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Abstract

This note considers the problem of estimating the marginal products of offensive
events towards a baseball team’s objective of scoring runs. Regression techniques on
official statistics give a positive marginal product for a stolen base attempt, which is
inconsistent with the theory of mixed strategy Nash equilibrium. Augmenting the
specification of the production function to include other productive qualities of foot-
speed restores estimates consistent with equilibrium theory.
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1 Introduction

Economists believe that certain basic principles organize a wide range of human activity.
This belief is best put to the test in environments where the assumptions underlying
theory are most likely to be satisfied. In this spirit, WALKER AND WOODERS [11] investi-
gated the predictions of mixed-strategy Nash equilibrium in the context of play during
Grand Slam tennis finals. The assumptions underlying the theory, such as common knowl-
edge of the game, plausibly hold in this environment, and, moreover, the extensive struc-
ture and payoffs of the game are well-known to players and modelers alike.

This observation generalizes across professional sports.! Sports are games with explicit,
well-defined rules, and, at the highest levels, are played with mutual understanding of the
strengths and weaknesses of the players involved. Not all sports provide an opportunity

& This document has been produced using GNU TEXyacs (see http://www.texmacs.org).
1. The suggestion of using sports as an analytical testbed dates at least to MOTTLEY [8].
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for as clean a dataset as tennis afforded Walker and Wooders; for example, CHIAPPORI ET
AL [4], investigating penalty kick behavior in professional soccer, are limited to testing
predictions of the theory that survive the presence of player heterogeneity. Despite such
limitations, the structure of sports games still presents the economist with opportunities
to study highly motivated agents in environments where rules and incentives are well-
defined and observable.

This paper pursues this line of investigation by considering the strategic choice of
attempting a stolen base in a baseball game. The objective of a baseball team is to win
games by scoring more runs than they allow their opponents to score. Generally, a base-
ball team scores runs by advancing around the bases on batted balls. However, players on
base are permitted to attempt to advance at any time the ball is in play; when they
attempt to do so when the batter has not hit the ball, they are said to attempt to steal a
base.

Undertaking this play is strategic, in the sense that players are not compelled by the
rules to make such attempts. Empirically, almost all players are observed to attempt to
steal bases with positive probability. Players (and teams) who attempt stolen bases fre-
quently are almost always players (and teams) who carry a reputation for being fast; in
fact, it seems clear that footspeed is an important ingredient in being able to reach the
next base before the defense is able to put the player out.

The discrete structure of the game permits the progress a team makes towards the
goal of scoring runs to be quantified, for example, by counting the number of safe hits,
home runs, walks, and so forth a player or team accumulates. Although the number of
runs a team actually scores depends on the ordering of these events, a remarkable regu-
larity is that a large percentage of the variation in the output of runs across teams can be
explained using simple linear models based on statistics which have been kept as part of
baseball’s historical record for more than a century.

Indeed, there is a literature, surveyed in Section 2, on estimating parameters for these
models. This conversation has occurred primarily outside the economics literature. The
economist’s contribution to this pursuit is to intepret the results. Supposing a simulta-
neous-move game model of the offense-defense interaction, the observation that almost all
baserunners attempt with positive probability implies that the net value of an attempt,
relative to not attempting, should be zero. However, different methodologies for esti-
mating parameters yield results which have different economic implications. In particular,
least-squares regression using team-season data yield estimates which imply a positive
marginal value for an additional attempted steal. This would be inconsistent with equilib-
rium theory in this setting.

As noted, players who attempt many stolen bases are generally considered to be the
fastest players. Footspeed contributes in other ways to a baseball team’s offense. A fast
runner may advance a base safely when a slower one would be put out. Also, a fast runner
is more likely to attempt to advance further on batted balls than a slower one, pressuring
the defense into making more misplays. These are statistics which do not appear in the
historical record, and have therefore been omitted by necessity from the cited literature.

