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Abstract

A widely used filter to extract a signal in a time series, in partic-

ular in the business cycle analysis, is the Hodrick-Prescott filter. The

model that underlies the filter considers the data series as the sum of

two unobserved component (signal and non signal) and a smoothing

parameter which for quarterly series is set to a specified value. This

paper proposes a generalization of the Hodrick-Prescott filter to a con-

tinuous time support, using the well-established relationship between

cubic splines and state-space models. The spline formulation of the

filter leads to a state space model with several practical advantages:

first, the smoothing parameter can be either pre-specified or estimated

as the other parameters in the model; second, the unobserved compo-

nents can be modelled by the addition of particular ARIMA structures;

lastly the model is capable of working in the presence of missing val-

ues or for irregular surveys. Monte Carlo experiments support these

considerations.

Keywords: smoothing parameter, cubic spline, state-space model, irregular

surveys.

1 Introduction

The Hodrick-Prescott (HP) filter is largely used for extracting a signal from

a time series, in particular for the analysis of the real business cycle. The

basic model from which the filter is derived considers simply the sum of

two unobserved components: a signal gt and a white noise ct, generally

interpreted respectively as the growth and the cyclical components. Besides

the easy application, the interest in it is due to the various properties the

filter possesses. For example, King and Rebelo (1993) show that the filter has

a model-based interpretation, considering the series observed as generated
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by the sum of an IMA(2,0) stochastic trend and an orthogonal white-noise;

as a result the HP filter solution is equivalent to find the minimum mean

square error estimator of gt and ct; Harvey and Jaeger (1993) use the Kalman

filter to obtain these estimators. Kaiser and Maravall (2001) note that the

previous specifications for the growth component and the cycle imply an

IMA(2,2) model for the overall series and obtain the HP filter as a Wiener-

Kolmogorov filter, using its properties to improve its performance. Gómez

(1999) shows that the HP filter is a particular case of the Butterworth family

of filters.

The HP filter can be generalized to a continuous time support, using

well-known results about the relationship between cubic splines and state-

space models (Wahba, 1978, Wecker and Ansley, 1983, Koopman et al.,

1999, Koopman and Harvey, 2003). This generalization provides several

advantages:

- the model is more flexible with respect to the original HP model. For

example, we can suppose an ARIMA structure for the component ct, or a

different specification for the signal. In this case the original HP filter is a

particular case of our generalized model;

- the HP filter requires the choice of a smoothing parameter λ which

“balances” the trade-off between the goodness of fit of the model to the

observations and the degree of smoothness. HP (1997) suggest to fix the

smoothing parameter equal 1600 for quarterly data; this result is obtained

from empirical considerations about the U.S. quarterly GNP series (1950:Q1-

1979:Q2) and eliminates the frequencies of 32 quarters or greater, but it has

been adopted as the default value in many applications and in the computer

routines. In our formulation the smoothing parameter is part of the data

generating process (DGP) of the series, in the sense that it is present directly
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in the state-space representation and can be easily estimated;

- the observations are not necessarily equally spaced. This is perhaps

the main advantage of our specification, because it includes the cases of

missing observations and data recorded with different timing (for example,

surveys with quarterly timing until the period t and with monthly timing

from period t + 1 onwards).

Our paper investigates these capabilities, proper of the continuous state-

space models (see Harvey, 1989 ch. 9) in the particular context of signal

extraction, evaluating the performance of the continuous time model with

respect to the classical HP filter.

In section 2 the relationship between the HP representation and the cubic

splines is described in some detail: this leads to the state-space specification

of the Generalized HP (GHP) filter. Section 3 describes the uses of this

model, stressing the three cases listed before. In section 4, a Monte Carlo

analysis is performed to evaluate the performance of this model. Concluding

remarks follow.

2 Hodrick-Prescott Filter and Cubic Splines

The filter proposed by Hodrick and Prescott (1997) has a long tradition

as a method to extract the trend (or the cyclical) signal from a time series.

