

1
5T log|1 — A9,

1
In L°(3|X,Y) « §T10g ‘ (

9)

1—

where Y = (y1 Y2), Mx = Iy — Px and A(f) = (y(lylyzé)@fa(lylng)ﬁ) Since In L¢(8]) X,Y’) is a monotonically de-
creasing function of A(3), maximizing In L%(3| X,Y’) is equivalent to minimizing A(3),which, in turn, is equivalent

to finding the smallest root of the determinantal equation
IAY'Y — Y'PxY]| =0, (10)
see Anderson and Rubin (1949) and Hood and Koopmans (1953) . The LIML estimator of § is then constructed

such that the eigenvector associated with A equals a(1 —E,L 1m), where a is the first element of the eigenvector
associated with A. We note that the 2SLS estimator minimizes A(3) under the condition that the denominator
is constant which occurs in a just identified model.

The asymptotic properties of 6L a7 are the same as 62SL s provided B is identified and instruments are

not too weak. Under weak instruments Stalger and Stock show that 6 1M1 is not consistent and converges to
a distribution different than the one for 62 srg- In finite samples, 3 7ML 18 approximately median unbiased if
instruments are not too weak. In contrast to the 25LS estimator, the tail behavior of the finite sample distribution
of B; ;1 does not depend on the degree of overidentification, has Cauchy-type tails, and hence has no finite
moments, see Anderson (1982) and Phillips (1983). As a result, the finite sample density of By is much less
sensitive to the addition of superfluous variables than the density of 62SLS In addition, when m = 2, BLIML is

—1
invariant with respect to the ordering of the variables in Y, such that HLIML = 6LIML, where § = 371

4 Bayesian Analysis of the IV Regression Model: A First Look

4.1 Dreéze’s (1976) Approach

One of the initial Bayesian approaches to the analysis of the single equation SEM is due to Dréze (1976). This
approach specifies a flat or diffuse prior on the parameters of the structural form (1),

Dreze(67l—[ E) |E|7§(k+'m+1)7 (11)

where the subscript SF signifies that the prior is on the parameters of the SF and the superscript Dreze denotes
that the prior is the one specified by Dréze. The prior (20) implies the same kind of diffuse prior on the parameters
of the RRF (3),

PRI (8,11, Q) o |Q FU+m+D), (12)

since the Jacobian of the transformation® from ¥ to ) is absorbed in |Q|’%(m+k+1). This invariance property
between flat priors on the SF and RRF is the primary motivation of the Dréze approach. Multiplying these
priors by the appropriate likelihood and integrating out the remaining (nuisance) parameters gives the following
marginal posteriors of 8 and II*:

1y
(y1 — Yo ) Mx (1 — Y28)[] 7"
[(y1 — Y28)'(y1 — Yo P9)
2Note that for the structural form we consider this Jacobian is unity and so the relationship between diffuse priors on the SF and
RRF also holds for other choices of the degrees of freedom parameter (k +m + 1).

38ee Dreze (1976) and Bauwens and van Dijk (1989) for details on the integration steps with respect to the marginal posterior of
B and Kleibergen and van Dijk (1998) for the marginal posterior of II.

PRIES(BIX,Y) oc (g1 — YaB) (g1 — YaB)| 2" (13)
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The marginal density of 3 is a 1-1 poly-t density, see Dréze (1977). The first term in the density is proportional
to the concentrated likelihood function of 8 used for LIML estimation and the second term is proportional to the
kernel of a Student-t density centered at the OLS regression of y; on Y5. The marginal posterior of II is also a
ratio poly-t density.

The flat prior approach of Dréze (1976) has been the predominant Bayesian approach to IV regression. It
is extended in Dréze and Richard (1983) to allow for informative priors on the parameters of SF. Richard and
Tompa (1980) construct a posterior simulator to simulate from 1-1 poly ¢ densities, see also Bauwens (1984),
and Steel (1991) analyzes the efficiency of posterior simulators and improves them using both numerical and
analytical techniques. Geweke (1996) constructs a posterior simulator using the Gibbs Sampler for the marginal
posterior of § when informative priors are involved. Zellner et. al. (1988), use the Dréze approach to perform a
specification analysis in the single equation model. In the next section, key properties of the marginal posterior
(13) are discussed and compared with the sampling properties of 85476 and 87 1-

We now discuss some of the properties of the posteriors (13) and (14).

1. The marginal posteriors of 8 and II are not invariant with respect to the ordering of ; and Ys. To illustrate,
let m = 2 and consider another representation of (1) with the ordering of the variables in the structural and
reduced form equations reversed. The SF is

Y2 =y1n + v, (15)
U= XU+ V2,
and its associated RRF is,

(1 v2)=XU(1 n)+(v &), (16)
where 8 = n~ ', II = ¥, v; = —e 7, and the RRF covariance matrix is still . The Jacobian of the
transformation from (8,1I) to (n, ¥) is

(vec(ll) dvec(B)")’ nel, 1oV b2
J 1I U))| = = = . 17
| ((67 )7(777 ))| 61}60(\1/)’61)60(77)’ 0 _7771 ®n71 |77| ( )

Since the likelihood is invariant with respect to the ordering of the variables in Y, the sensitivity of the
posterior can only result from the prior. Now, following the Dréze approach, a diffuse prior on (1, ¥, Q) is

reze -1 m
pgRF (777‘1179) & |Q| 2kt +1)7 (18)
while the prior on (1, ¥, ) implied by the diffuse prior (12) on the original ordering is
implie reze -1 m —
pRF:flé’ d(n7‘II7Q) OcpgRF (57H79)|J((57H)7(777‘I’))| = |Q| 2kt +1)|77|k 2' (19)

Unless k& = 2 these priors are not equal and so the marginal posteriors of 7 and W are different from the
marginal posteriors of 7 and ¥ which are implied by (13) and (14). The posteriors of the parameters
resulting from the Dréze (1976) approach are therefore not invariant with respect to the ordering of the
variables in Y. This noninvariance is similar to the noninvariance of the classical 2SLS estimator.

2. The marginal posterior of 3 is sensitive to the addition of superfluous instruments. To see this, recall
that the marginal posterior of 3 is proportional to the product of the concentrated likelihood of 3, who’s
logarithm is given in (9), and the kernel of a Student- ¢ density with d degrees of freedom with mean and
variance resulting from the regression of y; on Y. The moments of the posterior therefore exist up to, but
not including, the degrees of freedom of the Student-f kernel which is the degree of overidentification, d.
The marginal posterior of 8 can be thought of as a combination of a marginal posterior resulting from a
flat prior on the parameters in a linear regression of y; on Y2 and the concentrated likelihood of 8 and one
can control the relative weight of the two components by changing the degree of overidentification, or, put



differently, adding/removing variables to/from X. For example, in the just identified model for which d =0
the marginal posterior of § is not proper. It can be made proper, however, by simply adding superfluous
instruments to X, which, as a consequence, leads to an apparently overidentified model. This point was
first noted by Maddala (1976) who showed that the marginal posterior (13) has information on parameter
values for which the likelihood has no information. We add that the effect additional explanatory variables
have in pushing the posterior towards the posterior resulting from a linear regression model is similar to
the effect they have on the sampling density of 8447 4-

3. Since the marginal posterior of 3 can be considered as a combination of the marginal posterior resulting from
a linear regression model and the concentrated likelihood, the posterior mean and mode behave accordingly.
Furthermore, for exactly or slightly overidentified models the posterior mode will be close to 311, but it
can be quite different from 3 11, for highly overidentified models with weak or superfluous instruments.

4. The marginal posterior of II has a nonintegrable asymptote at II = 0, the point at which 3 is not identified.
This occurs because the joint posterior of II and § does not depend on 8 when II = 0 and so when we
integrate over 8 to get the marginal posterior for II an infinite value results. This result is troubling since
the posterior favors values near II = O regardless of the observed data.

To illustrate some of the properties of the Dréze approach, we computed the marginal posterior (13) for
simulated datasets generated from (1) with m = 2 and Z = 0. For each dataset we set 8§ = 1,011 = Yoo =
1,p = 0.99 (¢ = 2) and T = 100. Four data sets were generated with & = 1,5,10,20, X ~ N(0,I; ® It) and
IT = (my,7h)" where 7 is a scalar variable controlling the quality of the instruments and 73 is d X 1 vector of
zeros representing extraneous or superfluous instruments. Good, weak and irrelevant instruments are captured
by my = 1,7 = 0.1 and 7 = 0, respectively. Table 3 summarizes values of OLS, 25LS and LIML estimators for
these datasets and Figures 1-3 give plots of the marginal posteriors of 5 computed from (13) (table and figures
are in the appendix).

For the good instrument case the OLS estimate of 3 is moderately biased whereas the 2S5LS and LIML
estimators are less biased for all values of k. The 25LS estimator slowly moves toward the theoretical point of
concentration, ¢, (equal to 1.99 here) as k increases whereas the LIML estimator remains unchanged. When
k = 1, the posterior of § is roughly centered about the true value but shows a good deal of uncertainty due to
the lack of moments of the posterior. As k increases the posterior mode shifts right as more weight is given to
the OLS estimate and the tails of the density decreases as more moments become finite. This shows that the
posterior becomes more precise but about a more “biased” point and is similar to the behavior of the sampling
density of the 2SLS estimator.

For the weak instrument case, the OLS, 25LS and LIML estimates of 3 are heavily biased for all values of &.
The estimated standard errors of 3547 ¢ are quite large for small & but become quite tight for large & whereas
the LIML standard errors are large for all k. When k& = 20, 3LIML = —6.30 which illustrates the flatness of
the concentrated likelihood function in the presence of weak instruments. The posterior of § is bimodal in the
case of weak instruments, much like the sampling densities of S9g7 ¢ and 5155 (see Nelson and Startz (1990)
and Staiger and Stock (1997)) and the bimodality diminishes rapidly as & increases. When k = 20, the posterior
becomes quite tight about a point slightly greater than ¢.

In the completely unidentified case, the OLS, 2S5LS and LIML estimators are all very similar and close to ¢.
The posterior of 3 in all cases has most of its mass near ¢ and with k& = 20 the posterior becomes very tight.
This clearly illustrates Maddala’s (1976) criticism of the Dréze approach.

