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Abstract

The paper illustrates and compares estimation methods alternative to

maximum likelihood, among which multistep estimation and leave-one-out

cross-validation, for the purposes of signal extraction, and in particular the

separation of the trend from the cycle in economic time series, and long-

range forecasting, in the presence of a misspecified, but simply parameterised

model. Our workhorse models are two popular unobserved components mod-

els, namely the local level and the local linear model. The paper introduces a

metric for assessing the accuracy of the unobserved components estimates and

concludes that cross-validation is not a suitable estimation criterion for the

purpose considered, whereas multistep estimation can be valuable. Finally,

we propose a local likelihood estimator in the frequency domain that provides

a simple and alternative way of making operative the notion of emphasising

the long-run properties of a time series.
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1 Introduction

This paper focusses on forecasting and signal extraction in the presence of model

misspecification. We consider time series models which are both simple, in that their

properties depend on a very limited set of parameter, and they generate predictors

and signal extraction filters that are well understood. Even though they are subop-

timal, it may be the case that they produce efficient forecasts and signal estimates,

when the parameter estimation criteria are modified so as to enhance the features

of interest for the specific problem at hand.

The kind of situation we have in mind arises in macroeconomic time series analysis

when the trend is estimated by the popular Hodrick-Prescott (HP, 1999) filter or with

a local linear trend model, in the presence of cyclical dynamics that are richer than

those represented in the model, according to which the deviations from the trend are

typically white noise. The signal extraction filter depends on a single smoothness

parameter, whose maximum likelihood estimates (MLE) will result close to zero for

most macroeconomic time series, as it is confirmed by empirical experimentation,

implying a trend that absorbs most, if not all, of the variation in the data. For

this reason, in empirical applications the smoothness parameter is calibrated, rather

than estimated; frequency domain rules, linking it to a particular cut off frequency,

see Gòmez (2001), can be viewed, from this perspective, as an attempt to extract

meaningful cycles from a misspecified model.

Hence, in the presence of model misspecification, the estimates of unobserved

components conditional on the maximum likelihood parameter estimates are not

sensible. Residual diagnostics would point out the situation and a strategy would be

to start the quest for an alternative model that improves the fit and accommodates

those features that have been missed by the original specification, e.g. bringing in a

cyclical component; however, this may be difficult to put into practice and may be

costly, because more parameters have to be estimated.
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This paper concentrates instead on the alternative strategy of keeping the model

fixed and vary the estimation criterion, so as to elicit the features that are important

for the purposes of signal extraction and long-range forecasting. That this strategy

may be successful for the latter task is attested by the literature on multistep estima-

tion, where the sum of squares of multistep forecast errors is the criterion function

that is optimised; essential references are Cox (1961), Tiao and Xu (1993), Tiao

and Tsay (1994), Clements and Hendry (1996), and Bhansali (2002). We aim at

assessing whether there is a corresponding role that multistep estimation can play

for signal extraction.

The aim of this paper is thus to discuss and compare estimation criteria alterna-

tive to MLE; focussing on two very popular unobserved components models, widely

used for the decomposition of a time series, namely the local level and local linear

trend model, we consider, along with multistep estimation (ME), cross-validation

and local likelihood. Leave-one-out cross-validation (CV) is routinely used for pa-

rameter estimation in spline models (see, for instance, Green and Silverman, 1994)

and in nonparametric regression; Kohn, Ansley and Wong (1991) and Kohn, Ans-

ley and Tharm (1992) compared the performance of CV and MLE estimation of

smoothing splines on the grounds of the capability of estimating a signal that is

generated by given deterministic nonlinear function of time. Their concern is to

determine the order of the spline and the estimation method that works best.

Our focus will be on the estimation of unobserved components, such as trends

and cycles in macroeconomic time series; differently from the previous literature,

we do not focus solely on multistep forecasting; moreover, we consider alternative

criteria, such as cross-validation and we introduce local likelihood in the frequency

domain.

In particular, we shall be concerned with the additive decomposition: yt = µt+εt,

where µt denotes the trend component and εt is the deviation from it, a stationary
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component. The notation µ̃t|t will be used to denote the best linear estimator

conditional on the true model and the observations up to and including time t;

µ̃∗t|t will denote the same component estimated from the misspecified model. Some

analytic results will be valid based on the assumption of a doubly infinite sample;

µ̃t|∞ will denote the full sample estimate.

2 The local level model

The popular one-step-ahead predictor:

ỹt+1|t = λyt + (1− λ)(yt − ỹt|t−1),

which yields an exponentially weighted moving average of the current and the past

observations, is the optimal predictor for local level model:

yt = µt + εt, t = 1, 2, . . . , T, εt ∼ WN(0, σ2
ε )

µt+1 = µt + ηt, ηt ∼ WN(0, σ2
η),

(1)

where the disturbances are mutually uncorrelated; the reduced form is the IMA(1,1)

model: ∆yt = ξt + θξt−1, ξt ∼ WN(0, σ2). See Muth (1960), Cox (1961) and Harvey

(1989).

Equating the autocovariance generating functions of ∆yt it is possible to establish

that σ2
η = (1 + θ)2σ2 and σ2

ε = −θσ2. Hence, the structural model requires θ ≤ 0

and the signal to noise ratio, q = σ2
η/σ

2
ε , equals −(1 + θ)2/θ; moreover, λ = 1 + θ.