They suppose that an observed time series yt (generally considered by taking

logarithms) is the sum of two unobserved components: a growth component

gt and a cyclical component ct:

yt = gt + ct, t = 1, . . . , T. (1)

The purpose is to extract the trend component gt and to obtain the cyclical

component as a residual. We suppose that ct = yt− gt has zero mean in the
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long period. Assuming the sum of the squares of the second difference of gt

as a measure of its smoothness, a logical solution to this problem would be

to solve the minimization problem:

min
{gt}T

t=1

[
T∑

t=1

(yt − gt)
2

]

subject to the constraint:

T∑

t=1

(∇2gt

)2 ≤ ν

where ∇2 is the second order difference and ν is a known constant. This is

equivalent to solve the following unconstrained programming problem:

min
{gt}T

t=1

[
T∑

t=1

(yt − gt)
2 + λ

T∑

t=1

(∇2gt

)2

]
(2)

where λ is a positive known constant that controls the degree of smoothness

of the series (the larger the value of λ, the smoother is the series obtained).

We can call this parameter smoothing parameter.

Deriving (2) with respect to gt after simple algebra (see Pedersen 1999,

section 8), we obtain the growth filter:

G (B) =
1

λ (1−B)2 (1−B−1)2 + 1
(3)

where B denotes the backward operator.

The specification of λ plays a crucial role in extracting the trend, but

HP suggest to fix it to 1600 for quarterly series (see section 1).

We consider the problem in a continuous time support; more specifically

we adopt the following signal-in-noise stochastic model:

yt = gt + ct, t ∈ [α, ω] . (4)

where gt is generated by a Wiener process. Of course, in application to

real time series data, there are just T observations not necessarily equally
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spaced; we stress this point saying that the observation yt is recorded at

time τt.

There is a correspondence between (4) and smoothing polynomial splines.

The smoothing polynomial spline g(ω) of degree 2m− 1 satisfies this condi-

tion (Wecker and Ansley, 1983):

min
g(ω)

{
n∑

i=1

[yt − gt]
2 + λ

∫ ω

a

[
g(m)(u)

]2
du

}
(5)

among all functions whose first m − 1 derivatives are continuous and the

m−th derivative square integrable, with λ arbitrary; g(m) denotes the m−th

derivative of the function g. It is immediate to note that (2) corresponds

to the problem of minimization in (5) in a continuous time domain when

m = 2. In other terms, the extraction of the growth component in (1) for

the discrete case is equivalent to the search of the optimal cubic polynomial

spline in the problem (5) in the continuous case (Harvey and Jaeger, 1993).

In these terms, the solution of (4)-(5) can be seen as a generalized HP filter.

Moreover, Wecker and Ansley (1983) show that (4)-(5) can be formulated

as a dynamic linear system. We can represent the previous problem in a

state-space form (see Carter and Kohn, 1997, Koopman et al., 1999, section

3.4, and Koopman and Harvey, 2003, section 5.2):




yt = f ′αt + ct

αt = Gtαt−1 + kut

(6)

where:

αt =
[

gt, g
(1)
t

]′
, f =

[
1, 0

]′
, Gt=


 1 δt

0 1


 ,

ct ∼ IIN(0, σ2
c ), and where ut = [u1t, u2t]

′ are bivariate independent nor-

mally distributed variables with zero mean and variance matrix:

Vt=


 δ3

t /3 δ2
t /2

δ2
t /2 δt


 .
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The precision parameter k is linked to the smoothing parameter λ by:

λ =
σ2

c

k2
.

The variable δt represents the time distance between two contiguous obser-

vations; formally δt = τt−τt−1. Of course, when the observations are equally

spaced, δt = 1 for each t.

Filtering and smoothing (6) with the well-established techniques for dy-

namic models (Harvey, 1989, ch.9), we can obtain the unobserved signal

gt.

3 Characterizations and Fields of Application

The model (6) can be used directly to extract the signal from a time series,

but, with some constraints or extensions, can represent also the classical HP

model and more general cases. In this section we illustrate how to use the

general model (6) in various contexts and with some particular specifications.