4.2 Bayesian Two Stage Approach

The main reason the Dréze prior (11) influences the posteriors for 8 and 11 in undesirable ways is due to the
assumed independence between 3 and II. Since 3 is locally nonidentified when II has a lower rank value, it is a
priori known that the model is informative about 8 when II has full rank and is uninformative about § when,
for example, II = 0. This knowledge could be explicitly incorporated in the prior. The classical 2SLS estimator
essentially operates in this way, since it first estimates Il and then, conditional on the estimate of II, estimates
8. To mimic the 25LS procedure, we construct a prior for the parameters of the RRF which functionalizes the
steps used to obtain the 2SLS estimator and we refer to the resulting analysis as the Bayesian Two Stage (B2S)
Approach.



Consider a slight reparametrization of the RRF (3),

y1 = XUB+vy =XUF+e + Voo (20)
Yo = XII+V5,

where v{ = e; + Voo, ¢ = 9521921 is the population regression coeflicient of v; on V, such that e; and V5
are independent with var(e;) = wi1e2 = wig — w129521w214. Zellner, Bauwens and van Dijk (1989) use this
parameterization for a Bayesian specification analysis in the LISEM but do not account for the dependence of 3
on II in the prior they use, which is the Dréze prior (11). We use the independence between the errors e; and Va
in equations in (20) as well as the fact that 3 is not identified when II has reduced rank to construct conditional
diffuse priors on the parameters as follows:

wrtg|Q2s| T, (21)

PRt (wir2, Qo2) oc
x |922|7%k7
o

phzr(Mwir2, Qoo
ﬁ?ﬁm(@ﬁlﬂ wi1.2, 222

Pasr (B¢, I, w2, Q2o

wi.2]” T Q)3

~— e e e

o wire| T X XTI|?

The joint prior for the RRF parameters (3, ¢, I, w11.2, Qa2) is the product of the conditional and marginal priors
n (21):

PE2S(8, 6,10, wi1.9, Qaa) o |wir.2| ™|~ T DI X XT1) 3 (22)

The main difference between the B2S prior (22) and the Dréze prior (11) is the conditional prior of 5 given the
other parameters. This conditional prior captures the fact that the model is not informative about 3 when II has
reduced rank since it is equal to zero when II has reduced rank.

Straightforward calculations give the following conditional and marginal posteriors:

Cl(m—1 1 1 ~ ~
PEE (310, L or1 2, 022, ¥, X) e ™ VXXM expl-w (5 - BYIUXXTIE - B), (28)
m—1 1
PRER(GIIL w11 2, 2, ¥, X) o wnz( V3 MxnVal? expl—5wiita(6 — 6)' Vi MxnVe( — )l (24)
~5(T+2) Loy
pRRF(wll 2|11, 22, Y, X) o wy % |U1M(XH Vz)Ul|2 exp|— 2“11.2U1M(XH VQ)UIL (25)
1 _
PEER Q2|11 Y, X) o [Qap|~ BT HEEm=1 [y 5(T+E-D) eXP[—?T(szle'Vz)]v (26)
L i
pB2S IUX'XT] |2 [ [IX My, XT1] | ® STyt 5 , —L(T+k-1
oy, x II-INYX'X(II-1I) + Y, MxY> 2

where & = (Vi My Vo) Vi My = (Y My n¥e) Y4 Myqun, 1= (X'X) "1 X"V, § = (X' XTI IIX (4, —
120).

We now discuss some properties of the B2S posteriors and argue that the B2S approach is more closely related
to classical 2SLS than the Dréze approach.

1. As with the Dréze approach, the posteriors are not invariant to the ordering of the endogenous variables.
The argument is similar to that used for the Dréze approach and is omitted.

2. The mean of the conditional posterior of 3 is essentially 323LS5.

3. Using Rayleigh quotients, i.e. ratios of quadratic forms, it can be shown that the ratios of determinants
appearing in the first part of the marginal posterior of Il in (27) are always finite and larger than a specific

4From the identifying restrictions, ¢ = 9521921 = 2521221 + 8 which is also the point of concentration for BQSLS in the case of
weak instruments.

5This occurs because the estimated 2SLS residuals ‘72 can be added to the second stage regression (7) without affecting the 2SLS

estimator, since ‘72 is orthogonal to Xﬂ, and because @ only minorly affects the the conditional posterior mean of 3, since Va is on
average uncorrelated with XTI.



nonzero value. Hence, the marginal posterior of II does not have a non-integrable asymptote at II = 0 as
it is bounded from above and below by a matric-variate Student-t density with 7" — 1 degrees of freedom.
The form of the posterior is closely related to the marginal posterior which results from a standard diffuse
prior analysis of the reduced form regression of Y3 on X.

4, Consider the approximate location of the marginal posterior mean and mode of 5. To determine these values,
we use the similarity between the marginal posterior of Il (27) and the marginal posterior resulting from a
diffuse prior analysis of the regression of y; on Y2. The mean and mode of this latter marginal posterior
lie at Ilors = (X'X) 1 X'Yy. Substituting this value in the conditional posteriors of ¢ and 3, gives the
approximate posterior modes of the marginal posteriors of 8 and ¢:

d(Mors) = (VaMyp, Vo) 'VaMypur = (Yo MxY2) 'YaMxy (28)
= (‘72"72)71‘72’917
B(¢, 1) = (X' XMors) orsX'(y1 — Veo(Ilors))
= (UpLsX'XMors) ‘MorsX 'y,

where X:/Q =Y, — XIops. Not surprisingly, the approximate posterior mode of the marginal posterior of 3
lies at 62SLS6 .

5. Consider the sensitivity of the marginal posterior of 3 as superfluous instruments are added to the model.
When m = 2, we can analytically construct the conditional posterior of 5 given (w11.2, ¢, a2),

PREE(Blwire, &, Do, Y, X)) oc [(B— @Jwrn2(B — ¢) + Q|- FEFIFMD) (29)
i L[ TEKE+2j+1) (B X X0 1B’
3T (5 (k +24)) 2(BQ1B) ’

[\]
&

=0

and the marginal posterior of (wi1.2,®,{22),
1
Phzr(@inz, 6, Q| Y, X) o fora| QY 2T exploser (@7 YY), (30)

where & = (X'X)"1X'Y, and B = ( 8 Im-1 ) , see appendix C7. The moments of the conditional pos-
terior of B in (29) exist up to including the degree of overidentification. Since the marginal posterior for
(wir.2, ¢, $2) is finite everywhere, as it can be decomposed into the product of a conditional posterior of ¢
given (wn_g, Qgg), which is normal, and marginal posteriors of wy1.2 and {22, which are inverted-Wishart,
using a decomposition similar as the one used to obtain (24)-(26), it follows that the moments of the
marginal posterior of 3 exist up to including the degree of overidentification. The location of the mode of
the Student-t kernel in the conditional posterior of 8 corresponds with the asymptotic bias of 32 srg in the
case of weak instruments, see Staiger and Stock (1997), and also appears in the small sample distribution of
BQSLS, see Phillips (1983). So, when superfluous instruments are added to the model it is expected that the
posterior mode moves in the direction of the mode of the Student-t kernel, ¢, and the tails of the posterior
decrease. Both these phenomena are found in the marginal posterior of 3 using the Dréze approach and in
the small sample distribution of BQSLS'

To illustrate some of the properties of the B2S approach and to contrast it with the Dréze approach, we
computed the marginal posteriors of 3 for the same simulated datasets as used for the Dréze approach and these
posteriors are shown in figures 4-7°. The B2S posterior behaves very similar to the Dréze posterior regardless of

6We cannot directly apply the above analysis for the marginal posterior mean because the mean of the marginal posterior, when
it exists, does not equal the mean of the conditional posterior evaluated at the mean of the conditioning parameter.

"For m > 2, we cannot construct the conditional posterior of 3 given € analytically but we can still prove that it has finite
moments up to including the degree of overidentification.

8Since the sample size for these datasets is reasonably large and the true value of the covariance matrix 3 is quite small, the
conditional posterior of 8 given €, for Q = %Y’Y, is approximately equal to its marginal posterior that is constructed by simulating
(wi1.2, ¢, Q22) from (30), which is standard since all involved densities are standard, and constructing the average value of (29) for
all generated (w11.2, ¢, Q922)’s. This results because Y'Y is the scale matrix of the marginal posterior of (w11.2, ¢, Q22)). We therefore
only consider the conditional posterior of 8 given Q for 2 = %Y’Y.



instrument quality and the number of superfluous instruments. The tails of the B2S posteriors are a bit thinner
than the Dréze posteriors and the mode of the B2S posterior is somewhat closer to 5547 ¢ than the mode of the
Dreéze posterior.

We conclude that neither the Dréze nor the B2S approach are counterparts to classical LIML and the B2S
approach has more properties in common with classical 2SLS than the Dréze approach. To construct the Bayesian
analog of LIML, we need to consider how the LIML estimator is obtained and follow the same procedure in a
Bayesian setting. The LIML estimator is obtained by solving the eigenvalue problem (10) which is essentially
specified in the URF'. In the following section, we therefore explicitly specify the RRF as a restriction of the URF
to obtain a Bayesian analog of LIML.

5 Encompassing Model Perspectives
The nonlinear RRF specification of the SEM (3) is nested within the linear URF (encompassing linear model),
Y =X0+V, (31)

whereY = (g1 Y2 Jand V= (v, V2 ). The RRF is obtained when ® = IIB, with B=( § In_1 ), and
so the RRF can be considered as a restriction on the parameters of the URF. Correspondingly, we can consider
the maximum likelihood estimator of the parameters of the RRF, ¢.e. the LIML estimator, in terms of a restriction
imposed on the maximum likelihood estimator of the URF, i.e. the least squares estimator. This results from the
first order condition (FOC) for a maximum of the likelihood. Depending on the considered statistical paradigm,
either the parameters, in the Bayesian paradigm, or the estimators, in the classical paradigm, can be considered
as (realizations of) random variables. The density of these random variables in the RRF, either the parameters
or the estimators, can then be considered to be proportional to the conditional density of the random variables in
URF given that the URF equals the RRF or, equivalently, that the restriction implied by the FOC is satisfied. As
shown in Kleibergen (1998), in order to conduct such an analysis it is necessary that the restriction upon which
we condition can be represented in an unambiguous way which implies that the conditional densities involved are
uniquely defined.
When the random variables are estimators, as in classical analysis, we can conduct the following analyzes:

e Given the density of the least squares estimator of the parameters of the URF, we can construct the density
of the LIML estimator of the parameters of the RRF through the restriction implied by the FOC on the
random variable representing the least squares estimator.

e Given the limiting behavior of the least squares estimator of the parameters of the URF, we can construct
the limiting behavior of the LIML estimator of the parameters of the RRF through the restriction implied
by the FOC on the random variable representing the limiting behavior of the least squares estimator.

