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1 Introduction

This paper deals with the estimation of structural econometric models where the distribution of endogenous

variables is implicitly defined as a solution of a fixed-point problem. This structure appears in Markov discrete

decision processes (Rust, 1994), auction models (Guerre, Perrigne, and Vuong, 2000), empirical games of

incomplete information (Seim, 2002), and discrete models with social interactions (Brock and Durlauf, 2001).

This paper proposes a recursive pseudo maximum likelihood (PML) procedure for the estimation of this

class of models. There are two main reasons why this method is of interest. First, it avoids the problem of

indeterminacy associated with maximum likelihood estimation of models with multiple equilibria. And second,

the procedure avoids the repeated solution of the fixed point problem. In models where the dimension of the

fixed point is large, this can result in significant computational gains relative to maximum likelihood.

2 Econometric model

Let y ∈ Y be a vector of discrete random variables, where Y is a discrete and finite set, and let P 0 be the

true probability distribution of y.2 The structural model is a parametric family of probability distributions

P (θ), where θ ∈ Θ is a finite vector of parameters and Θ is a compact set. The model does not provide a

closed form analytical expression for P (θ). Instead, this distribution is implicitly defined as a fixed point of a

mapping in probability space:

P (θ) = Ψ(P (θ), θ) (1)

where Ψ(.|P, θ) is a mapping from = × Θ into =, where = is the space of probability distributions of y. In
some models, and for some values of θ, the fixed point mapping Ψ(., θ) can have more than one fixed point.

If that is the case the model is incomplete because it does not provide a unique prediction for the probability

distribution of y.

1Tel.: +1-617-353-9583; fax: +1-617-353-4449; E-mail address: vaguirre@bu.edu.
2For notational simplicity we omit exogenous explanatory variables. However, all the results in this paper apply also to the

case in which P 0 is a conditional probability distribution {P 0(y|x) : (y, x) ∈ Y ×X}.
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Example (A model of market entry): Consider a retail industry with many independent local markets. N

firms are the potential entrants in each local market. Let yit be the indicator of the event “firm i operates in

market t”, define yt = (y1t, y2t, ..., yNt), and let xt be the size of market t. Profits of firm i in market t are:

Πit =

(
0 if yit = 0

θ0i + θ1 xt − θ2 log
³
1 +

X
j 6=i yjt

´
− εit if yit = 1

(2)

where εit is private information of firm i and it is independently distributed over firms and over markets with

distribution function F . The vector of structural parameters is θ = {θ01, ..., θ0N , θ1, θ2}. By the independence
of εit across firms, the joint probability Pr(yt|xt, θ) can be described in terms of the set of individual entry
probabilities P (xt, θ) ≡ {Pi(xt, θ) : i = 1, 2, ..., N}. It is possible to show (see Aguirregabiria and Mira, 2003)
that the equilibrium probabilities of entry are implicitly defined as the solution of the system:

Pi(xt, θ) = F ( θ0i + θ1xt − θ2 Hi(P [xt, θ]) ) (3)

where Hi(P ) is the expected value of log
³
1 +

P
j 6=i yj

´
conditional on the information of firm i, and under

the condition that the other firms behave according to their entry probabilities in P . That is,

Hi(P ) =
X

y−i

³Y
j 6=i P

yj
j [1− Pj ]

1−yj
´
log
³
1 +

X
j 6=i yj

´
(4)

and
P

y−i represents the sum over all the possible actions of firms other than i. In this example, the fixed

point mapping is Ψ(P, xt, θ) = {F (θ0i + θ1xt − θ2Hi(P )) : i = 1, 2, ..., N}}.
This example has two features that make PML estimation particularly useful. First, in general Ψ(., xt, θ)

does not have a unique fixed-point. And second, when the number of firms is relatively large, the evaluation

of Ψ for different values of θ and fixed P is much cheaper than the evaluation of Ψ for different values of P

and fixed θ. This is because the main computational cost comes from the sum
P

y−i , and this sum should be

recalculated only when we change P but not when we change θ.