In Section 3, the regression specification is augmented with an additional set of
explanatory variables which are plausibly correlated with a team’s overall speed. These
variables, not included in the historical record of baseball, are gleaned from an extensive



dataset of play-by-play data from all Major League Baseball games between 1974 and
1992. With these additional controls for team speed added, parameter estimates are recov-
ered which are consistent with an equilibrium theory of stolen base behavior. Section 4
concludes the paper by summarizing some implications for understanding the role of elite
basestealers in the context of a team’s offensive production.

2 Estimating the production function

The task at hand is to correctly estimate the coefficients of a linear approximation to the
production function for producing runs. While the true production function mapping
events in a baseball game to runs is not linear, the curvature is gentle, and negligible
within the subset of the sample space in which teams’ aggregate statistics are observed to
lie.? The coefficients of the function, then, are estimates of the marginal contribution of an
additional offensive event to the production of runs. Table 1 presents estimates of the
coefficients of the production function for five batting events, singles (1B), doubles (2B),
triples (3B), home runs (HR), and walks (BB), as well as a successful stolen base (SB)
and a time caught stealing (CS).

Source Data 1B 2B 3B HR BB SB CS
Bennett-Flueck 1969-77 0.50 0.73 1.27 1.45 0.35 0.13 N/A
(regression) N =218 | (.026) | (.073) | (.164) | (.055) | (.022) | (.041)
Berry 1990-98 0.49 0.72 1.14 1.51 0.34 0.26 | -0.14
(regression ) N =248 | (.029) | (.072) | (.190) | (.053) | (.024) | (.054) | (.140)

Albert-Bennett 1954-99 0.52 0.66 1.17 1.49 0.35 0.19 | -0.11
(regression) N=1078 | (.012) | (.023) | (.067) | (.024) | (.010) | (.023) | (.061)

Lindsey 1959-60 | 0.46 | 0.82 | 1.07 | 1.42 | 033 | N/A | N/A
(play-by-play)
Palmer 1961-77 | 045 | 077 | 1.00 | 1.42 | 033 | 0.19 | -0.32
(simulation)

Table 1. Average run values for different types of events, as reported by different authors. For the regres-
sion approaches, the numbers in parentheses are standard errors for the coefficients, and N is the number
of team-seasons in the regression.

These coefficients were determined using various methodologies and data sets. The
first three rows in Table 1 were produced by computing OLS estimates of runs as a linear
function of offensive events, reported in BENNETT AND FLUECK [2], BERRY [3], and
ALBERT AND BENNETT [1], respectively. The three specifications differ in what addi-
tional regressors are present in the model; nevertheless, the estimated marginal contribu-
tions are robust across the different datasets and specifications.

2. Discussion of the shape of the “true” production function can be found in ALBERT AND BENNETT

[1].



The fourth and fifth rows represent a micro-level approach to the estimation. LINDSEY
[7] analyzed play-by-play data obtained by observing a sample of Major League Baseball
games in 1959 and 1960. From this data, he constructed a table of the expected number of
runs scored in the remainder of a team’s inning at bat as a function of the current number
of outs and the bases occupied by runners.? The value of an offensive event such as a
single was then calculated to be the expected change in this number of subsequent runs
scored, taking into account the distribution of baserunners’ advancement on the play.

THORN AND PALMER [9] report the results of a similar calculation. Instead of using
actual play-by-play data, Palmer created a Markov chain simulation model of each team’s
offense using its aggregate statistics. In the model, a team would hit, for example, a single
with the same probability it hit singles in the actual season. Lacking play-by-play data,
features of the model such as the number of bases baserunners would advance on a single
were simulated using overall (i.e., not team-specific) frequencies. Based on the simulated
play-by-play, Palmer produced his coefficient estimates using an a technique analogous to
Lindsey’s.

Four of the five authors cited also report estimates for the marginal value of a suc-
cessful stolen base and of a time caught stealing.* Unlike the coefficients on batting events,
the estimates produced by regression on observed team-level statistics have substantially
different implications from the estimates produced by Palmer’s simulation approach. This
difference can be seen by pursuing a micro-level analysis based on the methods of Lindsey
and Palmer. Table 2 provides the expected future runs scored in an inning, as a function
of the number of outs and the currently occupied bases, generated by Palmer’s simulation.