A novel feature of the above analysis is that the derived finite sample density of the LIML estimator can be
used to obtain the prior which would correspond with LIML when used in a Bayesian analysis. We construct this
small sample density in section 5.2 and use it to show that the Bayesian analogue of LIML results from using the
Jeffreys’ prior derived from the RRF (or SF) model.

When the random variables are parameters, as in Bayesian analysis, the priors and posteriors of the parameters
of the RRF result from the conditional prior and posterior of the parameters of the URF given that the restriction
which makes the URF equal to the RRF is satisfied. This allows us to conduct the following exercises:

e Given that classes of priors for the parameters of the linear URF exist whose properties are well-known,
these priors can be extended to the parameters of the RRF by considering them as proportional to the
conditional prior of the parameters of the URF given that the (unambiguous) restriction which implies
equality of the URF and RRF holds.

e Given a prior specified on the parameters of the RRF, we can construct the class of priors on the parameters
of the URF which lead to the specified prior on the parameters of the RRF.
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Since the RRF is nonlinear in its parameters, it is not obvious how the prior is updated using the likelihood to
obtain the marginal posteriors and so it is difficult to assess the influence of the prior on the marginal posteriors.
The URF, on the other hand, is linear and so all properties of its prior are reflected in the marginal posteriors
of its parameters. Hence, the exercises described above give us a way to determine the plausibility of the prior
specified on the parameters of the RRF.

5.1 Unambiguous Conditioning in the URF to obtain the RRF

In the URF, rank(®) = m whereas in the RRF rank(®) = rank(ILB) = m—1; hence, the RRF imposes a reduced
rank restriction on ®. The rank of a matrix is represented by the number of nonzero singular values, which are
generalized eigenvalues of non-symmetric matrices, see Golub and van Loan (1989). The singular values result
from the singular value decomposition,

®=USV', (32)

where U and V are k x k and m x m matrices such that U'U = I}, and V'V = I,,,, and S is a k x m rectangular
matrix which contains the nonnegative singular values in decreasing order on its main diagonal (= (s11...Smm))
and is equal to zero elsewhere. Hence, the reduced rank restriction that the RRF imposes on the URF is the
restriction that the smallest singular value of the URF parameter matrix ® is equal to zero.

It is convenient to represent the rank restriction on ® using the specification

®=TIB+11,\B,, (33)

where II, is a & X d matrix such that II'II;, = 0 and II' II, = I;; B, is a 1 x m vector such that BB| =0,
BLB’L = 1; and X is a d x 1 vector to be specified. II, and B, can be constructed from the elements of II and
BasTl = ( —ILI; ' I; ) (Iy + oIl ' YI,) %, where IT = (I, 1Ty )’ with TI : (m — 1) x (m — 1),
IIz:dx (m—1);and B = (1+ 6’6)’% ( 1 -4 ) 9. The representation (33) is an unrestricted specification of
® and results from the singular value decomposition (32) with

U Ur Sy 0 vl V12
U= , 8= and V = , 34
< Uz Us2 ) < 0 s Va1 va2 (34)
where Uy, S1, Var are (m — 1) x (m — 1) matrices; v1g is 1 X 1; v{y, vag are (m — 1) x 1 vectors, Ujg, Uy, and

Usg are (m—1) x d, d x (m— 1) and d X d matrices and s3 is a d x 1 vector. Explicit expressions for 3, Il and A
are derived in Kleibergen (1998) and Kleibergen and van Dijk (1998) and are given by

U _ 1 1
= < Uit ) S1Vay, 8= Vay 'oiy, A= (UneUsy) *Unasavy(vr20hy) 2. (35)

The specification of A in (35) is such that X is an orthogonal transformation of the smallest singular value contained
in 8. The Jacobian of the transformation from s2 to A is therefore equal to one and is independent of the other
parameters as well as the data. Restricting the smallest singular value to zero is thus equivalent to restricting A
to zero and, therefore, the RRF is obtained from the unrestricted specification of ® in (33) when A = 0. We note
that many other representations of ® can be constructed which lead to the RRF when a certain parameter is
restricted, but this parameter needs to be an (invertible function of an) orthogonal transformation of the smallest
singular value to represent the rank reduction imposed by the RRF in an unambiguous way.

Since the restriction A = 0 represents the rank reduction imposed by the RRF on the parameters of the URF
in an unambiguous way, the posterior of the parameters of the RRF is equal to the conditional posterior of the
parameters of the URF given that the smallest singular value, or equivalently A, is equal to zero. As shown in
Kleibergen (1998), conditional densities are uniquely defined when the event upon which we want to condition,
here A = 0, is such that the original random variable, in our case ®, can be represented as an invertible function of
two other random variables where the following conditions hold: (¢.) The event upon which we want to condition
is equivalent to the first random variable being equal to zero; (ii.) Given that the second random variable allows

9Let Q be an n xn symmetric matrix with spectral decomposition @ = PAP’ where P is an n X n orthogonal matrix of eigenvectors

1 1
and A is an n X n diagonal matrix of eigenvalues. The square root of Q) is then defined as Q2 = PAZ P’.
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for it, we can uniquely solve for the original random variable for all values of the first random variable even on
all of its lower dimensional subsets. These conditions ensure that the first random variable only represents the
event upon which we want to condition and nothing else and, as a consequence, the Borel-Kolmogorov paradox,
see e.g. Kolmogorov (1950), Dréze and Richard (1983) and Poirier (1995), is avoided. In our case, this first
random variable corresponds with the smallest singular value (equivalently \) and the event upon which we want
to condition is that the smallest singular value is equal to zero (equivalently, A = 0). So, the prior and posterior
of the parameters of the RRF are proportional to the conditional prior and posterior of the parameters of the
URF given that A =0 :

prer(B,1LQ)Y, X) o purr(8,1L N, QY X)|r=o (36)
& pURF((I)(67H7)‘)7Q|KX)|/\=0|J((I)7(67H7)‘))|/\=0|7

where |y—¢ denotes evaluated at A = 0 and J(®, (3,11, ))) is the Jacobian of the transformation from ® to
(8,11, ). The Jacobian in the above expression is constructed in Kleibergen and van Dijk (1998) and Kleibergen
(1998) and is given by

J(@, (B2 M)h=0o=( B oL eoll B ol ), (37)

where e; is the first column of I, and B, and 11, are defined below ([?]). Note that when we directly specify a
prior on the parameters of the RRF, the relationship in (36) can be inverted to give the (implied) prior on the
parameters of the URF. Since the URF is a linear model, all properties of its parameters’ priors are reflected in
its parameters’ marginal posteriors and so the form of the prior on the parameters of the URF implied by the
prior of the RRF gives us a means to analyze the plausibility of the prior specified on the parameters of the RRF.

5.2 Exact Finite Sample Density of the LIML Estimator and the Jeffreys’ Prior

The specification of the RRF as a reduced rank restriction of the URF and the availability of unique con-
ditional densities allows for the construction of the exact finite sample density of the LIML estimator for
¢ = (vec(Il)’,vec(B)'). Furthermore, the form of this joint density reveals the prior which when used in a
Bayesian analysis corresponds with the LIML estimator. The analysis proceeds as follows.

By definition, the LIML estimator of ¢ satisfies the FOC for a maximum of the RRF likelihood:

vee(X'(Y — X (@)Y <3@ec(f(<p))>

dvec(p)’ =0 (38)

P=Prrimr

where f(¢) = IIB. Using ®ors = (X'X) ' X'Y and S = X'X, (38) can be equivalently represented as

UeC(S((i)OLS —f@Liu)) ) (%{g?))‘ . =0s
=¥YrLIiMrL

vec(STPorsQF — ST () F) (Qf% @ S%) (%ﬂ%’?)

39
) ‘ o (39)
Y=Prrmr

Treating do 1 s as a realization of a random variable with a known density function, the exact density of ¢, IML
can be obtained by recognizing that the FOC (39) must hold for all realizations of the random variable © =
S3dorsQ 5. In particular, the FOC is always satisfied only when the ¢y, results from a drawing of the
random variable © under the condition that

S hopsQ T — S f(pry ) F = 0w (40)

6—r) = o,

where 7“({#) = S%f(@LIML)Q’% = S50, 702 Brrar )7 is an invertible relationship between 1 and ¢ and % has
an invertible relationship with ¢, and is thus of the same dimension, which is implicitly defined by (40). We can
now construct the exact finite sample density of @77 from the density of ¢, which is the unique conditional
density of © given that (40) holds'’.