In the steady state, the one-step-ahead prediction errors can be written as a linear

combination of the original observations:

ν̃t = yt − ỹt|t−1 =

(
1− 1 + θ

1 + θL

)
yt =

1

1 + θL
∆yt,

and they will be autocorrelated if ∆yt does not follow an MA(1) process with pa-

rameter θ. Only in the latter case they will be WN(0, σ2).
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The level predictions, filtered and smoothed estimates are, respectively:

µ̃t+1|t = µ̃t|t =
(1 + θ)

(1 + θL)
yt

µ̃t|∞ =
(1 + θ)2

|1 + θL|2yt =
(1 + θ)

(1 + θL−1)
µ̃t|t;

these expressions follow from applying the Wiener-Kolmogorov prediction and signal

extraction formulae, see Whittle (1983).

In the subsequent sections we shall be concerned with estimating θ: the model is

then used for forecasting and, say, for detrending the series. If the model is correctly

specified, then MLE is the most efficient option. The picture changes radically,

however, when the model is misspecified. The next sections illustrate different ways

of choosing θ and their virtues.

2.1 Method of moments estimators

The previous section illustrated that the parameter θ is essential in determining the

weights that are attached to the observations for signal extraction and prediction.

Let us consider now the case when εt is a stationary process with autocovariance

generating function (ACGF) γε(L) =
∑∞

j=−∞ γε(j)L
j and σ2

ε = 1
2π

∫ π

−π
γε(j)e

−ıωjdω,

rather than white noise. A semiparametric estimator is readily available from the

criterion of matching the long run properties of the misspecified ARIMA(1,1,0)

model with those of the series under investigation.

Writing γ(j) = E(∆yt∆yt−j), from the basic relationship

σ2
η = γ(0) + 2

∞∑
j=1

γ(j) = g(0),

where g(0) denotes the long run variance of ∆yt, and recalling that for a correctly

specified model, (1 + θ)2σ2 = σ2
η, it follows

θ =

(
g(0)

σ2

)1/2

− 1 (2)
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The prediction error variance in the denominator can be expressed as a geometric

average of the spectral generating function of ∆yt, that we denote with g(ω), ω ∈
[0, π], using the Kolmogorov formula:

σ2 = exp

[
1

π

∫ π

0

ln g(ω)dω

]
.

An estimate of θ can therefore be constructed from sample estimates of the pre-

diction error variance and the long run variance; the latter is obtained via the kernel

estimate:

ĝ(0) = γ̂(0) + 2
l∑

j=1

wl(j)γ̂(j)

where l is the truncation lag and wl(j) is a suitable lag window, e.g. the Bartlett

window, wl(j) = l−j+1
l+1

, in which case σ̂2
η = Var(∆lyt)/l. The prediction error variance

can be estimated by

σ̂2 = exp

[
1

T ∗

T ∗−1∑
j=0

(log 2πI(ωj)) + 0.57721

]

(see Hannan and Nicholls, 1977), where I(ωj) is the periodogram ordinate of ∆yt, t =

1, . . . , T ∗, evaluated at the Fourier frequency ωj = 2πj
T ∗ , j = 0, 1, . . . , (T ∗ − 1).

Equation (2) expresses the fact that the estimator is based on the ratio between

the estimate of the spectral density at at a particular frequency, namely the zero

frequency, and the geometric average. The semiparametric estimator requires that

long run predictability is greater than one-step-ahead predictability: g(0) ≤ σ2. A

sufficient condition for the estimator to be feasible is that g(ω) is a minimum at the

zero frequency, which guarantees g(0) < σ2. This estimator is rarely feasible, as the

long run variance should not be greater than the prediction error variance. This

condition is stronger than that for the decomposability of the original model, which

amounts to g(0) < γ(0).

An alternative estimator uses the prediction error variance resulting from fitting

the LLM, which amounts to σ2∗ = γ(0)/(1 + θ2); this is surely greater than σ2,
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because we are fitting the wrong model, and makes it more likely that the estimated

parameter is within the admissible range. Replacing into (2) and rearranging gives:

(1 + θ)2

[ ∞∑
j=1

γ(j)

]
= θg(0). (3)

This simple relation is at the basis of a semiparametric estimate of θ, which solves

the quadratic equation (1+ θ̂)2 [ĝ(0)− γ̂(0)] = 2θ̂ĝ(0), that uses sample estimates of

the variance and the long run variance. Notice that we require the long run variance

to be no greater than γ(0) - this property is sometimes referred to as mean reversion.

The nonparametric estimators considered in this section use information about

the zero frequency and compare it to a geometric or arithmetic average spectral av-

erage. In the next section we consider an alternative criterion, multistep estimation,

that uses also information about g(ω) around the zero frequency. Loosely speaking,

weaker forms of mean reversion are required.

2.2 Multistep Estimation

Multistep, or adaptive, estimation (ME) of the LLM has been considered by Cox

(1961) Tiao and Xu (1993), Haywood and Tunnicliffe Wilson (1997), among others;

see Bhansali (2002) for a comprehensive review of the approach. In particular, the

relative efficiency of the multistep forecasts originating from the misspecified model,

whose parameters are estimated minimising the variance of the l-step-ahead predic-

tion errors, is not far from unity, for l > 1. Therefore, there exists a well established

body of literature showing the merits of ME for the purpose of forecasting. Here we

extend these results showing the properties of adaptive estimation for the purpose

of signal extraction.