3.1 Classical HP Filter

The classical HP filter, with equally spaced observations, can be seen as a

particular case of (6), constraining the first element of the vector αt to be

deterministic. In other terms, the model, in an extensive form, will be:

yt = gt + ct, (7)

gt = gt−1 + g
(1)
t−1,

g
(1)
t = g

(1)
t−1 + kut.

Clearly, in this case the covariance matrix V collapses to the variance of

ut. To fix the smoothing parameter λ to a known value, we have to fix

σ2
c/k2 (for example, 1600 for quarterly data). This constraint is an open
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problem and it has been considered perhaps the main weakness of the HP

filter because the smoothing parameter has not an intuitive interpretation

(Wynne and Koo, 1997). Furthermore, whereas there is a diffuse consensus

of opinion (not properly justified) on the choice of 1600 for quarterly data,

there is not a ”default” value for the smoothing parameter for annual or

monthly data. The econometrics package E-views has 14400 for monthly

data, but, for example, Dolado et al. (1993) use 4800, whereas Ravn and

Uhlig (2002) 129600. For annual data Baxter and King (1999) propose the

value of 10, whereas Dolado et al. (1993) 400, Backus and Kehoe (1992) 100

(these various values are reported in Maravall and del Rı́o, 2001). Recently

Maravall and del Rı́o (2001) propose to choose the annual and monthly

values of the smoothing parameter resulting from the aggregation of the

quarterly filter associated with λ = 1600, solving simple equations derived

from the relationship between the HP filter and the Butterworth filter. They

obtain λ = 7 for annual data and λ = 129119 for monthly data. Anyway,

they suppose a priori that the quarterly default value is “true”.

A more rigorous proposal was made by Pedersen (2001), who obtains

the optimal smoothing parameter value minimizing a metric in the frequency

domain that compares the cyclical component derived by HP and the “true”

cyclical component obtained by an ideal filter.

From our point of view, all these approaches have the limit to consider

the smoothing parameter extraneous to the the data generating process

(DGP) of the observed series; in fact it is fixed (or calculated as in Pedersen,

2001, and Maravall and del Rı́o, 2001) in a separate step with respect to the

extraction of the components. But using the state-space representation (6)

the smoothing parameter enters int the state equation, so it is part of the

DGP and can be estimated as part of the overall inference.
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3.2 Structural Models

The model (6) has the form of a structural time series model and it can be

enriched to take into account for more flexible specifications. As noted by

Pollock (2001), the simple model underlying the HP filter is not adequate

to represent most of the data generating process of time series. A more

appropriate representation would be one that supposes separate ARIMA

processes to generate each of the unobserved components (see, for example,

Gómez and Maravall, 2001). For example, a stationary ARMA structure can

be hypothesized for the dynamics of the cyclical component. In this case

it would be sufficient to modify the state vector, maintaining the general

structure. For example considering an AR(1) dynamics for ct, we have:





yt = f ′αt

αt = Gtαt−1 + kut

where

αt =
[

gt, g
(1)
t , ct

]′
, f =

[
1, 0, 1

]′
,

Gt =




1 1 0

0 1 0

0 0 φ1




, ut = [u1t, u2t, u3t]
′ ∼ N(0,Vt),

Vt=




δ3
t /3 δ2

t /2 0

δ2
t /2 δt 0

0 0 σ2
c/k2




and φ1 represents the autoregressive coefficient. The methodology explained

in this paper is easily extended to state space models with more parameters.

Another possibility would be to add a trigonometric function to represent

the cycle (see Harvey and Jaeger, 1993).
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3.3 Missing Observations

For observed time series with missing data, the HP filter can be applied

only if an estimation method to fill the missing observations is used. This

it would not be necessary in our approach. In fact, the introduction in the

model of the variable δt allows for the presence of missing data. Specifically,

the first equation of the state vector in model (6) can be written:

gt = gt−1 + δtg
(1)
t−1 + u1t.

For example, if the observation at time i is missing, being available those at

time i− 1 and i + 1, the first state equation at time i + 1 will be:

gi+1 = gi−1 + 2g
(1)
i−1 + u1i+1.