0 out |1 out |2 out
Empty 0.454 10.249 | 0.095
1st 0.78310.478 | 0.209

2nd 1.068 [0.699 |0.348

3rd 1.277 10.897 | 0.382

1st and 2nd | 1.380 | 0.888 | 0.457
1st and 3rd [1.639 |1.088 [ 0.494
2nd and 3rd [1.946 | 1.371 | 0.661
Loaded 2.25411.546 | 0.798

Table 2. Expected future runs scored in an inning, as a function of the number of outs and the currently
occupied bases. This table is reproduced from THORN AND PALMER [9] based on the results of Palmer’s
simulation on the 1961-77 dataset.

3. Lindsey’s table resembles Table 2, augmented by additional information about the distribution of
runs scored.

4. The regression reported in Bennett and Flueck’s is their Expected Run Production model, which
was selected based on an adjusted R? criterion; this regression did not include times caught stealing due
to its high correlation with successful stolen bases.



If one were to assume for the moment that these data were generated by the interac-
tion of offenses and defenses with the goal of maximizing (or minimizing, for the defense)
expected runs, and that this interaction is in an equilibrium state, then the probability a
stolen base is successful must be such that the net benefit of a stolen base attempt is zero,
relative to not attempting. For example, with a runner on first and no outs, the expected
number of future runs in the inning is 0.783. Assume for simplicity that the two outcomes
of attempting a steal of second are success, resulting in a runner on second with no outs,
and failure, resulting in no runners on an one out. Letting m be the probability a stolen
base attempt is successful, equilibrium would imply that

1.0687 4+ 0.249(1 — ) = 0.783.

This equation is solved by m = .652. Parallel calculations give an equilibrium 7 = .634 for
the case with a runner on first and one out, and 7 = .601 for a runner on first and two
out.

The success percentage which results in a net gain of zero from the marginal stolen
base attempt using Palmer’s estimates is %: .627, which is comparable to the values of =
determined above. On the other hand, the Albert and Bennett coefficient estimates imply
a net gain of zero occurring with a success percentage of % = .367, and Berry’s give an
implied success percentage of % =.35. From 1954 through 1999, the range of Albert and
Bennett’s data, only three clubs posted a stolen base success percentage lower than .367:
the Washington Senators in 1957 (0.255) and again in 1958 (0.349), and the 1978 Toronto
Blue Jays (0.350). The regression estimates would imply that teams are stealing far too
infrequently, as they would still be enjoying substantial gains from stolen base attempts at
the margin. Palmer’s estimates are consistent with the predictions of theory.

3 Controlling for speed

The unsatisfactory economic implications of the SB and CS coefficients from regression
analysis arise because the specification of the production function omits inputs related to
speed. Prolific basestealers are almost always fast, and it is reasonable to expect that
speed is helpful in avoiding outs and producing runs. The productive effects of speed are
captured in the regression analyses in the coefficients on the speed-related statistics 3B,
SB, and CS. On the other hand, the design of Palmer’s simulation represents essentially a
perfect control for all other effects of speed, since baserunner advancement in the simula-
tion was implemented using overall, not team-specific, frequencies.

This suggests that the inclusion of other productive (non-strategic) factors related to
speed into the team-level regressions should result in coefficient estimates for SB and CS



which are comparable in economic implication to those of Palmer. To improve the specifi-
cation of the production function, this analysis turns to the database of play-by-play data
collected by Retrosheet® to tabulate frequencies of other offensive activities which are
plausibly correlated with speed.

The official records of baseball lump all stolen bases and times caught stealing
together, regardless of whether it is an attempted steal of second, third, or home. Table 2
implies that the equilibrium success percentages for steals of third are substantially dif-
ferent than for steals of second. Under the equilibrium assumption, with a runner on
second only and no out, the success percentage for a steal of third base is .797. With one
out, the percentage is .753; with two out, the percentage sharply increases to .911. These
imply that, while it may be optimal for typical baserunners to attempt the occasional
steal of second base, only elite baserunners will attempt steals of third with significant fre-
quency.® Using the Retrosheet data, basestealing statistics are disaggregated by the base
being attempted. SB2 and CS2 denote successful and unsuccessful steals of second base,
and SB3 and C53 successful and unsuccessful steals of third base.