The l-step ahead forecast error arising form the IMA(1,1) model with MA param-

eter θ, here denoted by ν̃t+l|t, can be written as a linear combination of the current
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and past one-step-ahead forecast errors, ν̃t:

ν̃t+l|t =
[
1 + (1 + θ)L + (1 + θ)L2 + · · ·+ (1 + θ)Ll−1

]
ν̃t, l > 1.

In terms of the observations, replacing ν̃t = ∆yt/(1 + θL), and rearranging,

ν̃t+l|t = v(L)∆yt, v(L) = Sl−1(L) +
1

1 + θL
Ll−1 (4)

where Sj(L) is the summation operator involving j consecutive terms, Sj(L) =

1+L+L2+· · ·+Lj−1. An alternative expression is v(L) = [(1+θ)Sl(L)−θ]/(1+θL).

Multistep estimation determines θ as the minimiser of

ME(θ, l) = Var(ν̃t+l|t) =
1

π

∫ π

0

|v(e−ıω)|2g(ω)dω, (5)

where |v(e−ıω)|2 = v(e−ıω)v(eıω) is the squared gain of the filter v(L), and g(ω) is

the spectral generating function of ∆yt.

ME can thus be viewed as minimising the variance of a filtered series. The results

will depend on the properties of the series, an important feature being its order of

integration. The first panel of figure 1 plots the squared gain of the filter v(L)∆

for θ = −0.8 and l = 1, 2, 5, 10; the gain is zero at the zero frequency and this

implies that if yt is stationary the zero frequency is not informative on θ. On the

other hand, for difference stationary series, the plot of the transfer function of v(L)

in the second panel shows that the filter emphasises the spectral density around

the zero frequency, see Haywood and Tunnicliffe Wilson (1997); furthermore, the

concentration of power around the zero frequency increases with l. This suggests

that for I(1) series the ME estimate with l large will give more relevance to the long

run features of the series.

[Figure 1 about here]

The rest of this section aims at showing the connection of the ME estimator of θ
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with the long run properties of the series. Using (11),

Var(ν̃t+l|t) = V (l) + 1
1−θ2

{
γ(0) + 2

∞∑
j=1

(−θ)jγ(j) + 2(1− θ)
l−2∑
j=1

[1− (−θ)j] γ(j)+

2(1− θ)
[
1− (−θ)l−1

] ∞∑
j=l−1

(−θ)j−l+1γ(j)

}
,

where

V (l) = (l − 1)γ(0) + 2
l−2∑
j=1

(l − j − 1)γ(j)

is the leading term and is invariant to θ.

As the forecast horizon gets bigger the formula tends to

lim
l→∞

[
Var(ν̃t+l|t)− V (l)

]
=

1

1− θ2

{
g(0)− 2θ

∞∑
j=1

[
1− (−θ)j

]
γ(j)

}
.

Differentiating with respect to θ and setting the derivative equal to zero, which is

the first order condition for a minimum, yields the nonlinear equation:

(1 + θ)2A(θ) = θg(0) + B(θ), (6)

A(θ) =
∞∑

j=1

γ(j) +
∞∑

j=1

(−θ)j(j − 1)γ(j),

B(θ) = 2θ [A(θ)−∑
(−θ)j−1jγ(j)] .

(7)

If yt is stationary, with autocovariances Cov(yt, yt−j) = γ∗(j), then g(0) = 0 and

the unique solution is θ = −1: the EWMA predictor converges to the time average

as the forecast horizon increases. This is so since B(−1) = 0, as it can be easily

checked, and A(−1) =
∑

j jγ(j) = γ∗(1) − γ∗(0), which is different from zero; the

last result uses the well known identity γ(j) = 2γ∗(j)− γ∗(j − 1)− γ∗(j + 1).

If ∆yt is stationary, θ will converge to a finite value, greater than −1, that reflects

the persistence of the process, although it will not exactly satisfy (3). This is so

because the multistep filter acts as a lowpass filter exploiting the information around

the zero frequency as well. Increasing l enhances the low-pass nature of the filter,

that however will render the criterion function flatter with respect to θ; the multistep
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filter becomes so concentrated that a more limited frequency band is considered with

the consequence that we use less information for the estimation of θ2. The main

point is that a negative θ is available under less stringent conditions than those

embedded in (3).

2.3 Cross-validation

The smoothed estimates of the irregular component in the LLM are ε̃t|∞ = σ2
ε ut,

where ut is known as a smoothing error (de Jong, 1988, Kohn and Ansley, 1989,

Koopman, 1993). In the steady state, the latter is provided by:

ut =
|1− L|2

σ2|1 + θL|2yt,

where |1−L|2 = (1−L)(1−L−1), |1 + θL|2 = (1 + θL)(1 + θL−1), and it should be

noticed that the impulse response function of the filter applied to the observations is

provided by the ACGF of the inverse ARMA(1,1) model (1+θL)y∗t = ∆ξ∗t . If |θ| < 1

the variance of ut, denoted M = Var(y∗t ), is given by the expression M = 2σ2/(1−θ)

and as shown by de Jong (1988), the interpolation error is a simple function of ut

scaled by the inverse of its variance:

yt − E[yt|Y\t] = M−1ut.

Note that for θ = 0 we get the RW interpolation formula E[yt|Y\t] = 0.5(L+L−1)yt.

Cross-validation (CV) is based on the minimisation of the sum of squares of

yt − E[yt|Y\t] =
ut

M
=

1

2

1− θ

|1 + θL|2 |1− L|2yt = u(L)∆yt

where

u(L) =
1

2

1− θ

|1 + θL|2 (1− L−1).