0Notice that the restriction from the FOC is imposed on the normalized random variable é, which has unit covariance matrix,
instead of the random variable ‘i’OLsy which has general covariance matrix, since the estimators are weighted by their covariance
matrices in the likelihood. Also note that this way of constructing the small sample density of @17asr, exploits the property that
@rrarr satisfies the FOC and is not based on a closed form expression for @7 a7, which is the traditional way of constructing the
small sample density, see e.g. Mariano and Sawa (1972) and Phillips (1983).
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Specifically, suppose that ‘i’OLs|Q ~ n(®g,Q @ S™1) where &g = By and By = ( Bo Im-1 ) Then
0|2 ~n(0y, I, ® I1,), where Qg = SEdy0)~ %, and an expression for its density is

P(6]0) o exp [—%tr ((é S CE eo)ﬂ . (41)

Now, specify 7(¢) = I'D where I' is a k X m matrix and D = ( 6 Im_ 1 ) is an (m — 1) X m matrix. Then

r(¢) =TD = S M ran Bri 7 = 871 Brin Qo < <BL]MLQQ) Brrvrwr Im-1 ) )

where Q% = ( wy Q9 ) with wy an mx1 vector and €23 an m x (m—1) matrix such that 5= ( [MLQQ) BLimLwi

and I' = S311171s1 Br.1asz Q2. The absolute value of the Jacobian of the transformation from (I° (T, 6) to (HLIML7 BLIML)
constructed in appendix B, is

o o . . k-1 Lim-1) (m—1)
‘J ((F75)7 (HLIMLvﬁLIML))‘ = ‘BLIMLQz‘ R

. ~ -1/
w’l <Im _BEIML (BL[MLQQ) Q’g) €1

(42)

The density of the estimators (f‘, 5) given ) is then proportional to the conditional density of © given that O has
rank m — 1. This rank restriction can be imposed using a specification of © like (33),
O=TD+T,AD,, (43)

where T', 8, \ result from a singular value decomposition of © like (32) using the relations in (35), where the

parameters are changed appropriately, and imposing A =0.The density of (f‘, 5) under the reduced rank restriction
is then

p(1,81Q) o p( |Q)|ra/nk(é)=m71 (44)
p(A(f7575\)|Q)|A 0|J(év(A7575‘))|X=0|
(et et ) [y (00 (1= e0))]
o |0 |y o 1) — (55’ o M| exp [——tr ((m ) (1D - @0)”

I 1—0—55

‘ P

where the Jacobian J(O, (T, 8, 5‘))|X=0 is identical to (37) with II replaced by T', B by D and 3 by &. The density

of (I 1arr, Brpar) Now results from the density of (I, 8) by transforming (I, 8) to (z7arz, 81 7arz), see appendix
B,

1
2

p(Mrrar, Borl?) o ‘( Brivr BLIML®S e BLIML®HLIMLS )

BLIMLQ 61 ®SHLIML elQ €1 ®HLIMLSHLIML

(45)
1 e . L .
exp —5157“ Q (HLIMLBLIML - HoBo) S (HLIMLBLIML - l_[OBO) .

In Kleibergen (1998), the joint density of (31 ;4,7,Hrrar) is analyzed further to construct the conditional density
of B vz given € which is shown to be similar in form to the polynomial expression given in Mariano and Sawa
(1972).

The form of the density of (81747, Mz 1arz) in (45) immediately reveals the prior that when used in a Bayesian
analysis gives a posterior that corresponds with the LIML estimator. When we namely change (B LIM L,f[L ML)
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to (8,11) and IpBy to @, the density (45) can be considered as the conditional posterior for (II, 3) given Q. The
exponent term then corresponds with the likelihood of (II, ) given €2, and the part in front of the exponent term
thus corresponds with the prior of (II, 3) given (2. This prior then reads,

1
2

(46)

?

Jef BQle,®S e’lelB’®H’S
pRRF(67H|Q) o ‘( BQflell @ SII 6,197161 @ II'STI

and is, in fact, the Jeflreys’ prior conditional on {2 derived from the RRF since it is proportional to the square
root of the determinant of the information matrix, see appendix D. For the exactly identified case, Chao and
Phillips (1998) obtain the same result by showing that the posterior derived from the Jeffreys prior has the same
form as the exact density of BL sur- Our result in (45) shows that this relationship holds more generally for the
overidentified case.

6 Bayesian Approach Using the Jeffreys’ Prior on the RRF

Using the conditional Jeffreys’ prior (46) and the diffuse prior prrr(Q) o |Q|’%(m+1)7 leads to the posterior

1
2

Prar(B LAY, X) o @ zTrmy (47)

BU B @ X'X QB oIlX'X
BO e, @ X'XIT e, ey @ X' XII

exp[—%tr(Qfl(Y — XIIBY (Y — XIIB))).

This posterior has rather different properties than the posterior resulting from the Dréze and Bayesian Two
Stage Approaches. First, the Jeffreys’ prior is known to lead to posteriors which are invariant with respect
to transformations of the parameters and so the posterior (47) is invariant with respect to the ordering of the
variables in Y and X. Second, for the case m = 2 we can construct an analytical expression for the conditional
posterior of 8 given {2 and the marginal posterior of {2, see appendix C,

Pl (BIY, X) o< |(B— d)wrnz(B— o) + Qg | FTIFY (48)

i LTk 42 + 1)) BO 1/ X/ XDO 1B !
JIT(3(k+25)) \ 2((8' = ¢")wi12(8" = ¢) + Qy) 7

Jj=0

e 1 m 1 _
Prip(QY, X) oc Q] 2(+2 )eXP[—§t7“(Q YY) (49)

The marginal posterior of €2 is an inverted-Wishart density and is always finite so that the moments of the
marginal posterior of 3 exist up to the same order as the moments of the conditional posterior of 8 given ). The
conditional posterior of 3 given 2 has Cauchy-type tails such that no finite moments besides the distribution exist.
Hence the number of moments of the posterior is not influenced by the addition of superfluous instruments. The
conditional posterior (48) consists of one infinite sum and the expression is therefore simpler than the expression
given in Chao and Phillips (1998) which consists of a double infinite sum. Furthermore, we also obtained the
expression of the marginal posterior of £} (49) which is not given in Chao and Phillips (1998) such that it is
unknown which values of {2 are plausible to use in their expression of the conditional posterior of 8 given 2.

The insensitivity of the posterior of 3 to the addition of superfluous instruments can be explained by explicitly
considering the different steps that are implicitly conducted when using the Jeffreys’ prior. The Jeflreys’ prior can
be thought of as resulting from a three step procedure which are identical to the ones conducted in the previous
subsection to obtain the small sample density of the LIML estimator'!:

1. The URF (31) is transformed to the linear model,
Y = X(X'X) T00% +V, (50)

where © = (X’X)%QQ’%, b = (X’X)’%@Q% and a flat prior is specified on © such that p(©|Q) o< 1.

U The three step procedure shows that the Jefireys’ prior is data-driven and therefore violates the likelihood principle.
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2. Using a singular value decomposition, the conditional posterior of © given rank(0) = m — 1 is constructed
by specifying © as

O@=TD+T A\D,, (51)

where D) = ( 6 Imq ) and I' |, D, and A are constructed analogously to the matrices in (33), and noting
that the reduced rank restriction on © is equivalent to the restriction A = 0. Using arguments similar to
the construction of (36) it follows that,

p}]ﬁ{F(F,(SlQ,X,Y) & pJJ;J{F(eleva)lrank(®)=mfl (52)
o Prap(OT,6,2)[9Q, X,Y)|7(O,(T,6,1))|r=0-

3. The parameters (I',§) are transformed to (II, 3) and the resulting posterior using the Jeflreys’ prior (47)
becomes

Je Je Je
pRl{F(67H79|KX) & pRl{F(F(Hvﬁ)v5(H76)|97X7Y)|J((F75)7(Hvﬁ))l pRJ{F(Q|X7Y)' (53)
The Jeffreys’ prior is now just the term in front of the likelihood in the specification of the posterior.

The above three step procedure shows that the posterior based on the Jeffreys’ prior results from analyzing the
posterior of the parameters of a nested model as the conditional posterior of the parameters of an encompassing
linear model given that the restriction which implies unambiguous equality of the two when it is satisfied holds.
So, although the Jeflreys’ prior is defined as the square root of the determinant of the information matrix, it
also results from the above three step procedure and therefore involves the construction of unique conditional
densities.

The second step in the above three step procedure explains the insensitivity of the posterior of 8 to the
addition of superfluous instruments. To see this, note that the matrix © consists of the “ft-values” of the elements
of @ and the “f-values” associated with the superfluous instruments will be close to zero. When the singular value
decomposition of © is performed to impose the reduced rank restriction, the elements of © with small “t-values”
will be associated with the smallest singular value and the eigenvector associated with this smallest singular value
will have nonzero elements especially at the positions of the superfluous instruments in X. In the construction of
the posterior for (I', §) in the RRF, the smallest singular value is restricted to zero and its eigenvector is discarded.
Hence, the superfluous instruments are discarded and so they do not influence the posterior of (I, §) as well as
the posterior of (IL, 5).

The relationship between the exact density of the LIML estimator and the posterior based on the Jeflreys’ prior
from the previous subsection implies that the reasoning above, which explains the insensitivity of the marginal
posterior of 8 to the addition of superfluous instruments, also explains the insensitivity of the classical LIML
estimator to the addition of superfluous instruments.

To illustrate some of the properties of the marginal posterior of 3 based on the Jeffreys prior, Figures 7-9
give the posteriors of 3 for the same datasets previously analyzed using the Dréze and Bayesian Two Stage
Approaches'?. In the case of one good instrument, the posterior of § is minimally affected when superfluous
instruments are added and the mode stays close to B;7r- In case of weak and no identification, note that
the convergence of the modes of the marginal posteriors of 8 towards ¢ = 1.99 when superfluous instruments
are added is to be expected. When § is nonidentified, its posterior mode is in theory located at the point of
concentration ¢ and when superfluous instruments are added the posterior of 3 essentially becomes like an average
over all the different posteriors of the superfluous instruments in the exact identified case. Since ¢ is the only point
where all these posteriors have probability mass, we see a pile-up at ¢ in the marginal posterior of 3. In case of
weak identification we also see this feature but it is less pronounced and the posterior still indicates considerable
uncertainty about the value of 3. The pile-up at ¢ for the Jeffreys posterior is much less than in the posteriors
based on the Dréze and Bayesian Two Stage priors.