Also from the play-by-play data, the number of times a baserunner advanced on an
error by the defense is tabulated. Faster baserunners will attempt to advance further on
plays, forcing fielders to make throws to attempt to put them out. Under pressure from a
baserunner’s superior speed, errant throws may be more likely.

In addition, the specification includes times grounded into double play (GDP). GDP
has a fairly strong negative correlation with stolen bases and caught stealing for two rea-
sons. Almost all GDP involve a ground ball in which the runner on first is put out, fol-
lowed by a relay throw to first before the batter can arrive there. Stolen base attempts
should decrease GDP, as any attempted steal of second (with less than two out) removes
a likely GDP situation. Additionally, fast baserunners should be less likely, other things
being equal, to hit into a GDP, because they arrive at first base more quickly than other
runners.

Two sets of specifications are considered. The first set, numbered M1 through M4, con-
tains four specifications for the production function, estimating coefficients on SB2 and
CS2 separately for each model. The second set, numbered M1’ through M4’, uses specifi-
cations which estimates only coefficients for the number of attempts, where

ATT2=SB2+4+CS2 and ATT3=SB3+CS3. For all models, each observation represents

team-level statistics for one season, expressed on a per-game-played basis; all models have

5. http://wuw.retrosheet.org

6. In the 1974-1992 period, only seven teams collected at least 40 successful steals of third in a season.
Leading the way is the 1976 Oakland Athletics, with 57 SB3; this team also has the maximum number of
total successful steals (341) in the sample. This club was built around speed, and featured several first-
class basestealers. The next six teams are the 1983 Oakland Athletics (SB3=54), 1985 St. Louis Cardinals
(SB3=49), 1982 Oakland Athletics (SB3=45), 1986 St. Louis Cardinals (SB3=43), 1980 Montreal Expos
(SB3=42), and 1988 St. Louis Cardinals (SB3=40). Each of these teams featured a player among the
most prolific in stealing bases in history: the Athletics had Rickey Henderson, the Cardinals Vince
Coleman, and the Expos Tim Raines. The teams with SB3 greater than 30 continue this pattern, with
several more entries from clubs with these players present.



an intercept term (not reported).”

Table 3 provides descriptive statistics for all statistics in the regressions. Included are
correlation coefficients of all statistics with triples, successful steals of second, and times
caught stealing second, which are the three variables the previous analysis suggests were
carrying information about team speed. Each of the newly-added explanatory variables
have the expected correlations to 3B, SB2, and CS2.

The full model, Model 4, restores coefficient estimates on SB2 and CS2 to values which
are consistent with equilibrium. The implied success percentage for a stolen base attempt

to have zero net value is %: .717; this is comparable to the empirical success percentage
of .655 overall during the sample period. Furthermore, the coefficient on CS2 is signifi-
cantly different from zero in this model. In parallel, the full model, Model 4°, of the set of
models using attempts as regressors obtains a coefficient estimate on ATT2 that is not sig-
nificantly different from the theoretical prediction of zero. Proceeding from Model 1 to
Model 4 (resp., Model 1’ to Model 47), the coefficient estimates for SB2 and CS2 (resp.,
ATT2) change in the direction of implied success percentages consistent with equilibrium

conditions.