The cross-validatory estimate of the parameter θ is thus the minimiser of the func-

tion:

CV (θ) =
1

π

∫ π

0

|u(e−ıω)|2g(ω)dω (8)
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where, as before, g(ω) is the spectral generating function of ∆yt and |u(e−ıω)|2 is

the squared gain of u(L).

The bottom panels of fig. 1 depict the squared gains of the filters u(L)∆ and

u(L). A relevant difference with respect to ME arises for first order integrated yt,

for which CV (θ) does not use the zero frequency.

3 Evaluating the performance of the approximat-

ing model

Since the approximating model is used for signal extraction and forecasting, there

are two aspects that need to be evaluated. As far as the second is concerned, the

relative forecast accuracy of the approximating model can be assessed by comparing

its l-step-ahead forecast error variance, evaluated at the minimiser of (5), ME(θ̂, l),

with that of the optimal forecast, under the true model, denoted Var(νt+l|t):

RelEff(l) =
ME(θ̂, l)

Var(νt+l|t)

The assessment of the performance concerning the estimation of unobserved com-

ponents relies on the availability of a doubly infinite sample. Suppose the true gen-

erating model is yt = µt + εt with orthogonal components, so that, if gµ(L) and

gε(L) denote the autocovariance generating functions of the trend and the cycle,

gy(L) = gµ(L) + gε(L).

Let also wµ∗(L) and wε∗(L) denote the Wiener-Kolmogorov signal extraction fil-

ters for the approximating model yt = µ∗t + ε∗t , where

wµ∗(L) =
gµ∗(L)

gµ∗(L) + gε∗(L)
, wε∗(L) =

gε∗(L)

gµ∗(L) + gε∗(L)
.

Theorem: The ACGF of the unobserved components estimation error,

ge(L), can be expressed in terms of the squared gains of the signal ex-

traction filters and the ACGF of the true components in the following
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manner:

ge(L) = gµ(L)|wε∗(L)|2 + gε(L)|wµ∗(L)|2. (9)

The minimum is
gµ(L)gε(L)

gy(L)
.

Proof: the ACGF of et = εt − ε̃∗t is

ge(L) = gε(L) + |wε∗(L)|2gy(L)− gε(L)[wε∗(L) + wε∗(L−1)]

= gε(L) [1− wε∗(L)] [1− wε∗(L−1)] + gµ(L)|wε∗(L)|2

= gε(L)|wµ∗(L)|2 + gµ(L)|wε∗(L)|2

as ε̃∗t = wε∗(L)yt µ̃∗t = wµ∗(L)yt = [1− wε∗(L)] yt.

When the model is correctly specified,

wµ∗(L) =
gµ(L)

gy(L)
, wε∗(L) =

gε(L)

gy(L)

and, therefore, the minimum stated above is achieved. The latter is the estimation

error ACGF as given in Whittle (1983, p. 58). Notice that (9) is symmetric, that is

et = −(µt − µ̃∗t )

The estimation error MSE is thus

MSE(et) =
1

π

∫ π

0

ge(ω)dω;

this can be evaluated via numerical integration when the true generating model and

filters are known. For the LLM the estimation error ACGF is:

gε(L) =
−θ(1 + θ)2

|1 + θL|2 σ2.

4 Illustrative examples

This section illustrates the behaviour of ME and CV estimates of the parameter

θ of the LLM in the traditional case when the true data generating process is a
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stationary autoregression, and in a less explored, but interesting case, when the true

model is ARIMA(1,1,0).

Multistep estimation of the LLM when the true model is a stationary AR(1)

process, yt = φyt−1 + ξt, ξt ∼ WN(0, σ2), |φ| < 1, has been investigated by Cox

(1961). Figure 2 shows the value of θ minimising1 the variance of the l-step-ahead

forecast for l = 1, 2, 5, 10 and the CV estimates for different values of φ in the range

(-1,1). The plot reveals that θ̂ tends to -1 as l increases: for l odd, a negative θ can

only arise for φ > 0; on the other hand, if l is even, −1 < θ < 0 can also arise for

negative values of φ (this is discordant from Cox (1961) statement that the optimal

ME estimate is θ = −1 for φ < 1/3). As the AR parameter tends to 1, the optimal

θ is zero (RW predictions). Cross-validation estimates are close to ME with l = 1.

[Figure 2 about here]

Figure 3 shows the relative forecast efficiency of ME estimates, given by the ratio of

ME(θ̂, l) to the mean square forecast error of the true model (σ2 = 1), (1−φ2l)/(1−
φ2). It should be noticed that unless φ is close to 1 multistep LLM forecasts for l

even are almost as efficient as the true model’s forecasts.

[Figure 3 about here]

Consider now the ARIMA(1,1,0) process

∆yt = φ∆yt−1 + ξt, ξt ∼ WN(0, σ2)

As shown in figure 4, the ME and CV estimates of θ are zero when φ is positive.

The plot confirms that CV estimates are closer to ME with l = 1. For l even and

a negative φ, ME is almost as efficient as the correct model forecasts even at short

horizons; the performance deteriorates for positive φ.