If also the observation at time i+1 is missing, whereas the one at time i+2

is available, the first state equation at time i + 2 would be:

gi+2 = gi−1 + 3g
(1)
i−1 + u1i+2.

and so on.

3.4 Irregular Surveys

A similar situation arises when a time series is recorded with a frequency and,

from a certain time, with a different frequency. The use of the variable δt in

model (6) provides again the possibility to take into account this situation.

For example, let us suppose that the variable yt is recorded quarterly until

time i and monthly from time i + 1. In this case, the variable δt would be

defined:

δt =





3 if t ≤ i

1 if t > i
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Similarly, if the variable yt is recorded annually until the time i and quarterly,

from time i + 1, the variable δt would be defined:

δt =





4 if t ≤ i

1 if t > i

The extension to other irregular surveys is straightforward.

4 Monte Carlo Evaluation

To evaluate our approach in the various fields of applications, we perform

several Monte Carlo simulations, under the hypothesis that the data are

generated by the model (1). We recall that King and Rebelo (1993) show

that the data can be seen as the sum of an IMA(2,0) model (component gt)

and a white noise (component ct). So, we can generate separately the two

components by the models:

∇2gt = ε
(g)
t , ε

(g)
t ∼ NID(0, k2)

ct = ε
(c)
t , ε

(c)
t ∼ NID(0, σ2

c )

and λ = σ2
c/k2. Referring the considerations of Hodrick and Prescott (1997)

about the variances of the components, we can fix the value of k2 to 1/64

and obtain the value of σ2
c in correspondence of different values of λ. In

particular, we choose the values of three different smoothing parameters,

compatible with three cycles of reference (the values are taken by Table 5

of Maravall and del Rı́o, 2001):

1) λ = 1 for annual series, λ = 179 for quarterly series, λ = 14400 for

monthly series, which correspond cycles of length 5.7 years;

2) λ = 7 for annual series, λ = 1600 for quarterly series, λ = 129119 for

monthly series, which corresponds cycles of length 9.9 years;
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3) λ = 25 for annual series, λ = 6199 for quarterly series, λ = 501208

for monthly series, which corresponds cycles of length 13.9 years.

We generate annual series of length 20, 30, 40 years, quarterly series

of 10, 20, 30 years, monthly series of 5, 10, 20 years, using the various λ

specifications; so we have 27 different sets of simulations and for each one

we generate 1000 series. We perform the following experiment: from each

series we extract the trend with GHP using the model (6), with the correct

HP filter and with the HP filter fixing λ to the default value (we choose the

most frequently used values, that are 10 for annual series, 1600 for quarterly

series, 14400 for monthly series). The use of the true λ in the HP filter is

clearly a theoretical situation, because the researcher does not know a priori

it; this is a useful benchmark to compare the GHP and the HP filter with

fixed λ. The results are compared with the true trend using RMSE and

Theil index; the first one would indicate how distant from the true signal

are the estimated signals, whereas the second would stress the ability of the

methods to track turning points in the series.

In Table 1 the means and the standard errors of the indices calculated

on these simulations are showed, with the maximum likelihood estimated

parameters in the GHP procedure. In general, the performance of the GHP

is similar to that of the HP with true smoothing parameter and better of

the HP with the default λ. Only in the cases of annual data with λ = 7 and

25 the classical HP filter seems to have a better behaviour, but the default

value is near to the true values. In the other cases the performance of GHP

increases with the number of observations. The GHP filter shows a good

ability to capture the turning points of the series.

Another Monte Carlo experiment looks at the performance of the GHP

filter for irregular surveys. For this purpose we use the simulated quarterly
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series of 10 years and then we consider as annual the initial i years of the

series (i = 1, 2, 3, 4, 5); in other terms we drop the second, the third and the

fourth observation of the initial i years and then estimate the trend with the

model (6), using the appropriate specification for the variable δt; then we

estimate the trend with the HP filter with the true λ and with the default

value using only the second part of the series (that with quarterly data)

and compare the results, using only the common second part of the series.