12gince T is reasonable large and the true value of 3 is quite small, the conditional posterior of 8 given €, for = lY’Y, is
approximately equal to the marginal posterior of 8 and we therefore only compute the first one. This results because Y'Y is the
scale matrix of the marginal posterior of 2 and the marginal posterior of €2 is tightly concentrated around this scale matrix when T
is large.
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7 Bayesian Approach using a Flat Prior on URF

In linear models, the Jeffreys’ prior is considered uninformative as it corresponds with a standard diffuse or flat

prior. Since the URF is a linear model, a noninformative prior for the parameters of URF is a standard flat

prior. The previous section showed that the Jeffreys’ prior for the IV model is in fact highly informative for the

parameters of the URF as its’ use implies conducting an implicit pretesting procedure on the relevance of the

instruments. A diffuse prior for the URF performs no such pretesting procedure and, therefore, it is interesting

to compare posteriors from the Jeflreys prior to posteriors from a flat prior on the parameters of the URF.
Consider the flat prior on the parameters of the URF

Plw(®,Q) oc 272", (54)

where h is a prior parameter such that if h = m+1 the standard noninformative prior for the linear model results,
see Berger (1985). Using (54), (36) and (37), the prior for the parameters of the RRF then becomes,

Phir(G.TLQ) o plgp(8, AT Q)=o (55)
& p][;lla%}’(q)(67)‘7n7)7Q)|/\=O|J((I)7(67)\7H))|,\=0|
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Combined with the likelihood, the prior (55) leads to the posterior

Phie(8,1LQY, X) o plig(8,\ 1L QJY, X)|r=0 (56)
& p][chl?F((I)(ﬁv)‘vH)vQ|Y7X)|/\=0|J((I)7(67)‘7H))|/\=0|

1
o | BTRR) <BB'®Ik 5®H> ’

g olll Il

exp[—%[tr(Q’l(Y’MXY)) +tr(Q HIIB — dors)' X' X (IIB — o 19))]]-

The posterior (56) is essentially proportional to the kernel of the density of a matric-variate normally distributed
random matrix with reduced rank.'3

The posterior (56) has some properties in common with the posterior resulting from the use of the Jeflreys’
prior (47) and some not. First, a common property is the invariance of the posterior (56) with respect to the
ordering of the variables in Y. This results from the specification of II, and B, . To see this, consider again the
models (15) and (16) with m = 2. The specifications of 11, and B, are given by

1
o, = (Id+H2H11H11’H’2)%<IH1 H2> (57)
d

17 IR T
=t vyt ()

— 1/ 747
BT i =W
(raewaw gy (V)
- ‘IIJJ
and
_ % Iy —2y—1 -1
Bl = (I+nym = (1 = )=Q+n?)"7(1 -0 ") (58)
2y, —1
= —(+n)m m(-n 1)=-N,
13 Analytical expressions of its moments or conditional or marginal posteriors are not known. Also, it is not possible to generate
drawings from the posterior (56) directly and standard Gibbs sampling techniques do not apply. To simulate drawing from the

posterior, it is necessary to use a simulation method like importance or Metropolis-Hastings sampling. Samplers to obtain drawings
from (56) are discussed in Kleibergen and van Dijk (1998) and Kleibergen and Paap (1998).
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where N = ( 1 7 ) . This construction implies that Ay ;) = —A(11,3) and the Jacobian of this transformation is
—1. From the chain rule of differentiation,

J(@, (IL 8, A1) = (@, (¥, 1, Aw, i) (W, 7, Aw ) (1L, B, A g))), (59)

and the relation Ay ;) = —A(11,), it follows that

KON (8w )) = (0B, (60

where J((¥,n), (I, 3)) is given in (17). Hence,

| (@, (IL, B, Aan, ) x i oy =0 = | (@ (W, 710, Ajw ) [y =0] T (¥ ), (1, 5)) | (61)

which is the result needed to have invariance with respect to the ordering of the variables in Y.

The second feature that the posteriors resulting from the flat and Jeffreys’ priors have in common is that
they result as conditional posteriors of parameters of a linear model given that it has reduced rank. There is
an important difference, however, in terms of the specification of the linear model on which the reduced rank
restriction is imposed to determine the posteriors. Using the Jeflreys’ prior, the reduced rank restriction is
imposed on the parameter © of the linear model (50), while using the diffuse prior implies that the reduced rank
restriction is imposed on the parameter ® of the model (31). Hence, the Jeflreys’ prior imposes the reduced rank
restriction on the “t-values” of ® while the diffuse prior imposes the reduced rank restriction directly on ®. The
two posteriors can be quite different whenever X'X and/or € strongly differ from identity matrices. To illustrate,
for the case m = 2 and X'X = I, an analytical expression for the conditional posterior of 3 given {2 is given by

pHE(BI0,Y, X) o (B — ¢ wi12(8 — @) + Qi | T DB QB |3 (62)

i L D(5(k+2j+1)) BOQ 1O X' X0 B ’
ST (k+25)) \2((8 — ¢')wir2(8'— &) + ) ’

v

7=0
where we used the decomposition
| (@, (8, A1) [xoo| = Q24| BLOB | ¥ |11'TI|2 (63)
- _ 1
Qs + (& = B)wiia(o — B)'77,

which is shown in appendix A, and the conditional posterior of 3 given ) in case of the Jeflreys’ prior, which is
constructed in appendix C. The conditional posterior (62) is identical to the conditional posterior based on the
Jeffreys’ prior (48) except for the term |B, B U%d. Note that when the model is exactly identified or when both
Q =1, and X' X = Iy, the posteriors based on the flat and Jeflreys’ priors are identical.

The superfluous instruments can influence the posterior of 3 based on the flat prior because the rank reduction
is conducted using the parameter ® and not on its “t-values”. The scale of the superfluous instruments compared
to the relevant ones and the size of the covariance matrix are now important for distinguishing superfluous from
relevant instruments. For example, when the scale (variance) of a superfluous instrument is small, the value
of its element in ® can be large, although not significant based on its “t-values”. Then, when a singular value
decomposition of ® is performed, the superfluous instrument will not be associated with the smallest singular value.
So, when the smallest singular value is restricted to zero to impose the rank restriction, and as a consequence its
eigenvector is discarded, the superfluous instrument is not deleted and so it affects the posterior of . This result
is not that strange since when a flat prior for the parameters of the URF is used it implies that all parameters
have the same weight in the prior regardless of whether they belong to a relevant instrument or not. The posterior
of the parameters of the URF therefore becomes flatter when superfluous instruments are added to the model
and as a result it becomes harder to determine which instruments are relevant.

Figures 10 and 11 show the posteriors of 3 for a weakly and properly identified model for different degrees of
overidentification'*. The posteriors of 3 show a much larger sensitivity to the addition of superfluous instruments

14 Again since 3 is quite small and T is quite large, 7" = 100, the conditional posterior of 3 given € for Q@ = %Y’Y is approximately
equal to its marginal posterior and therefore we only computed the first one.
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than in case of the Jeffreys’ prior. This results from the term |B| QB |2 n (62), which is not present in the
posterior based on the Jeffreys’ prior (48). Although this term is finite and strlctly positive everywhere, such that
the moments of the posterior of 3 exist up to the same order as in case of the Jeffreys’ prior, it still has a strong
influence on the posterior of 8 when the degree of overidentification is increased by the addition of superfluous
instruments.

8 Implied Prior for the Unrestricted Reduced Form Parameters

When we specify a prior on the parameters of the RRF, prrpr (5,11, Q2), it can be thought of as being implied by
a prior on the parameters of the URF by essentially inverting the relationship in (36). Specifically,
PURF ((1)7 Q)lrank(@):mfl o pURF(ﬁ((I))v H((I))7 )‘((I)) Q)|rank(<1>)—m 1 |J((6 ) )|rank(<I>) m— 1| (64)
oc purp(6(®), (@), A(®), 2)[x=0 [|/(®, (5(2), TI(®), \(® )))lA of] ™
o prar(B(®),TH(®), Q) [|7(, (5(2), (@), \(®)))|r=ol] *

since A = 0 is equivalent to rank(®) = m — 1 and J((3,11,\),®) = J(®, (3,1, \)) L. Hence,
purr(®,Q) o< g(@, Nprrr (P, D) |rank(@)=m—1- (65)

where g(®,Q) = 1 when rank(®) = m — 1. So, except for the function ¢(®,{2) which is equal to 1 when
rank(®) = m — 1, the prior specified on the parameters of the RRF determines the prior specified on the
parameters of the URF. Since the URF is linear in ®, all properties reflected in its prior are also reflected in the
marginal posteriors of the parameters of the URF. As the RRF is nonlinear in its parameter, it is not obvious
how the specified prior influences the marginal posteriors. By analyzing the class of priors implicitly used on the
parameters of the URF, we can determine this influence.
The Jacobian |J(®, (8, A,11))|y=o| is the crucial element for determining the influence of the specified prior on
the parameters of the URF. A convenient specification of this Jacobian, constructed in appendix A, is
(@, (8, M) [xzo| = |24 BLOB |21 (66)
- _ 1
Q25" + (¢ — B)wiils (6 — B)'|77
= |QIFF|BLOB | (XTX) T LR X
[ # D ITX XT3 935 + (6 = B)wna(0 = B)13%,
The first part of the Jacobian (66), except for |Q|%k7 refers to A in (33) while the second part is the Jeflreys’ prior
of the RRF and thus refers to (I, 3).

In the following sections we use (64) and (66) to construct the implied prior on the URF parameters based on
the Jeflreys’, Dréze, and B2S priors for the RRF parameters.

8.1 Jeffreys’ Prior

The class of priors for the parameters of the URF which lead to the Jeflreys’ prior (46) for the parameters of the
RRF is given by

PR (@ D rans(@y=m-1 o< PEAR(P(S,TLN), Q)| a=ol|7(®, (8,11, A)) [r=0]] (67)
o | 0w x xTY [B B X X B0 D)
ol BBl |t e e |
|H’X’XH|F
| L11]
oc Q7 TF|B OB I (X X)L

o [0 B aB! ¥ [

The elements appearing in this prior are essentially the inverse of the parts referring to X in the Jacobian (66).
They result as the rank reduction using the diffuse prior is imposed on the parameter ® which has covariance
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matrix (@ ® (X'X)™!). The Jeffreys’ prior, however, imposes the rank reduction on the parameter © which has
covariance matrix (Im ® 1 k) Since B and Il are orthonormal matrices they therefore do not appear in the
Jeflreys’ prior.

The implied prior (67) shows that, relative to the flat prior on the URF, the Jeflreys’ prior favors large values
of Q and (X’X) ! in the direction of B, and 11, respectively, and penalizes small values of  and (X'X)~! in
the direction of B| and Il , respectively. When superfluous instruments are added to the model, their parameters
have a variance that is proportional to ((B, QB )" '@ (Il (X'X) '11,)~'), which results from (66). The implied
prior shows that the Jeffreys’ prior, compared to the flat prior, favors superfluous instruments whose parameters
have a small variance and penalizes those which have a large variance. This is exactly what is achieved by imposing
the rank reduction on the “t-values” of the URF parameters instead of the parameters themselves. Note also
that, like the Jeflreys’ prior for the RRF parameters, the implied prior (67) depends on the data and therefore
violates the likelihood principle.