1The values are obtained by evaluating numerically the integrals MS(θ, l) in (5) and CV (θ) in

(8). The computations were carried out in Ox3.3, see Doornik (2001).
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[Figure 4 about here]

When φ is negative, Proietti and Harvey (2000) showed that the process can be

decomposed into a RW trend plus a stationary AR(1) component, yt = µt+εt, where

∆µt = ηt, ηt ∼ WN

(
0,

σ2

(1− φ)2

)
, εt = φεt + κt, κt ∼ WN

(
0,− φσ2

(1− φ)2

)

The Wiener-Kolmogorov estimator of the trend is µ̃t|∞ = (1 − φ)−2|1 − φL|2yt, see

Proietti and Harvey (2000), and thus it is provided by a filter with finite impulse

response. The trend extraction filter for the LLM has an infinite impulse response

and the the issue is whether efficiency in multistep forecast provides a clear guidance

also over that concerning the estimation of unobserved components.

The answer is provided by the right panel of figure 5, which displays, on a log-

arithmic scale, the measure (9) divided by its minimum, that is attained when the

model is correctly specified. While it is confirmed that the efficiency increases as φ

decreases, the efficiency for l odd is greater than for l even.

This example shows that there is a difference between the performance in fore-

casting and in the estimation of unobserved components. Moreover, cross-validation

tends to be less efficient than multistep estimation with respect to the estimation of

unobserved components.

[Figure 5 about here]

5 The local linear trend model

Another popular model for forecasting and signal extraction is the local linear trend

model (LLTM), see Harvey (1989), West and Harrison (1997) and Young and Pe-

dregal (1999), which is formulated as follows:

yt = µt + εt, εt ∼ WN(0, σ2
ε ), t = 1, 2, . . . , T,

µt+1 = µt + βt + ηt, ηt ∼ WN(0, σ2
η),

βt+1 = βt + ζt, ζt ∼ WN(0, σ2
ζ ),

(10)
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The model for the trend features a stochastic drift.

The reduced form is the IMA(2,2) model:

∆2yt = (1 + θ1L + θ2L
2)ξt, ξt ∼ WN(0, σ2)

Equating the ACGF of the structural form with that of the reduced form yields:

σ2
η = −[θ1(1 + θ2) + 4θ2]σ

2, σ2
ζ = θ(1)2σ2, σ2

ε = θ2σ
2.

These relations determine the region of admissible MA parameter space; in partic-

ular, σ2
ε ≥ 0 requires θ2 ≥ 0; furthermore, σ2

η ≥ 0 if and only if

θ1 ≤ − 4θ2

1 + θ2

.

When the equality θ1 = −4θ2/(1 + θ2) holds, σ2
η = 0, θ(1) = (1−θ2)2

1+θ2
, and the signal

to noise ratio σ2
ζ/σ

2
ε is a function of θ2 alone, being equal to (1− θ2)

4/[(1 + θ2)
2θ2].

The forecast function is ỹt+l|t = µ̃t|t + lβ̃t|t, where the steady state recursions for

µ̃t|t and β̃t|t are equivalent to those of the Holt-Winters’ forecasting technique:

µ̃t|t = µ̃t−1|t−1 + β̃t−1|t−1 + λ0νt

β̃t|t = + β̃t−1|t−1 + λ0λ1νt

with

λ0 = 1− θ2, λ0λ1 = θ(1).

The smoothing constants λ0 and λ1 are both in the range (0,1), as σ2
η ≥ 0 implies

0 < θ(1) < 1− θ2.

As shown in Proietti (2002), the steady state weights attributed to the obser-

vations for deriving the filtered and smoothed estimates can be derived from the

expressions:

µ̃t|t =

[
1− θ2

θ(L)
∆ +

θ(1)

θ(L)
L

]
yt, β̃t|t =

θ(1)

θ(L)
∆yt.

Note that the weights are less than 1 in modulus and sum up to 1 and to 0 respec-

tively for the level and the slope.

The LLTM nests several special cases of interest:
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• When σ2
ε = 0, θ2 = 0 and the reduced form is IMA(2,1). The irregular is

absent and the trend is coincident with the observations. If further σ2
η = 0,

the series is an integrated random walk, ∆2yt = ξt.

• When σ2
ζ = 0 the slope is constant, βt = β. This in turn implies θ(L) =

∆(1 + θL), θ(1) = 0, and an IMA(1,1) reduced form; the formulae for signal

extraction were as given for the LLM (section 2), whereas the forecast function

is linear in the forecast horizon, ỹt+l|t = µ̃t|t + lβ, with constant slope.

• When σ2
η = 0, the model generates the celebrated Hodrick-Prescott filter, with

smoothing parameter λ = σ2
ε /σ

2
ζ = θ2(1+θ2)2

(1−θ2)4
.

In the last case, which we label HP henceforth, the filtered and the smoothed

estimates of the trend and the irregular are respectively:

µ̃t|t =
1− θ2

θ(L)

[
∆ +

1− θ2

1 + θ2

L

]
yt, µ̃t|∞ =

θ(1)2

|θ(L)|2yt

ε̃t|t =
θ2

θ(L)
∆2yt = θ2ν̃t, ε̃t|∞ =

θ2

|θ(L)|2 |1− L|4yt =
(1− L−1)2

θ(L−1)
ε̃t|t

where ν̃t = θ(L)−1∆2yt are the innovations.

These expressions are easily derived respectively from the steady state state re-

cursions and from straight application of the Wiener-Kolmogorov filter, see Whittle

(1983). Moreover, it should be noticed that under the HP restriction we have the

nice decomposition: |θ(L)|2 = θ(1)2 + θ2|1− L|4.