3 Pseudo maximum likelihood estimators

The problem is to estimate the vector of structural parameters θ0 given a random sample {yt : t = 1, 2, ..., T}
from the population P 0. Let P̂ 0T = {P̂ 0T (y) : y ∈ Y } be the nonparametric frequency estimator of P 0, i.e.,
P̂ 0T (y) = T−1

PT
t=1 I{yt = y}, where I{.} is the indicator function. For K ≥ 1, the K − stage PML estimator

is defined as:

θ̂
K

T = argmax
θ∈Θ

PT
t=1 lnΨ(yt|P̂K−1

T , θ) (5)

where the sequence of probability distributions {P̂K
T : K ≥ 1} are constructed recursively as:

P̂K
T = Ψ(P̂K−1

T , θ̂
K

T ) (6)

The one-stage estimator of θ0 maximizes the pseudo likelihood
PT

t=1 lnΨ(yt|P̂ 0T , θ). Given P̂ 0T and θ̂
1

T we obtain

a new estimate of P 0 by iterating in the fixed-point mapping, i.e., P̂ 1T = Ψ(P̂
0
T , θ̂

1

T ). Then, θ̂
2

T maximizes the

pseudo likelihood
PT

t=1 lnΨ(yt|P̂ 1T , θ), and so on.
An alternative procedure consists in calculating one-stage PML estimator and then apply one Newton

iteration for the maximization of the likelihood function. There are several reasons why PML iterations may
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be preferred. First, a Newton iteration requires the computation of the Jacobian matrix ∂Ψ/∂P 0, and this

can be computationally much more expensive than the successive iterations in the PML procedure. Second,

in models with multiple equilibria the gradient of the likelihood function is not well defined, but the gradient

of the pseudo likelihood is always well defined. And third, when the initial frequency estimator of P 0 is very

imprecise, the Newton iteration estimator can perform very poorly in finite samples. Though, one can apply

successive Newton iterations in the likelihood function, this can be computationally very costly.

Example: Let {yt, xt : t = 1, 2, ..., T} be a sample of firms’ entry decisions and market sizes from T independent

local markets. For simplicity, suppose that our measure of market size is discrete. Let P̂ 0i (x) be the frequency

estimator
µXT

t=1
yit I{xt = x}

¶
/

µXT

t=1
I{xt = x}

¶
, and let P̂ 0(x) be the vector {P̂ 0i (x) : i = 1, 2, ...,N}.

Given these frequency estimates, the one-stage estimator maximizes the pseudo likelihood function,XT

t=1

XN

i=1
yit lnF

³
θ0i + θ1xt − θ2Hi(P̂

0(xt))
´
+ (1− yit) ln

h
1− F

³
θ0i + θ1xt − θ2Hi(P̂

0(xt))
´i

(7)

When F is the cdf of a standard normal (logistic) random variable, this is just the likelihood of a Probit

(Logit) model. Given this one-stage estimator we can get new estimates of firms’ entry probabilities as:

P̂ 1i (xt) = F
³
θ̂
1

0i + θ̂
1

1xt − θ̂
1

2 Hi(P̂
0(xt))

´
. Using these probabilities we can construct new values Hi(P̂

1(xt)),

obtain a two-stage estimator, and so on.

Proposition 1 shows that the PMLEs are consistency and asymptotically normal under standard regularity

conditions, and it provides a recursive expression for the sequence of asymptotic variance matrices. Proposition

2 presents a sufficient condition for the asymptotic efficiency of these estimators.

PROPOSITION 1: Let {yt : t = 1, 2, ..., T} be a random sample of y, and let P̂ 0T be the frequency estimator

of P 0. Assume that: (a) Ψ is twice continuously differentiable in P and θ, and for any (y, P, θ) ∈ Y ×=×Θ
the probability Ψ(y|P, θ) is strictly greater than zero; (b) {P (θ) : θ ∈ Θ} is a correctly specified model, i.e.,
there is a value θ0 ∈ Θ such that P 0 = Ψ(P 0, θ0); (c) Θ is a compact set; and (d) θ0 uniquely maximizes in Θ
the function E

¡
lnΨ(y|P 0, θ)¢. Under these conditions the PML estimators {θ̂KT , P̂K

T : K ≥ 1} are consistent
and asymptotically normal with asymptotic variances:

Avar(P̂K
T ) = AK ΩPP A0K ; Avar(θ̂

K

T ) = BK ΩPP B0
K

where ΩPP = Avar(P̂ 0T ), and {AK : K ≥ 1} and {BK : K ≥ 1} are sequences of deterministic matrices which
can be obtained recursively using the expressions:

AK = (I −Ψθ M)ΨP AK−1 +Ψθ M and BK =M [I −ΨP AK−1]

where A0 is the identity matrix; Ψθ and ΨP are the Jacobian matrices ∂Ψ(P 0, θ
0)/∂θ0 and ∂Ψ(P 0, θ0)/∂P 0,

respectively; and M is the projection matrix
¡
Ψ0θ diag{P 0}−1Ψθ

¢−1
Ψ0θ diag{P 0}−1.