The same experiment is performed using the monthly simulated series, and

considering quarterly the first i years (i = 1, ..., 5). The results are showed

in Table 2. It is interesting to note that the performance of the GHP filter

is always better then the case of HP filter with default values (a part the

case of λ = 6199 with only an annual data) and its performance becomes

better then the HP filter with the true smoothing parameter, increasing the

number of irregular observations.

5 Final Remarks

In this paper we have developed a new approach for the extraction of unob-

served signals in time series, which generalizes the Hodrick-Prescott filter,

using the well-known results for cubic spline models, recently diffused in the

time series literature by Koopman et al. (1999) and Koopman and Harvey

(2003). The advantages of this methodology are its flexibility, its general

form which avoids the specification of structural models for the signals, the

possibility to estimate the smoothing parameter, the possibility to work with

missing values and irregular surveys.

The estimation of the models can be performed with classical maximum

likelihood estimation, using the state-space representation. The extraction

of the signals could be improved using the methodology of Carter and Kohn
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(1997), in which an efficient MCMC algorithm for estimating the unobserved

components was developed. This last one works in a Bayesian framework

and possesses several additional advantages: robustness in presence of a

limited number of data, automatic calculation of confidence intervals for

the signals, implicit estimation of missing data. In addition, the use of

a Bayesian approach for estimation allows the inclusion of priors on the

smoothing parameters. We have applied this methodology in real cases

with good results, but it implies cumbersome calculations and its evaluation

with Monte Carlo experiments would be prohibitive. Potentially, the Carter

and Kohn approach could extend the procedure considering mixtures and

non Normal distributions.

Our Monte Carlo experiments suggest that the GHP approach approx-

imates the true signal and performs generally better then the classical HP

filter with the default values. In particular, in the presence of irregular sur-

veys, the GHP filter improves the performance of the HP filter, using the

full information available.
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Table 1: Results of Monte Carlo experiment for several smoothing
parameters λ and time series lengths

GHP HP true HP default
σc k RMSE THEIL RMSE THEIL RMSE THEIL

annual series (λ default=10)
λ generator=1

20 years 0.119 0.119 0.085 0.030 0.080 0.028 0.105 0.036
0.036 0.050 0.020 0.034 0.016 0.031 0.024 0.038

30 years 0.121 0.122 0.082 0.018 0.079 0.018 0.105 0.023
0.026 0.037 0.015 0.020 0.014 0.019 0.021 0.025

40 years 0.122 0.121 0.081 0.013 0.079 0.013 0.104 0.017
0.022 0.029 0.013 0.017 0.013 0.016 0.017 0.020

λ generator=7
20 years 0.319 0.115 0.177 0.062 0.167 0.059 0.168 0.059

0.070 0.071 0.049 0.067 0.043 0.066 0.043 0.066
30 years 0.324 0.118 0.172 0.038 0.164 0.036 0.165 0.037

0.055 0.050 0.041 0.044 0.037 0.040 0.037 0.041
40 years 0.327 0.119 0.169 0.027 0.163 0.027 0.164 0.027

0.047 0.041 0.035 0.035 0.033 0.034 0.033 0.034
λ generator=25

20 years 0.605 0.110 0.291 0.102 0.274 0.097 0.281 0.100
0.118 0.087 0.089 0.112 0.082 0.108 0.083 0.113

30 years 0.613 0.115 0.281 0.063 0.267 0.059 0.274 0.061
0.095 0.062 0.074 0.074 0.068 0.068 0.070 0.069

40 years 0.620 0.116 0.276 0.045 0.265 0.043 0.273 0.044
0.081 0.051 0.066 0.066 0.061 0.057 0.062 0.059

quarterly series (λ default=1600)
λ generator=179

10 years 1.647 0.115 0.602 0.046 0.570 0.044 0.706 0.053
0.202 0.074 0.175 0.065 0.163 0.061 0.218 0.067

20 years 1.661 0.121 0.558 0.024 0.545 0.023 0.696 0.029
0.144 0.042 0.115 0.031 0.110 0.030 0.160 0.037