8.2 Dréze Prior

In the Dréze (1976) approach, the diffuse prior (12) is specified on the parameters of the RRF. Using (64) and
(66), the prior for reduced rank values of the URF parameters becomes

Dreze

PR (D, D) rank(@)mm—1  0C PRIES(B(®), IL(®), Q)[|J(@, (8, A, I1)) | rzol] (68)
o @ U BLOBY | T
955" + (6 — B)wila (6 — B)' |34
o [Q"FV|B QB F T2
955" + (6 — B)wia(p — B)'| 754
o QT BLOB] [P (X X))
197 2D X X510 + (¢ — B)wp'o(6 — B)| 34

The class of priors on the parameters of the URF which lead to the prior specified by Dréze is then
PURES (@, Q) o< gURE (@, QPTRE (R, D)|rani(@)=m 1. (69)

where gFrez8(®, Q) = 1 when rank(®) = m — 1. The prior (68) can also be specified as

p[LJ)gine((I)v Q)|7“0L'nk(<I>)=mfl & |9521 + (¢ - 6)w;112(¢ - 6),|7 %d (70)
| F DX XT3 ) o (@, )i (@)=m—15

which illustrates the relationship between the implied Dréze and Jeffreys’ priors for the URF parameters'®.

The relationship in (70) shows that a common feature of the approaches based on the Dréze and Jeflreys’
priors is an implicit kind of pretesting for instrument relevance that was discussed for the Jeffreys’ prior approach
in section 6. This explains why the posterior of 8 in the Dréze approach is often less affected by the addition of
superfluous instruments than the posterior of 3 resulting from the diffuse prior on the parameters of the URF.
The difference between the posteriors resulting from the Dréze and Jeffreys’ priors is also explained by (70) and
results from the determinant of the quadratic form in IT and the Student-t kernel in 8 with d degrees of freedom.
The determinant in II results from the fact that the Dréze prior does not capture the a priori known dependence
of B on II and is, in fact, infinite at lower rank values of II due to the local nonidentification of 3 at these values
of II. Since the URF is a linear model, this feature also appears in the marginal posterior of II as shown in (14).
The Student-t kernel in § in the prior of ® also shares properties with the marginal posterior of § in (13). The
prior accounts for the number of finite posterior moments of 3 compared to the marginal posterior of 8 for the
Jeffreys’ prior. The prior (70) shows that the moments of the marginal posterior of J using the Dréze prior exist
up to the degree of finite moments of the posterior using the Jeflreys’ prior plus the degrees of freedom of the
Student-t kernel in 3 minus one (because of the quadratic form in IT), which is d — 1. The prior also shows the

15The reason we made the prior (68) data-dependent is to compare it with the prior (67). It does not actually depend on the data,
due to the canceling of terms involving the data, and thus does not violate the likelihood principle.
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sensitivity of the posterior mode of 3 using the Dréze prior to the addition of superfluous instruments compared
to the posterior mode using the Jeflreys’ prior. When d is increased by the addition of superfluous instruments,
the prior (70) shows that the posterior mode will move in the direction of ¢ compared to the posterior mode using
the Jeffreys’ prior as illustrated in Figures 1-3 and 7-9.

8.3 Bayesian Two Stage Prior

To determine the class of priors for the parameters of the URF which lead to the specified prior in the Bayesian Two
Stage Approach, we first transform the prior over (3, ¢, 11, w11 2, 222) in (22) to the prior over (5,11, w11, wa1, Qo2) =
(8,11, Q). The Jacobian of this transformation is

|7((p, wi1.2), (war,w11))] = [Q2a| ', (71)
and so prior for (3,11, 1) becomes
PRER(BILQ) o |wiy — ¢lwn| ™ |Qgp| T FFTED I X XTI P (72)

oc |0 | TN X XTI
Using (64) and (66) the implied prior for reduced rank values of the URF parameters is

pg?%%(q)7 Q)lrﬂmk(@)=m*1 & pgl%b% (67 I1, Q)|J((I)7 (67 A, H))l/\=0|71 (73)

o Q™ Q0|3 X XTI|Z | J(D, (8, A, I1)) | a0 ~*
o< |Q|*%(m+1)|Q22|7%k|w11.2|7§(m71)|H/X/XH|%
(924 BB |~ ¥ >
|5 + (6 — Bwir'ale — 6) |7
|BLQB’L|} 5 [|H’X’XH|F
|€222] |11
|Q2721 + (¢ — 6)“)1711_2@ZS - 5),|7%d
oc Q7P BLOB [P (X X) ML ¥
QI 2]~ 205" + (6 — B0 — B)'F

S R [

The prior (73) shows the differences appearing in the posteriors when we use the Bayesian Two Stage Approach
compared to the diffuse prior specified on the parameters of the URF. It can also be specified such that it can be
directly compared to the Jeflreys’ prior:

PEER (@, Dlrank(@y=m 1 < |Qp + (¢ — Blwnla(6 — 6)] 2 (74)
Il S R 7 P C ) P

This prior (74) shows the relationship between the posteriors based on the Bayesian Two Stage and Jeffreys’ prior
since both approaches use the same likelihood. We see that the Bayesian two stage approach also involves an
implicit pretesting on the relevancy of the instruments and its main difference with the Jeffreys’ prior involves the
Student-t-kernel in 3 with d degrees of freedom (which is also present in the prior in case of the Dréze approach
(70)). This Student-¢ kernel explains the difference in order of finite posterior moments of 3 and the location of
the posterior mode of 3 compared to the posterior computed using the Jeffreys’ prior. Since only the distribution
of the latter posterior exists, (74) shows that the marginal posterior of § using the Bayesian Two Stage approach
has finite moments up to including the degree of overidentification, d. Also, since the posterior mode of 3 using the
Jeflreys’ prior is relatively insensitive to the addition of superfluous instruments, which is illustrated in Figures
7-9, (74) shows that the posterior mode of § using the Bayesian Two Stage approach will move in the direction
of ¢, as shown in Figures 4-6.
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Classical Procedure | Invariance to Ordering Y | Sensitivity of small sample distribution estimator
to adding superfluous instruments

mode tail
2SLS N 0 +
LIML Y 1 -

Table 1: Summary Properties Classical Procedures (0 stands for movement towards ¢, 1 stands for insensitive;
+ stands for thinner tails, - stands for insensitive tails; Y stands for yes, N stands for no)

8.4 Informative Priors

The previous subsections have shown that the use of standard “diffuse prior” Bayesian procedures for analyzing
the IV regression model amount to the use of quite informative priors on the parameters of the URF. We also
have shown that the information these priors impart on the parameters of the URF is often not obvious and could
therefore be contrary to the information one might want to have in the prior. As an alternative, informative
conjugate priors on the parameters of the URF can be specified that possess the same kind of information as the
diffuse priors but in a more accessible way and also allow for other Bayesian procedures to be conducted, like
Bayes factors to test for the validity of specific instruments or to test certain values of the structural coeflicients.
For example, following the analyses in Kleibergen and van Dijk (1998) and Kleibergen and Paap (1998) one can
specify a normal prior on the parameters of the URF and let this prior imply the prior on the parameters of the
RRF. Generalized Savage-Dickey density ratios can then be used to compute the Bayes factor for the validity of
specific instruments or the degree of overidentification.

9 Conclusions

In this paper we conduct a comparison of classical and “diffuse prior” Bayesian procedures for analyzing the
stylized IV regression model. We consider four different types of diffuse priors: the traditional diffuse prior
on the SF parameters due to Dréze (1976); a new Bayesian two stage procedure (that is constructed along
the lines of the classical two stage least squares estimator); the Jeflreys’ prior on the RRF parameters; and a
diffuse prior on the parameters of the URF. We compare the different Bayesian procedures with respect to their
behavior on several properties. These properties are the invariance with respect to the ordering of the endogenous
variables, sensitivity with respect to the degree of overidentification, behavior under weak instruments, and for
the Bayesian procedures the location of the posterior mean/mode and the prior implicitly used on the parameters
of an encompassing linear model. We show that this latter property is a convenient tool for comparing different
Bayesian procedures and uses the result that the posterior of the parameters of the IV model is the conditional
posterior of the parameters of the encompassing URF model given that the restriction which unambiguously
implies equality of the two models is satisfied. Table 1 summarizes the key properties of the classical estimation
procedures and Table 2 gives the key properties for the different Bayesian procedures. The properties of the
posterior of the structural form parameter are obtained for the case of two endogenous variables for which we
derived exact expressions of the conditional posterior of the structural parameter 3 given the covariance matrix
€ which, for a specific value 2, is often approximately equal to the marginal posterior of & for all of the Bayesian
procedures. Our results show that the Bayesian two stage approach is a closer Bayesian analogue to classical
2SLS than the Dréze approach and the Jeflreys’ prior approach is the Bayesian analog of classical LIML.

From Table 2 we see that the implicit prior on the parameters of the URF shows that some of the procedures
conduct a form of pretesting by imposing the reduced rank restriction that implies equality of the RRF and URF
on the “t-values” of the parameters of the URF. In this way, the procedures become less sensitive to the addition
of superfluous instruments. This property is not at all apparent from the initial specification of the prior on the
parameters of the RRF and it shows the usefulness of analyzing the implicit prior imposed on the parameters
of the URF. Table 3 also summarizes the sensitivities of the various posteriors to the addition of superfluous
instruments. Not surprisingly, these sensitivities correspond to the sensitivities revealed from the prior implicitly
used on the parameters of the URF.

