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ABSTRACT 
 

This paper presents the methodology of the Generalised Maximum Entropy (GME) 
approach for estimating linear models that contain latent variables such as customer 
satisfaction measurement models.  The GME approach is a distribution free method and it 
provides better alternatives to the conventional method; Namely, Partial Least Squares 
(PLS), which used in the context of costumer satisfaction measurement. A simplified 
model that is used for the Swedish customer satis faction index (CSI) have been used to 
generate simulated data in order to study the performance of the GME and PLS. The 
results showed that the GME outperforms PLS in terms of mean square errors (MSE).  A 
simulated data also used to compute the CSI using the GME approach. 
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1.  INTRODUCTION 
 

Much has been written in the past few years on Customer Satisfaction measurement 
models in order to study the relationship between satisfaction and market share, and the 
impact of customer switching barriers (Fornell 1992) in terms of customer satisfaction 
Index (CSI). A Customer Satisfaction Index quantifies the level of profitable satisfaction 
of a particular customer base and specifies the impact of that satisfaction on the chosen 
measure(s) of economic performance.  Index can be generated for specific businesses or 
market segments or "rolled-up" into corporate or divisional measures of performance.  
The index is used to monitor performance improvement and to identify differences 
between markets or businesses. The CSI score provides a baseline for determining 
whether the marketplace is becoming more or less satisfied with the quality of products 
or services provided by individual industry or company. Traditional approaches in 
estimating CSI from especial linear structural relationship models have raised two 
important issues; the first concerns with the Maximum Likelihood (ML) approach 
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developed by Jöreskog (1973), which estimates the parameters of the model by the 
maximum likelihood method using Davidon-Fletcher-Powell algorithm. The other 
research issue concerns with the distribution free approach, namely, Partial Least Square 
(PLS). The PLS method was developed by Wold (1973, 1975) which he calls “soft 
modelling”, or “Nonlinear Iterative Partial Least Square” (NIPLAS). After several 
versions in its development, Wold (1980) presented the basic design for the 
implementation of PLS algorithm. In the literature, the PLS method is usually presented 
by two equivalent algorithms. There are many authors who described PLS algorithms in 
their articles (Geladi and Kowalski (1986), Helland (1988), Helland(1990), Lohmoller 
(!989), Bremeton(1990) and Garthwaite(1994) ). Appendix A is describe the PLS 
algorithm. 
 

However, The Swedish CSI (Fornell 1992) and European’s CSI (Gronhlodt et al 
2000) models are used PLS method. This paper will discuss the GME estimation 
approach in solving the customer satisfaction models. A proposed method can be used to 
compute CSI based on statistical information about customer satisfaction measurements 
model. 

 
 

2. COSTUMER SATISFACTION MEASUREMENT MODELS 
 
Customer satisfaction model is a complete path model, which can be depicted in a path 
diagram to analyse a set of relationships between variables. It differs from simple path 
analysis in that all variables are latent variables measured by multiple indicators, which 
have associated error terms in addition to the residual error factor associated with the 
latent variable, a good examples on these models are the American customer satisfaction 
index (see Figure.1) which is a cross-industry measure of the satisfaction of customers in 
United States households with the quality of goods and services they purchase and use 
(Bryant 1995), and the European customer satisfaction index model, which is an 
economic indicator, represents in Figuer.2. 
 
 
 
 
 
 
 
 

 
 
 
 

Figuer.1: The American Customer Satisfaction Framework 
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Figuer.2 The European Customer Satisfaction Framework 

 

 

Many researchers from various disciplines have used Linear Structural Relationship 
(LISREL) as a tool for analysing customer satisfaction models. The general and formal 
model of customer satisfaction can be written as a series of equations represented by 
three matrix equations Jöreskog (1973): 
 

η(m x 1) =  Β(m x m) * η(m x 1) + Γ(m x n) * ξ (n x 1) + ζ(m x 1)  (1) 
 
y(p x 1)  =  Λy (p x m) * η(m x 1) + ε(p x 1)    (2) 
 

x(q x 1)  =  Λx (q x n)  * ξ (n x 1) + δ(q x 1)      (3) 
 

 
The structural equation models given in (1-3) have two parts; the first part is 

structural model (1) that represents a linear system for the inner relations between the 
unobserved inner variables. The second part is the measurement model (2) and (3) that 
represents the outer relation between observed and unobserved or latent and manifest 
variables. 