Correlation with
Statistic | Mean | SD | Min/Median/Max | 3B | SB2 | CS2
R 4.26 [0.45| 3.10/4.24/5.53 0.14 |-0.01 |-0.18
1B 6.30 {0.36 | 5.42/6.28/7.37 | 0.24 [-0.00| 0.03
2B 1.50 |0.17| 1.05/1.49/2.01 0.20 [-0.01 |-0.15
3B 0.23 {0.07| 0.07/0.22/0.49 | 1.00 | 0.31 | 0.27
HR 0.78 10.21| 0.29/0.76/1.39 |-0.23 [-0.25 |-0.30
BB 3.25 038 2.41/3.23/4.36 |-0.15 | 0.04 |-0.09
HBP | 0.19 [0.06| 0.06/0.18/0.41 [-0.09|-0.02|-0.05
GDP | 0.76 [0.11| 0.47/0.76/1.07 |[-0.20|-0.48 |-0.35
SB2 0.67 {0.24| 0.16/0.65/1.76 | 0.31 | 1.00 | 0.62
CS2 0.33 {0.09]| 0.11/0.31/0.67 | 0.27 | 0.62 | 1.00
ATT2 | 1.00 {0.31| 0.32/0.98/2.42 |0.33 | 0.97 | 0.78
SB3 0.07 {0.05| 0.00/0.06/0.35 |-0.01|0.58 | 0.27
CS3 0.03 {0.02| 0.00/0.03/0.12 | 0.05 | 0.40 | 0.32
ATT3 | 0.10 {0.07| 0.00/0.09/0.45 |0.01 | 0.58 | 0.31
AOE | 0.34 [0.07| 0.19/0.34/0.53 |0.26 | 0.38 | 0.35

Table 3. Descriptive statistics for the full 1974-1992 sample. All values are denominated in per-game-
played terms.

7. With the exception of the 1981 season, all teams in the sample played between 159 and 164 games.
The 1981 season was interrupted due to a player’s strike; these 26 teams played between 103 and 111
games. Removing the 1981 season from the dataset does not substantively affect the results. As the
number of outs per game is essentially constant across teams, so incorporating outs made into the regres-
sion would have a significant impact only on the unreported intercept term.



Stat M1 M2 M3 M4 M1’ M2’ M3’ M4’ Stat

1B 0.522 0.548 0.552 0.524 | 0.521 | 0.548 0.554 0.527 1B
(019) | (.021) | (.020) | (021) | (019) | (.020) | (.021) | (.021)

9B 0.689 0.699 0.702 0.722 | 0.708 | 0.717 0.715 0.737 9B
(042) | (.042) | (.042) | (.041) | (042) | (.042) | (041) | (.040)

3B 1.066 1.011 1.056 0.974 | 1.056 | 0.998 1.059 0.981 3B
(112) | (112) | (114) | (112) | (113) | (113) | (113) | (112)

1.472 1.462 1.461 1.482 1.476 1.466 1.463 1.485
HR HR
(038) | (.037) | (.037) | (.036) | (.038) | (.038) | (.037) | (.037)

BB 0.341 0.353 0.349 0.325 | 0.348 | 0.360 0.354 0.332 BB
(018) | (.018) | (.018) | (.018) | (.018) | (.018) | (.018) | (.018)

0.586 | 0.570 | 0.537 | 0.505 | 0.581 | 0.564 | 0.528 | 0.495

HBP (119) | (118) | (118) | (115) | (120) | (119) | (118) | (.115) HBP

GDP -0.222 | -0.215 | -0.207 -0.238 | -0.222 | -0.217 GDP
(074) | (074) | (.072) (074) | (.073) | (072)

SB2 0.206 0.163 0.105 0.089 | 0.128 | 0.088 0.039 0.008 ATT?

(035) | (.038) | (.044) | (.043) | (.023) | (.026) | (.030) | (.030)
-0.141 | -0.157 | -0.151 | -0.225

52 (.094) | (.094) | (.095) | (.094)
SB3 0.296 0.216 0.398 0.338 ATT3
(174) | (.180) (.120) | (.118)
CS3 0.492 0.432
(415) | (.404)
AOE 0.578 0.551 AOE
(111) (111)

R? 0.901 0.903 | 0.905 | 0.910 | 0.900 | 0.902 | 0.904 | 0.909 R?
Adj. R*| 0.900 | 0.901 | 0.903 | 0.908 | 0.898 | 0.900 | 0.902 | 0.907 |Adj. R?
S. E. 0.143 | 0.142 | 0.141 0.137 | 0.144 | 0.143 | 0.141 | 0.138 S. E.
N 488 488 488 488 488 488 488 488 N

Table 4. Parameter estimates for four models of run scoring with various controls for team speed, using
data from 1974-1992. The models are ordered in terms of increasing control. Standard errors for coeflicient
estimates are in parentheses.