All of the diffuse priors for the parameters of the SF or RRF result from informative priors on the unrestricted
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Bayesian Procedure

Invariance to Ordering Y

Adding Superfluous Instruments

posterior 3 RRF

implicit prior URF

mode tail mode | tail | pretesting
Dréze N 0 + 0 + Y
Bayesian Two Stage N 0 + 0 + Y
Jeffreys’ on RRF Y 1 - ? - Y
Diffuse on URF Y ? - flat flat N

Table 2: Summary Properties Bayesian Procedures (0 stands for movement towards ¢, 1 stands for insensitive;

+ stands for thinner tails, - stands for insensitive tails; Y stands for yes, N stands for no)

reduced form parameters. The information imparted on the parameters of the URF by these priors, however,
is somewhat hidden and similar posterior results can, for example, be obtained by using informative conjugate
(normal) priors on the parameters of the unrestricted reduced form and constructing the priors they imply on
the parameters of the restricted reduced form. This kind of approach shows its implications from the outset and
may therefore be preferable to using seemingly uninformative priors specified directly on the parameters of the
restricted reduced form that are based on classical estimation procedures. Furthermore, the use of proper priors
allows for a complete Bayesian analysis, including for example Bayes factors that can be used to test for the
superfluousness of certain instruments, see Kleibergen (1998) and Kleibergen and Paap (1998), and is therefore
also appealing from an applied point of view while the other procedures do not allow for much more than the
computation of the marginal posteriors of parameters of interest. We intend to pursue this line of research in

future work.
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Appendices

A. Decomposition of the Jacobian for the Transformation from the URF to the RRF

The Jacobian of the parameter transformation from the linear model (31) parameters to the reduced form (3)
parameters is derived in Kleibergen and van Dijk (1998) and Kleibergen (1998) and is given by

J(@, (B, M)h=0=( B O, e@Il B oIl ).
The determinant of the Jacobian can be decomposed as follows:

|7 (@, (8, A, 11)) | x=o]
= QP XX E(J(D, (8,2, 1) [r=0) (21 © X' X)(J(®, (8,7, D)) |r=0)|*
BQ'B'@X'X  BQle, ® X'XII
GO IB OIX'X €0 ey @ X' XTI

L
2

— ok b \(

(BLom) (@ oX'X) - (@ oX'X)(Bol aoll)

((Bonh aon)(@'eX'X)(B ok aol ))71

=

(B'oh aoll)(Q'ox'X))(BLollL)

L
2

-1 l -1 !
|Q|%’f|X’X|%m‘<(E Je®X'X (271 @ X'XTT )

EHpellX'X (8 V), o' X' X1

(Lo ((BLom) ((BLon) (@0 (X)) @ o)

i
2

(B o1LL)') (B] ©1L)

which uses that A~'— A7IC(C'ATIC)"1C'A~1 = C (C AC)71C, for any n x n positive definite symmetric
matrix A and n x r (r < n) full rank matrix C, and that Q! = iy tpV p= ( er B ),,

= QP X'X| T BLOB, o I (X'X) ML | 7|(X Yy @ ITX'X1I|®
[(E7 122 © X'X) — (B H2u (271 (2 e © X' XTI(IT X XTD) ' TIX'X))| 2
= |QFF|IX'X| T BLOB, o IT (X'X) 1| 2|5, © ITX'XTI|?
(B304 © X'X) — (37 a1 'y D1 Bg' © X' XTI(IT X' XTD) ' TIX ' X))| 2
= QPP X'X|3™BLOB, © I (X'X) | %8y, o VX /XTI
(T35 © X'X) + (Zg7 L1 D'y Do T © X M X)|?
where we have used that Yoo 1 = Yoo — ElgEﬁlElg such that 22721_1 = 2521 + 227212212;11_221222721 and that

B, B| =1,II'Il; =1, and ey : m x 1 is the first m dimensional unit vector.
Using that

i
2

5= 5550050 = Wi (wiz — 6'0) 07 = W) 5 (0 — 5)
since wit2 = Yi1.2, 12 = wiz — 8, ¢ = Q;;wgl and 20 = Yoo, it follows that
|7(®, (8, A1) |s=o]
= QXX E BB TR (X X) T L F Qo) 2O DI X XTI
(S22 © X'X) + (V35 Tou B, B2 855 © X' My X)|
= QXX E BB TR (X X) T L F Qo) 2O DI X XTI
(93 © X'X) + (! 66027 © X' My X)|2.
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The last part of this expression of the Jacobian can be further decomposed as
1 _1
(R0 © X'X) 4 (2,7 8807 © X' MxnX)|2
1 _1
(D5 © X'X) + (Qp57 660057 © I (T, (X'X) " 'I1L) 1T, ) |3
= (Iwo(mEmF 1)) (2 © X'X)+

=

(% 66055 © X' My X)) (I, 1 © ( IV % 11, ))

Q50 @ (NI~ =1 X X TI(I'TT)
- Q0 @ I, X/ X TI(IV'IT)~ 2

[V

Q54 © (T~ 211 X' XTI,
_1 _1
(D O X' XTI ) + (0557860 © (I (X'X) L)1)
= Qoo " F V(') FIN X XTI(ITIT) 5 |30
(s + Q5 8'805") © (1] (X'X) 1)~

1

= |0 T V05 + 952%5,59522 |10, (X' X)L | Em D
|(IT'T0)~ 2 11 X' XTI(ITTT)~ %] 207 D)
= [Qa| F XX V|0 4 (¢ = B) wya (0] = 8],

where we have used that |( H(H’H)’% I, )| = 1 as both H(H’H)’% and II, are orthogonal matrices,
(I'T])~ = I'I(II'IL) " % = I,,, 1 and that
(IT (X'X)7 ')~ = I I (I (X))~ 00
I, (X'X — X' XII(I'ID) ~ = (IU'1L) =
X XTI(IT'T) )~ (1T~ * 11X X101,
— I (X'X — X' XTI(I'X' XT0) IV XX)IL, .

This property also implies that |H’L(X’X)’1HL|’%|H’X’XH|% = |X'X||(Il I1,)] = | X' X||I'T], and so we can
obtain the following convenient expression of the Jacobian:

|J(®, (8, X, T0))| =0l
= QPP X'X| BB | (XUX) L | I X XTI
|Qll.2|7%(m71)|922|7%(m71)|X,X|%(m71)
_ _ L
Q55 + (¢ — B)wi'a(e — B)'|7¢
= Q|24 B QB! | ITT|?
i
_ _ L
5 + (¢ — B)wii'a( — 8)'|77.

B. Jacobian and Small Sample Density LIML estimator

To construct the Jacobian J ((f,S), (ﬁLIMbBL[ML))a 5= (BQg)ilel, I'= S5 35 Brra e, we use
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the following results:

) —1
—60(30(5) - = <w’1 ® (BLIMLQ2) ) —ﬁvec(AB,
ovec(Brinmz) dvec(3)
N . -1 . -1 dvec(B
- (wllBiIML &) Imfl) <<BLIMLQQ) ® (BLIMLQz) ) (5@ I—1) ﬁ
/ > -1 Y N =17 , R 1
= <w161 ®@ (BLIMLQz) ) - <w1BL1ML (BLIMLQz) Qe ® (BLIMLQz) )
, - N —1/ ; R —1
= <w1 <Im —Brrur (BLIMLQz) Qg) e ® (BLIMLQz) )
dvec(T - L
ot (o)
aUGC(HL[ML)’
Because #0(5)), = 0, the Jacobian ‘J ((f‘,S), (ﬁLIMImBLIML))‘ becomes
‘J((f 5) (f[ B))‘ B dvec(d) dvec(T)
AT avec(BLIML)’ 6vec(ﬂL1ML)’

. ~ -1/ N -1 N
— ot (1= Bhaus (Brrses®) %) er© (Bursee) || (% Bhaas 0 5%)]
i (m—1)
= |Brimr

[ jspem-v

N ~ -1/
w’l <Im — B}JML (BL[MLQQ) Qé) €1

We derive the small sample density of (31 ;47,1 L7as2) given  (45), by substituting the expressions of I' and &
and using the jacobian,

p(ﬁLIML7BLIML|Q)
& p(f(ﬁLIML7BLIML)7S(ﬁLIML7BLIML)|Q) ‘J ((ﬁs) ) (ﬁLIML7BLIML))‘

1
_ 3d

. R R R i R 1. R R —1/
o Q’QB’LIMLH’LIMLSHLIMLBLIMLQz‘2 ‘Iml + (BLIMLQz) Brivrwiwi B (BLIMLQz)

J((0.8) . (Merser. Brrs))

since Br,rayr§)2 is a square matrix, we can further simplify this expression to

1 - - ! - -
exp [—itr <Ql (HLIMLBLIML - 1_[oBo) S (HLIMLBLIML - HOBO)H

1
5d

. —(k—m)
o< BLIMLQ2‘

1
- s 25 1 D! > oY
‘HLIMLSHLIML‘ ‘BLIMLQ2QQBL[ML +Brimrwiwi Briyr

J((028) . (Merser. B )

‘*(kﬂn)

- ] ) . ) )
exp —5157“ <Ql (HLIMLBLIML — 1_[oBo) S (HLIMLBLIML - HOB0)>

1 1
3 3d

> > —1 5/
o< |Brimrfle BrrwrY "By

| .
‘HLIMLSHLIML‘

7((0.8) . (Murssr. Brrae))

which results because Q2% + wiw) = Q1. Substituting the expression of the jacobian then gives

- o ) . ) )
exp —5157“ <Q ! (HLIMLBLIML — 1_[oBo) S (HLIMLBLIML - HOB0)>

1 1
3 3d

N ; = > -1/
Brimrfle HL[MLSHLIML Brimrf BLIML

‘*(k*m)
o<

_ (m—1)
\k g

‘BLIMLQ2

~ ~ -1/
w’l <Im — B}JML (BL[MLQQ) Qé) €1

1 - - ! . -
exp [—5157“ <Ql (HLIMLBLIML - 1_[oBo) S (HLIMLBLIML - HOBO)H
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which can be further simplified by using that

1 / 1!
! 1 Y / _ wWi€1 wlBLIML
Wy <Im — Brrur <Q2BLIML) Qz) er| = ‘( Q! QB
2€1 2P ML

= (e %) (e Bl )= 1w @)=l

Ia>Y
‘Q2BLIML‘

as BLIML = ( BLIML o ), such that

—Lim-1) |1y 1 |4 -1p/ 2 3(m=1)
oc |72 ‘HLIMLSHLIML‘ ‘BLIMLQ Brrwz| 1912

1 . . / . .
exp [—5157“ <Ql (HLIMLBLIML — 1_[oBo) S (HLIMLBLIML - HOBO)H

L
2

~ BriwrQ "By, ©5 e By OGS
BrivyrQU el © Sy e Yer @ 1,5

1 . . / . .
exp [—5157“ <Ql (HLIMLBLIML — 1_[oBo) S (HLIMLBLIML — HOBO)H )

where it is used that,

L
2

BroyrQ By, ©8  elQ 1B, ©101 .S
Brivpv tel @ Sy i ter @ Uy, SUrrar

R R L Lyg
= |Q5m=D ‘H,LIMLSHLIML ’ S| EmD,

> —1 57
Brivr  Brrur

which results from appendix A.