5.1 Multistep estimation of the LLTM

The l-step-ahead prediction error for the LLM can be written:

ν̃t+l|t =
[
1 + ϑ1L + ϑ2L

2 + · · ·+ ϑl−1L
l−1

]
ν̃t, ϑj = (1− θ2) + jθ(1)

where in the steady state θ(L)ν̃t = ∆2yt; thus, in terms of the observations:

ν̃t+l|t = v(L)∆2yt, v(L) =
ϑ(L)

θ(L)
. (11)
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In the HP case a single parameter, θ2, determines the properties of the multistep

filter. The closer is θ2 to zero, the smaller the variation attributed to the irregular

component; on the contrary, as θ2 approaches 1, the trend will be more stable and

more variation will be absorbed by the irregular component. The plots in the top

and central rows of figure 6 present the squared gain of the filters v(L)∆2, v(L)∆ and

v(L) for θ2 equal to 1/4 and 1/2 and l = 1 and l = 5. The filters apply respectively

when yt, ∆yt and ∆2yt are stationary and give some clue over the nature of inferences

made by multistep estimation. When the series is integrated of the second order the

filter gives more weight to the long run frequency, whereas in the previous two cases

the gain is zero at the zero frequency. The multistep filter becomes more selective

as θ2 increases.

[Figure 6 about here]

5.2 Cross-validation for the LLTM

For the HP model, the smoothed estimates of the irregular component are ε̃t|∞ =

σ2
ε ut where

ut =
|1− L|4
σ2|θ(L)|2yt

is the smoothing error. Again the ACGF of ut coincides with the inverse ACGF of

the LLTM. Moreover, it can be shown that that the variance of ut is, in the steady

state2:

M = σ−2

[
1 + n

(1− θ2)
2

1 + θ2

(5 + θ2)/2

]
, n =

[
1 + θ2

1− 3θ2

1 + θ2

− 1

2
(1− θ2)

2

]−1

CV estimation of θ2 is based upon the minimisation of the variance of ut/M ;

defining

u0(L) =
|1− L|4

Mσ2|θ(L)|2 , u1(L) =
|1− L|2

Mσ2|θ(L)|2 (1− L−1), u2(L) =
(1− L−1)2

Mσ2|θ(L)|2 ,

2The proof is available from the author.
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we have that the interpolation error is obtained applying the filter ui(L), i = 0, 1, 2

respectively to yt, ∆yt, and ∆2yt. Hence, ui(L) provides the relevant transformation

for series integrated of the i-th order. For instance, if g(ω) denotes the spectral

generating function of ∆2yt, then the cross-validatory estimator of θ2 minimises

1

π

∫ π

0

|u2(ω)|2g(ω)dω

The bottom row of figure 6 displays the squared gain |ui(ω)|2, i = 0, 1, 2, for

θ2 = 0.25, 0.5; the plots reveal an interesting feature: while the gain of u0(L) and

u1(L) is similar to the corresponding one-step-ahead filter (compare the top and

bottom plots), there is a significant difference between |u2(ω)|2 and |v(L)|2 for l = 1,

both of which apply to I(2) series. As a matter of fact, the former is not a low-pass

filter, strictly speaking, as it annihilates the zero frequency; rather, it has the nature

of a cyclical band-pass filter with a spectral peak depending on the parameter θ2.

The plot also illustrates that if the order of integration of the series coincides

with that of the approximating model, the LLTM with σ2
η = 0 in our case, the

multistep filter has a low-pass nature; otherwise, it emphasises the cyclical or the

high frequencies.

6 Illustrative examples

The first illustration deals with an application of the LLTM with constant drift (σ2
ζ =

0) for the extraction of the trend component from the logarithms of Italian GDP,

plotted in figure 7. Since θ(L) = ∆(1 + θL), the approximating model has reduced

form IMA(1,1), ∆yt = β + (1 + θL)ξt, ξt ∼ WN(0, σ2). If Gaussian disturbances are

assumed for this series, maximum likelihood estimation (MLE) yields an estimate

of σ2
ε that is practically zero, so that all the variation is absorbed by the trend

component; see the top row of figure 7. Hence, the decomposition is based on

a random walk model with drift, but this is clearly inadequate for the series, as
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the statistical significance and the pattern of residual autocorrelation show. The

latter has a pseudo-cyclical behaviour that is suggestive of the presence of a cyclical

component. Minimising the variance of the l-step-ahead prediction errors yields

different results: as the plots at the bottom illustrate - they refer to the signal to

noise ratio and the implied θ estimates as a function of the forecast horizon - the

variance of the irregular component grows with l, relative to that of the changes in

the trend. The central panels display the smoothed estimates of the components3

for l = 5. The estimated irregular has now larger amplitude and richer dynamics

than white noise. Cross-validation yields the same estimate as maximum likelihood.

[Figure 7 about here]

As a second illustration we consider the generating process yt = µt + εt, where µt

is alternatively a random walk (RW), as in (1), or an integrated random (IRW), as

in (10) with the HP restriction, and εt is is the cyclic process (see Harvey, 1989):


 εt+1

ε∗t+1


 = ρ


 cos λc sin λc

− sin λc cos λc





 εt

ε∗t


 +


 κt

κ∗t


 , (12)

where κt ∼ NID(0, σ2
κ) and κ∗t ∼ NID(0, σ2

κ) are mutually uncorrelated, and uncor-

related with the trend disturbances. Hence, εt ∼ARMA(2,1) and σ2
ε = σ2

κ/(1− ρ2).