30 years 1.665 0.122 0.542 0.015 0.536 0.014 0.696 0.019
0.114 0.032 0.091 0.017 0.090 0.017 0.133 0.021

λ generator=1600
10 years 4.911 0.111 1.450 0.109 1.356 0.104

0.581 0.118 0.520 0.153 0.495 0.147
20 years 4.963 0.117 1.333 0.057 1.272 0.054

0.414 0.063 0.355 0.074 0.331 0.070
30 years 4.982 0.117 1.274 0.034 1.242 0.033

0.333 0.044 0.285 0.041 0.276 0.039
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Table 1 (continued)
GHP hp true hp default

σc k rmse THEIL rmse THEIL rmse THEIL
λ generator=6199

10 years 9.656 0.120 2.552 0.193 2.360 0.180 2.469 0.190
1.140 0.177 1.045 0.282 0.962 0.262 0.986 0.280

20 years 9.762 0.112 2.302 0.097 2.174 0.092 2.294 0.098
0.806 0.084 0.700 0.126 0.656 0.120 0.657 0.129

30 years 9.801 0.113 2.185 0.059 2.108 0.056 2.217 0.060
0.648 0.056 0.576 0.074 0.549 0.067 0.554 0.071

monthly series (λ default=14400)
λ generator=14400

5 years 14.793 0.105 3.325 0.075 3.133 0.071
1.412 0.141 1.257 0.128 1.148 0.125

10 years 14.863 0.110 3.040 0.043 2.910 0.042
0.976 0.070 0.858 0.060 0.803 0.060

20 years 14.973 0.120 2.877 0.023 2.811 0.022
0.697 0.043 0.589 0.032 0.561 0.030

λ generator=129119
5 years 44.232 0.159 8.731 0.198 7.986 0.179 8.579 0.197

4.214 0.333 3.955 0.356 3.522 0.314 3.519 0.355
10 years 44.459 0.101 7.392 0.105 6.972 0.101 7.804 0.113

2.892 0.113 2.656 0.150 2.450 0.150 2.460 0.168
20 years 44.837 0.113 6.871 0.053 6.586 0.051 7.474 0.058

2.075 0.063 1.778 0.071 1.693 0.073 1.734 0.083
λ generator=501208

5 years 87.124 0.272 16.646 0.380 15.040 0.339 16.747 0.384
8.293 0.642 8.044 0.698 7.157 0.603 6.965 0.694

10 years 87.542 0.107 12.909 0.185 12.137 0.177 15.182 0.220
5.682 0.169 5.248 0.276 4.875 0.272 4.883 0.328

20 years 88.305 0.107 11.817 0.089 11.176 0.085 14.536 0.113
4.073 0.084 3.560 0.123 3.377 0.126 3.444 0.161
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Table 2: Results of Monte Carlo experiment for several smoothing
parameters λ and irregural time series

GHP hp true hp default
σc k RMSE THEIL RMSE THEIL RMSE THEIL
annual for t years and then quarterly (λ default = 1600)

λ generator=179
t=1 1.648 0.113 0.588 0.045 0.575 0.044 0.709 0.052

0.210 0.074 0.183 0.066 0.175 0.064 0.232 0.070
t=2 1.645 0.113 0.592 0.046 0.581 0.045 0.711 0.053

0.222 0.076 0.195 0.073 0.188 0.074 0.240 0.081
t=3 1.645 0.114 0.596 0.047 0.588 0.046 0.706 0.054

0.235 0.079 0.208 0.083 0.195 0.084 0.246 0.090
t=4 1.641 0.113 0.600 0.049 0.596 0.047 0.693 0.054

0.248 0.082 0.220 0.103 0.208 0.099 0.246 0.101
t=5 1.636 0.113 0.608 0.051 0.602 0.049 0.666 0.054