C. Derivation of the Conditional Posterior of 3 given {2 based on the Jeffreys’ Prior and the
Bayesian Two Stage Approach(m = 2)

In case m = 2, an analytical expression of the conditional small sample density of the LIML estimator of 3
given ) can be constructed, see Kleibergen (1998). As the posterior of the parameters of the RRF in case of the
Jeflreys’ prior is similar to the small sample density of the LIML estimators of these parameters, we can thus also
analytically construct the conditional posterior of 3 given £2. In case of the Jeffreys’ prior, the joint posterior of

(8,11,Q) is
Prap(6,TLOJY, X)
o QT FTHEM VI X X | B B3
1 N .
exp[—itr(Q’l(Y’MXY + (1B — &)’ X' X(I1B — ®)))].
In order to obtain the conditional posterior of 3 given {2, we need to determine the integral
1 . .
/ |BQ 1B/ |50 X X 11| 2 expl—5tr(Q (1B — &)'X'X (IIB — &)))dIl
1 -1 -1/ —1pn-—1 -INF! v/ v F
= exp[—itr((Q — QB (BQB) T BQTH)P' X' X))

[ 1P explgar((r = TY/(C = Dl

where I' = (X'X)?I(BQ'B)z, T = (X'X)?I(BQ'B)z, I = $Q 'B/(BQ'B)"!, & = (X'X) 'X'Y. In
case m = 2, I'T has a noncentral x? distribution with k& degrees of freedom and noncentrality parameter I'T', see
Muirhead (1982). The above integral is then just E(|I‘T|%) with respect to the density of I'T". The density of
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a noncentral 2 can be specified as a Poisson mixture of central x? densities, see Johnson and Kotz (1970) and
Muirhead (1982),

o~ (G 1

P2 (o) (W) = Z T exp [—54 Py (kt2i) (W),
i=0 '

where p,2(;12;)(w) is the density function of a standard x? random variable with k4 2j degrees of freedom. Note

that the weights, which correspond to a Poisson density, sum to one. The expectation of w? when w is X2(l<: +2j)

distributed is

=

} _ 2%1“(%(16 +2j+1))

o T (5(k+2))

The expectation of w? over the noncentral Y2 distribution is therefore
00 1,\J
1 SH 1 L
EXQ(k,,u) [uﬂ} = Z (% eXp |:—§/L:|> EXQ(k+2j) [U}z}
1y’ —lu 2%r(§(1<:+2j+1))
7! 2 ’

T(3(k+2j))

|
M |
N

In our case, y = I f‘, so that the integral needed to obtain the conditional posterior of 3 is

/|FT|% exp [—%tr <<r . f)’ (r . r))} dr

1
o Lo popy [wz]

A~ AN
00 (lFT) 1 .
1., I'(s(k+27+1
. Z 2 : eXp |:——F,F:| 2% (2(1 j ))
iz J 2 I'(5(k +2j))

(st 1B (BO 1B BQ*lé’X’Xé))j
!

R
&MS

ey
Il
o

1 _ - -
exp [—§tr(QlB’ (BQ™'B) lBQl<I>’X’X<I>)} 2
such that the conditional posterior of 3 given €2 reads,
Je
pRJ{F(ﬁleyv X)
1 - -
o« |BQIB|TI™ expl—5tr((Q — Q' B/(BQ ' B) 1B XX D))

0 (%tr(Qle’(BQ*lB’)’lBQ*&)’X’Xé))j

> £

=0

exp [—%tr(QlB’ (BQIB’)IBQli)’X’Xi))} 2

1 . . > r(A(k+2j+1

o |BQ*IB’|*%7”exp[—itr(Q*@’X’X@)] Zﬁ( (3 i+1)
j=0

j

(ser(@ 1B (BO1B) ' BO 10X X D))
5!
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The joint posterior of (3, ) then becomes,

le%(j{F(67 QJy, X)
1
« |0 L(T+2m) exp|— itr(Qle’Mxy)]

1 - -
|BQ 1B exp[—5tr(Q &' X' X))

(str( 1 (BO1B) BQ*li’X’Xé))j
7!

1 o0
oc |Q 3T+ exp[_?r(mly'y)]|BQ*IB'|*%m > o3 (

(st 1 (BO1B) BQ*li’X’Xé))j
5!

Je Je
& pRl{F(6|Qv Y? X)pRJ{F(Qlyv X)?
where

1
PRAp(QY,X) oo |Qf 3T exp[— §tr(Q’1Y’Y)],

(3(k+2j+1))
D((k+27))

P (B190,Y,X) o |BQ'B/| 3™ Zﬁ(
j=0

(st 1B (BO B BQ*@’X’X@))j
7!

o (8= P)wna(B—¢) + Q| TOHD
1 k: +2j+1))
23
JZ < 3(k +25))
B &' X' XdQ 1B’ g
2((8 — P)wi1.2(8— @) + p3)

Note that the marginal posterior for {2 is an inverted-Wishart density with scale matrix Y'Y which is exactly the
scale matrix used in the polynomial expression to obtain the LIML estimator. Note also that the same integration
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procedure can be used to obtain the conditional posterior of 3 given £2 for the Bayesian Two stage approach:

B B > 3 (k +2g + 1))
BQS Q Y X oC BQ lB/ (k+1) 2% <

(str(1p (BQ*IB’)’1 BQ*@’X’X@))j
7!

(
o~ o1 (T(G(E+2+1))
[22 < JIT(3(k + 25))

( BO 1 X' X 1B ’
)

2((8 — P)wir.2(8 — @) + Qoo

D. Derivation of the Information Matrix for the RRF Parameters Given {?

The information matrix of ® given {2 in the URF is

@) = [61nL(<I>|Q,Y,X)

6@60(@)6@60(@)’} = (@7 o X'X).

In case ® = I1B, the derivatives of ® with respect to II, 3 read

Qvec(P) ,

6@60(1’[)’ (B @ Ir),

Ovec(®) _ Ovec(P) dvec(B) . .
doecd) ~ dvedBY dveegy ~ Um ©Mer @ Ina) = (e o 1),

where e; is the first m dimensional unity vector. The information matrix of (II, 3) given € in the RRF then
becomes

Avec(P Avec(P ! Avec(P Avec(P
I(H7 ﬁlQ) = ( 81)50((1_[))’ avec((ﬁ))’ ) I((I)|Q) ( 8vec((H))’ 81}60((5))’ )
(Bol, eaoll)( Q@ 'eoX'X)(Bol, eoll)

BB @ X'X  BQle, ® X'XII
ENIB OIX'X €,Q ey @I X' XTI
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Figures

The following figures containing marginal posteriors of the structural form parameter 3 are computed from
data simulated from the simple bivariate model

y1 = Pyz+er,
Y2 = XmHuy,

where ¥y, yo : T X 1, X : T Xk, (g1 v2) ~n(0, 2@ Ir); X ~n(0,I, ® It), T = 100, k = d + 1; and share the
properties that:

e The true value of 3 = 1 for each marginal posterior.

e The covariance matrix of the structural form disturbances is X = 0 ;9 0'59 ) .

e The reduced form parameters satisfy 7 = (7y...71;)" and 79 = ... = 7, = 0.

Marginal posteriors of 3 are shown for different degrees of overidentification d: d=0 (-),d=4(--),d=9
(-), d=19 (..).

e 1, and yo are identical for all figures which have the same value for 71 and X is identical for all figures
which have the same value of d.

Table 3 shows the values of some classical estimators for the different simulated datasets

Figure 1: Marginal posterior 3 Dréze Approach, 7, = 0.
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Figure 2: Marginal posterior 8 Dréze Approach, 71 = 0.1.

Figure 3: Marginal posterior 3 Dréze Approach, m; = 1.
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Figure 4: Marginal posterior 8 Two Stage Approach, 7 = 0.

Figure 5: Marginal posterior 8 Two Stage Approach, 7, = 0.1.
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Figure 6: Marginal posterior 8 Two Stage Approach, 7 = 1.

Figure 7: Marginal posterior 3 Jeffreys’ Prior, 7y = 0.
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Figure 8: Marginal posterior 8 Jeffreys’ Prior, 7y = 0.1.

Figure 9: Marginal posterior 3 Jeffreys’ Prior, 7y = 1.
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Figure 10: Marginal posterior 3 Diffuse Prior, 7y = 0.5, X'X = I;11.

Figure 11: Marginal posterior 3 Diffuse Prior, 7y = 6, X'X = I;11.
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Classical Estimator | 7 \ d 0 4 9 (19
2sls 0 234 | 222 | 2,16 | 2.08
liml 0 234 | 228 | 2.24 | 2.30
ols 0 2.02 | 2.02 | 2.02 | 2.02
2sls 0.1 343|221 | 2.03 | 2.00
liml 0.1 | 343 ] 3.54 | 5.51 | -6.30
ols 0.1 | 2.00 | 2.00 | 2.00 | 2.00
2sls 1 095 ( 1.01 | 1.06 | 1.12
liml 1 095 [ 0951095 | 0.94
ols 1 1.58 | 1.58 | 1.58 | 1.58

XX=1I
2sls 05 1237 198|199 | 1.96
liml 05 237|343 | 227 | 1.44
ols 051201 195|198 | 1.99
2sls 6 1.10 | 0.89 | 1.27 | 1.31
liml 6 1.10 | 0.87 | 1.21 | 1.13
ols 6 1.69 | 1.78 | 1.66 | 1.70

Table 3: Values of Classical Estimators for Simulated Datasets (Note that OLS estimates differ over d when
X'X =1
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