We set ρ = 0.9 and λc = π/8, corresponding to a period of 4 years of quarterly

observations and we consider values of the signal to noise (SN) ratio ranging from

10−4 to 104 (when the trend is a RW we refer to σ2
η/σ

2
ε ; when it is an IRW we refer

to σ2
ζ/σ

2
ε ).

We start with the case when µt is a RW (the true model generating yt is the

sum of a RW and a stationary ARMA(2,1) cycle) and the approximating model

is the LLM; the source of misspecification is the representation adopted for the

3The MLE and the smoothed estimates of the components are obtained using SsfPack (beta)

v. 3.0 by Koopman et al. (1999).
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cyclical component by the approximating model, which is white noise, rather than

ARMA(2,1). The multistep estimates of the parameter θ are displayed in the first

graph of figure 8 as a function of log10 σ2
η/σ

2
ε and of the forecast horizon. For l = 1,

θ̂ = 0 (RW prediction), regardless of the SN ratio, but for l > 1 θ̂ is around -1 (mean

prediction) when the cycle is the dominant source of variation, and gradually moves

to 0 as the reverse is true. The periodicity in the estimates as l varies reflects the fact

that the true model is cyclical, but it is amplified or reduced by the multistep filter.

The natural logarithms of the relative forecast efficiency is plotted in the second

graph of the first row. Understandably, this is close to zero (the approximating

model is fully efficient) when the SN ratio is high or low.

As far as the estimation of the trend and the cycle is concerned, the performance

is poor for short horizons when the SN ratio is low. It improves with l, although the

relative efficiency ratio it is still large for values of SN in the range [10−2, 1]. The

cross-validatory estimates are θ̂ = 0 and are coincident with the ME with l = 1; as

such they have the same efficiency in the estimation of unobserved components.

When the true µt is an IRW (centre row of figure 8) the multistep estimates

of θ2, the core parameter of the HP approximating model, behave like those of θ

for the previous case, on a reverse scale; a difference arise, however, for l = 1 as

positive and small estimates arise for low SN ratios. The performance in forecasting

is satisfactory for low values of the SN ratio, although the signal extraction efficiency

is usually so. Cross-validation, on the other hand, produces estimates that are closer

to zero, implying an IRW representation for the series; as a consequence, the signal

extraction efficiency is very low when the cycle is the dominant source of variation.

This fact is a consequence of the high-pass nature of the cross-validation filter.

[Figure 8 about here]

The bottom panel considers instead the case when the true model is made up of

a RW trend and a stationary cycle, but the LLTM with the HP restriction is fitted.
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Hence, there is a second source of misspecification, which concerns the order of

integration of the trend. Note that in this case the relative unobserved components

estimation error diverges, as can be seen from (9), which shows that the spectral

generating function is unbounded at the zero frequency; nevertheless, the relative

forecast MSE is finite, and it is displayed in the last figure. The multistep estimates

of θ2 converge to 1 as l increases, implying a deterministic linear predictor (σ2
ζ = 0).

As a result, the forecast efficiency is poor also when the trend is the dominant source

of variation.

The reason why we restrict our attention to the HP case, rather than to the

unrestricted LLTM, lies in the fact that the HP filter is much used and abused for

the estimation of the trend in economic time series; see Pedregal and Young (2001)

and the references therein for a thorough account of this point.

7 Local likelihood

As we saw in section 2.2, multistep estimation emphasises the long-run features of

the series in the estimation of the parameters of a given model. We now propose

and evaluate an alternative estimation method, which we call local likelihood, that

has the same objective of giving more weight to particular aspects of the series. The

natural set up for our purposes is the frequency domain.

Suppose that the series is difference stationary and that the approximating model

is the LLM of section 2; given the availability of T ∗ observations ∆yt, t = 1, 2, . . . , T ∗,

let us denote the Fourier frequencies by ωj = 2πj
T ∗ , j = 0, 1, . . . , (T ∗− 1). Apart from

a constant, the Whittle’s likelihood is then defined as follows (Harvey, 1989):

loglik = −1

2

T ∗−1∑
j=0

[
log g∗(ωj) + 2π

I(ωj)

g∗(ωj)

]
(13)

where g∗(ωj) = g∗(e−ıωj) denotes the spectral generating function of the station-

ary representation of the approximating model evaluated at frequency ωj, that is
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g∗(ωj) = σ2(1 + θ2 + 2θ cos ωj), and I(ωj) is the periodogram:

I(ωj) =
1

2π

[
c0 + 2

T ∗−1∑
τ=1

cτ cos(ωjτ)

]

where cτ denotes the sample autocovariance at lag τ of ∆yt.

A local likelihood estimate is intended to give more weight to the frequencies

around a target frequency, ω0; the objective function can be written as:

loglik(ω0) = −1

2

T ∗−1∑
j=0

wj

[
log g∗(ωj) + 2π

I(ωj)

g∗(ωj)

]
,

where wj = K(ωj − ω0) is a weighting function depending on the distance from the

target frequency. In multistep estimation the kernel is automatically provided by

the forecast function of the approximating model and depends on its parameters.

In the local likelihood approach the kernel can be made independent of the approx-

imating model. For instance, if our interest lies in long range forecasting and in the

estimation of long-run trends then ω0 is the zero frequency ; we may thus reduce

the weight attached to the fit of high frequency periodogram ordinates, the latter

being influenced by uninteresting fluctuations, in this respect, such as trading day

variation and other short lived components.