Proof: By Lemma 24.1 and Property 24.2 in Gourieroux and Monfort (1995), and an induction argument,

the proof of consistency is straightforward. First order conditions of optimality imply that the sequence of

estimators {θ̂KT , P̂K
T : K ≥ 1} can be obtained using the recursive expressionsPT

t=1 ∂ lnΨ(yt|P̂K−1
T , θ̂

K

T )/∂θ =

0 and P̂K
T = Ψ(P̂K−1

T , θ̂
K

T ). Since Ψ is twice continuously differentiable, we can apply the stochastic mean value

theorem to these conditions between (P̂K−1
T , θ̂

K

T ) and (P
0, θ0). By consistency of (P̂K−1

T , θ̂
K

T ), the stochastic

mean value theorem implies that:
√
T (θ̂

K

T − θ0) = −Ω−1θθ
h
ΩθP

√
T (P̂K−1

T − P 0) + (1/
√
T )
PT

t=1 ∂ lnΨ(yt|P 0, θ0)/∂θ
i
+ op(1) (8)
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where Ωθθ ≡ E(∂2 lnΨ(y|P 0, θ0)/∂θ∂θ0) and ΩθP ≡ E(∂2 lnΨ(y|P 0, θ0)/∂θ∂P 0). And,
√
T (P̂K

T − P 0) = ΨP
√
T (P̂K−1

T − P 0) +Ψθ
√
T (θ̂

K

T − θ0) + op(1) (9)

It is simple to show that: (a) (1/T )
PT

t=1 ∂ lnΨ(yt|P 0, θ0)/∂θ = Ψ0θ diag{P 0}−1(P̂ 0T − P 0); (b) ΩθP = −Ψ0θ
diag{P 0}−1ΨP ; and (c) Ωθθ = −Ψ0θ diag{P 0}−1Ψθ. Taking into account these expressions and solving (8)
into (9), we get that

√
T (P̂K

T − P 0) = AK

√
T (P̂ 0T − P 0) + op(1). Solving this result in equation (8) we have

that,
√
T (θ̂

K

T − θ0) = BK

√
T (P̂ 0T − P 0) + op(1). Finally, by Mann-Wald Theorem, it is straightforward that√

T (P̂K
T −P 0)→d N(0, AK ΩPP A0K) and

√
T (θ̂

K

T −θ0)→d N(0, BK ΩPP B0
K), where ΩPP is the asymptotic

variance of P̂ 0T .

PROPOSITION 2: If the Jacobian matrix ∂Ψ(P 0, θ0)/∂P 0 is zero, then all the estimators in the sequence

{θ̂KT : K ≥ 1} are asymptotically equivalent to the maximum likelihood estimator (MLE).

Proof: First, notice that applying the implicit function theorem to P (θ0) = Ψ(P (θ0), θ0) we have that:

∂P (θ0)/∂θ0 =
¡
I − ∂Ψ(P 0, θ0)/∂P 0

¢−1
∂Ψ(P 0, θ0)/∂θ0

Therefore, ∂Ψ(P 0, θ0)/∂P 0 = 0 implies that score and pseudo-score are equal, i.e., E
¡
∂ lnP (yt|θ0)/∂θ

¢
= E

¡
∂ lnΨ(yt|P 0, θ0)/∂θ

¢
, and we can write the variance of the MLE as

¡
Ψ0θ diag{P 0}−1Ψθ

¢−1
. Second,

∂Ψ(P 0, θ0)/∂P 0 = 0 implies that, for any K ≥ 1, AK = ΨθM and BK =M . Therefore, Avar(θ̂
K

T ) =M ΩPP

M 0 =
¡
Ψ0θ diag{P 0}−1Ψθ

¢−1
, which is the variance of the MLE.

The zero Jacobian condition holds in single-agent dynamic programming models with conditional indepen-

dence of unobservables (see Aguirregabiria and Mira, 2002), but it does not hold in static or dynamic games

of incomplete information. However, even when the one-stage estimator is asymptotically efficient, montecarlo

experiments show that iterating in the PML procedure can provide estimators with significantly better finite

sample properties (see Aguirregabiria and Mira, 2003).
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