The coefficients on SB3 and CS3 (resp., ATT3) should, in principle, should share a
similar economic interpreation with those on SB2 and CS2 (resp., ATT2). However, the
CS3 coeflicient is positive and greater in magnitude than the coefficient on SB3, although
the standard error on CS3 is sufficiently large that the estimate cannot be viewed as being
significantly different from zero. The estimate for AT'T3, however, is significant.

As noted earlier, the team-seasons in which large numbers of attempts to steal third
are observed are not distributed randomly throughout the population, but are concen-



trated on time periods where teams featured one or more elite basestealers. While teams
are not exactly identical from season to season, it is plausible that there is some other
unobserved effect common to some or all of these teams. For now, this paper is satisfied
with interpreting SB3 and CS3 (resp., ATT3) as variables which control for the presence
of these unusual players.

4 Discussion

The introduction of additional production factors in the specification of the production
function of a baseball team’s offense removes a bias in the estimation of the value of a
marginal stolen base attempt, and restores parameter estimates which are consistent with
equilibrium.

The parameter estimates of Model 4 imply a success percentage which is slightly
higher than the observed success percentage. Implicitly the analysis has assumed that the
objective of the stolen base attempt is to maximize (or, for the defense, minimize) the
expected number of runs scored, rather than the probability of winning the game. The
distribution of future runs in an inning conditional on attempting a stolen base differs
from that when a stolen base is not attempted; other things being equal, the distribution
resulting from a stolen base attempt places more weight on low numbers of runs being
scored. This is because suffering an out results in a large reduction of the probability of a
big inning (many runs scored).®

In the early innings of a game, maximizing chances of winning is well-approximated by
maximizing expected runs in the current inning. In the late innings, maximizing the prob-
ability of scoring becomes more relevant: in the extreme case of the bottom of the ninth
inning of a tie game, the home team’s objective reduces to maximizing the probability of
scoring. Lindsey presents implied success percentages under an equilibrium assumption
where the objective is to maximize probability of scoring: these success percentages are in
the neighborhood of .55, which is lower than the corresponding probabilities under
expected runs maximization.

While recovery of the equilibrium prediction for the marginal value of the stolen base
attempt is reassuring for theory, this method suffers from the weakness that it cannot be
used to evaluate the contribution of the stolen base strategy to a team’s offense. For
example, Berry uses the SB and CS coefficients he obtains to assign a value to a player’s
basestealing activity. However, what Berry measures is not the contribution of the
player’s stolen base activity, but rather an estimate of the player’s additional contribution
to his team due to speed-related factors outside basestealing. Thorn and Palmer apply a
similar interpretation in using their SB and CS coefficients as part of a program to eval-
uate players based on their estimated marginal contributions. Since those authors use the
values generated by Palmer’s simulation, by definition the expected marginal contribution
of a stolen base attempt is approximately zero, and much of the variation in a
player’s “stolen base runs” comes from the randomness presumably inherent in mixed
strategy equilibrium.?

8. Lindsey’s Table V provides distributions of this sort for his data.



Relatedly, KATSUNORI [6] extends a Markov model of player evaluation due to COVER
AND KEILERS [5] to incorporate stolen bases and times caught stealing. Katsunori finds
that for almost all players in the Japanese leagues, this addition actually reduces their
estimated run production. The results in this paper help explain Katsunori’s result. Pre-
sumably, the defense must pay some “enforcement cost” in order to deter stolen base
attempts. This enforcement cost would reveal itself in the form of improved performance
by the batter at the plate. Empirically, this is true; batters perform better with a runner
on first base than with no runners on base. At the team level, the costs and benefits in
this interaction are included; at the individual level, however, the benefits of an elite
basestealer accrue at least in part to the subsequent hitter(s).

The methods of this paper, therefore, remain silent on the value of the ability to steal
bases, because they are unable to identify how optimal strategies change as the character-
istics of the players involved change. While this question is not particularly relevant for
Walker and Wooders, as they take the players as given, it is of substantive interest to pro-
fessional baseball teams, who face the problem of evaluating the potential contributions of
players with very different skill sets towards the team’s overall success. Understanding the
stolen base in this context requires an adequate strategic model, which is pursued in the
companion paper TUROCY [10].
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