Another justification for downweighting the high frequencies arises when pre-

filtering by moving averages or temporal aggregation have taken place, so that the

original amplitude of the frequency components in the series has been modified to

an extent that the conditions for an orthogonal trend-irregular decomposition are

no longer met.

One option is to consider the weighting function:

wj =





1, ωj ≤ ωc

0, ωj > ωc

here ωc is the cutoff frequency and the kernel is the uniform kernel in the interval

[0, ωc].
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We illustrate this approach with respect to the problem of extracting the trend

from the logarithms of the Italian and U.S. quarterly GDP, using the LLTM with

constant drift as the approximating model. The maximiser of (13) is θ̂ = 0 in

both cases, implying that the trend is coincident with the observations; the usual

diagnostics highlight the presence of misspecification. The periodogram of ∆yt,

displayed in the right plots of figure 9 only for the frequency range [0, π] due to

its symmetry around π, is interpolated by a constant spectrum; the resulting trend

extraction filter uses only the current observation with unit weight.

If we downweight the high frequencies we get local likelihood estimates that move

away from zero, imply smoother trends. This fact is illustrated by figure 9: the plots

on the left hand side display the estimated θ values for cutoff frequencies in the range

π/10 (corresponding to a period of 5 years) and 2π/5 (corresponding to a period

of 5 quarters). Those on the right hand side display, along with the periodogram

of ∆yt, the parametric spectral density implied by the LLTM with constant drift,

that has been fitted using the periodogram up to the cutoff frequency ωc = π/4

(corresponding to a period of 2 years).

In the Italian GDP case, when .5 < ωc < 1, θ̂ moves away from zero; the estimates

are highly influenced by a single periodogram ordinate at about ω = .53: as the

cutoff increases we get higher estimates. To get an idea of the level of smoothing

implied by the local likelihood estimate using ωc = π/4, one should refer to the

central panels of figure 7. For the U.S. θ̂ is negative and high for low cutoffs, and

increases more gradually than in the Italian case.

[Figure 9 about here]
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8 Conclusions

With respect to two well-known and widely used models, the local level and the local

linear trend models, this paper has evaluated estimation strategies alternative to

maximum likelihood, namely multistep (adaptive) estimation, cross-validation and

local likelihood in the frequency domain, for the purposes of long-range forecasting

and the decomposition into a trend and a cyclical component from economic time

series.

After introducing a metric for assessing the performance of the misspecified

model, it has been shown that, although forecast efficiency is not the same as ef-

ficiency in the estimation of unobserved components, multistep estimation is an

effective strategy for the purposes considered: the examples in the paper show illus-

trate that the signal extraction efficiency can be very high.

Secondly, cross-validatory estimates tend to be very close to those minimising the

variance of the one-step ahead prediction errors, and thus to maximum likelihood;

loosely speaking, cross-validation gives more weight to the high frequency compo-

nents in the series, compared to multistep estimation. The resulting estimates (that

optimise the leave-one-out interpolation performance of the approximating model)

tend to be of little value for the extraction of signals from a time series. We leave to

future research the assessment of multiple cross-validation, which can be performed

using the algorithm proposed in Proietti (2003).

Finally, local likelihood provides an alternative way of conceptualising and op-

erationalising the notion of constructing (possibly simple) predictors and signal ex-

traction filters that emphasise the long run features of a series.
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Figure 1: Local linear model: squared gains of ME and CV filters.
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Figure 2: ME and CV estimates of the LLM parameter θ for the AR(1) model

yt = φyt−1 + ξt.
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Figure 3: Relative forecast efficiency of ME(l) estimates of the LLM parameter θ

for the AR(1) model yt = φyt−1 + ξt.
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Figure 4: ME and CV estimates of the LLM parameter θ for the ARIMA(1,1,0)

model ∆yt = φ∆yt−1 + ξt.

−0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

φ

lo
g 

R
el

at
iv

e 
F

or
ce

as
t E

ffi
ci

en
cy

Relative Forcast Efficiency

l=1 × phi 
l=5 × phi 

l=2 × phi 
l=10 × phi 

−0.8 −0.6 −0.4 −0.2 0.0

1

2

3

4

5

lo
g 

R
el

at
iv

e 
U

C
 e

st
im

at
io

n 
E

ffi
ci

en
cy

Relative UC estimation efficiency

l=1 
l=5 
CV 

l=2 
l=10 

 

Figure 5: Relative forecast (left panel) and UC estimation efficiency (right panel)

of ME(l) estimates of the LLM parameter θ for the ARIMA(1,1,0) model ∆yt =

φ∆yt−1 + ξt.
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Figure 7: Trend and cycle in Italian real GDP at constant prices extracted by a local

linear model with constant drift using maximum likelihood estimation (top panels)

and multistep estimation with l ≤ 12. The estimates of the signal to noise ratio and

of the MA parameter θ of the IMA(1,1) reduced form display an elbow at l = 5.
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Figure 9: Local likelihood estimation of the local level model for the Italian and U.S.

quarterly GDP (logarithms). The plots on the left hand side display the estimated

θ values for cutoff frequencies in the range π/10 (corresponding to a period of 5

years) and 2π/5 (corresponding to a period of 5 quarters). Those on the right

hand side display the periodogram of ∆yt, and the parametric spectral fit using the

periodogram up to the cutoff frequency π/4 (corresponding to a period of 2 years).
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