0.265 0.087 0.239 0.121 0.231 0.113 0.251 0.119
λ generator=1600

t=1 4.906 0.111 1.432 0.108 1.377 0.104
0.607 0.128 0.544 0.159 0.541 0.156

t=2 4.896 0.110 1.422 0.107 1.402 0.108
0.640 0.127 0.580 0.173 0.573 0.187

t=3 4.896 0.112 1.426 0.110 1.430 0.111
0.676 0.130 0.620 0.203 0.594 0.212

t=4 4.887 0.109 1.437 0.115 1.471 0.117
0.709 0.129 0.660 0.247 0.642 0.245

t=5 4.870 0.110 1.474 0.120 1.519 0.124
0.745 0.141 0.705 0.286 0.716 0.308

λ generator=6199
t=1 9.645 0.123 2.535 0.191 2.417 0.183 2.515 0.191

1.184 0.198 1.077 0.296 1.052 0.283 1.070 0.296
t=2 9.619 0.128 2.520 0.191 2.478 0.192 2.570 0.200

1.252 0.203 1.156 0.325 1.137 0.345 1.141 0.357
t=3 9.625 0.128 2.518 0.195 2.567 0.202 2.635 0.207

1.320 0.207 1.231 0.376 1.204 0.400 1.193 0.408
t=4 9.602 0.126 2.539 0.203 2.703 0.217 2.736 0.220

1.389 0.205 1.293 0.454 1.313 0.462 1.305 0.472
t=5 9.569 0.129 2.615 0.214 2.855 0.234 2.869 0.235

1.449 0.233 1.382 0.530 1.454 0.596 1.448 0.597
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Table 2 (continued)
GHP hp true hp default

σc k RMSE THEIL RMSE THEIL RMSE THEIL
quarterly for t years and then monthly (λ default=14400 )

λ generator=14400
t=1 14.868 0.111 2.956 0.042 2.936 0.042

1.013 0.074 0.872 0.062 0.854 0.063
t=2 14.869 0.110 2.948 0.041 2.957 0.041

1.043 0.073 0.940 0.063 0.922 0.063
t=3 14.883 0.108 2.956 0.041 3.009 0.042

1.103 0.074 1.005 0.061 1.008 0.067
t=4 14.875 0.106 2.971 0.040 3.026 0.042

1.168 0.074 1.065 0.062 1.053 0.067
t=5 14.874 0.105 2.995 0.041 3.078 0.042

1.227 0.076 1.144 0.069 1.157 0.072
λ generator=129119

t=1 44.472 0.101 7.231 0.104 7.076 0.102 7.884 0.114
2.981 0.118 2.649 0.156 2.557 0.159 2.628 0.176

t=2 44.473 0.100 7.159 0.101 7.223 0.102 7.972 0.112
3.079 0.118 2.807 0.160 2.784 0.164 2.819 0.179

t=3 44.496 0.099 7.139 0.099 7.366 0.103 8.122 0.114
3.247 0.119 2.997 0.159 3.049 0.168 3.071 0.191

t=4 44.455 0.099 7.198 0.098 7.493 0.103 8.190 0.113
3.427 0.122 3.192 0.160 3.257 0.168 3.201 0.188

t=5 44.446 0.098 7.291 0.101 7.779 0.108 8.402 0.116
3.593 0.120 3.438 0.180 3.560 0.198 3.482 0.207

λ generator=501218
t=1 87.560 0.110 12.724 0.184 12.378 0.181 15.339 0.221

5.849 0.182 5.294 0.293 5.103 0.291 5.217 0.344
t=2 87.561 0.111 12.625 0.179 12.800 0.182 15.522 0.219

6.033 0.179 5.554 0.302 5.586 0.302 5.586 0.351
t=3 87.596 0.112 12.588 0.176 13.158 0.184 15.806 0.222

6.370 0.181 5.849 0.299 6.176 0.311 6.082 0.375
t=4 87.518 0.117 12.668 0.176 13.703 0.189 15.947 0.221

6.754 0.184 6.213 0.304 6.639 0.319 6.346 0.369
t=5 87.508 0.115 12.871 0.181 14.588 0.204 16.391 0.227

7.087 0.185 6.668 0.344 7.218 0.384 6.882 0.406
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