 
The structural equation model (1) refers to relations among exogenous variables ( i.e; 

a variables that is not caused by another variable in the model), and endogenous variables 
(i.e; a variables that is caused by one or more variable in the model). The inner variables 
in this equation, ηη  which is a vector of latent endogenous variables, and ξξ which is a 
vector of latent exogenous variables are related by a structural relation. The parameters, 
ΒΒ  is a matrix of coefficients of the effects of endogenous on endogenous variables, and ΓΓ  
is a matrix of coefficients of the effects of exogenous variables (ξξ’s) on equations. 
However, ζζ is a vector of residuals or errors in equations.  

 
The inner variables are unobserved. Instead, we observe a number of indicators 

called outer variables and described by two equations to represent the measurement 
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model (2) and (3) which specify the relation between unobserved and observed, or latent 
and manifest variables. The measures in these two equations, y is a p x 1 vector of 
measures of dependent variables, and x is a q x 1 vector of measures of independent 
variables. The parameters, ΛΛy is a matrix of coefficients, or loadings, of y on unobserved 
dependent variables (ηη), and ΛΛx is a q x n matrix of coefficients, or loadings, of x on the 
unobserved independent variables (ξξ). Moreover, εε is a vector of errors of measurement 
of y, and δδ is a vector of errors of measurement of x.  

 
The model given in (1-3) has many assumptions that may be perceived as restrictions, 
and these may be treated as hypotheses to be confirmed or disconfirmed and the rational 
of their specification in the model depend on methodological, theoretical, logical or 
empirical considerations, these assumptions: 
 

(i) The elements of ηη  and ξξ, and consequently those of ζζ also, are 
uncorrelated with the components of εε  and δδ. The later are uncorrelated 
as well, but the covariance matrices of εε  and δδ need to be diagonal. The 
means of all variables are assumed to be zero, which mean that the 
variables are expressed in the deviation scores. That is, 

 
E(η) = E(ξ) = E(ζ) = E(ε) = E(δ) = 0 

 

E(εε`) = θ2
ε , and E(δδ`) = θ2

δ 

 
where θ2

ε and θ2
δ are diagonal matrices. 

 
(ii) It is assumed that the inner variables (η, ξ) are not correlated with the 

error terms (ε, δ), but they may be correlated with each other. 
Moreover, ξ and ζ are uncorrelated. That is, 

 

E(ηε )̀ = E(ξδ̀ ) = E(ξζ̀ ) = 0 

 
(iii) Β is nonsingular with zeros in its diagonal elements. 

 
Given information about the variables x(q x 1)   and y (p x 1)  , the objective in this article is to 
recover the unknown parameters Β(m x m) , Γ(m x n), Λy (p x m) , Λx (q x n)  and the disturbances 
ζ(m x 1) , ε(p x 1) , δ(q x 1)  by using the GME principle.  

 
3. GENERALIZED MAXIMUM ENTROPY (GME) ESTIMATION APPROACH 

 
Conventional work in information theory concerns with developing a consistent 

measure of the amount of uncertainty. Suppose we have a set of events {x1,x2,…, 

xk}whose probabilities of occurrence are p1,p2,…,pk such that 1
1

=∑
=

k

i
ip . These 
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probabilities are unknown but that is all we know concerning which event will occur. 
Using an axiomatic method to define a unique function to measure the uncertainty of a 
collection of events, Shannon (1948) defines the entropy or the information of entropy of 
the distribution (discrete events) with the corresponding probabilities P = {p1,p2,…,pk}, 
as  

∑
=

−=
k

i
ii ppPH

1

)ln()(       (4) 

where 0ln(0) = 0.  
 
The amount (–ln(p i)) is called the amount of self information of the event xi. The average 
of self-information is defined as the entropy. The best approximation for the distribution 
is to choose p i that maximizes (4) with respect to the data Consistency constraints and the 
Normalization-additivity requirements.  Golan et al (1996) developed GME procedure for 
solving the problem of recovering information when the underling model is incompletely 
known and the data are limited, partial or incomplete. Al-Nasser et al (2000) developed 
the GME method for estimating Errors-In-Variables models and Abdullah et al (2000) 
used the same approach to study the functional relationship Between Image, customer 
satisfaction and loyalty. 
 

3.1. RE-PARAMETERISATION 
 
In order to illustrate the use of GME in estimating the model given in (1-3) we rewrite 
this model as: 

 
y = Λy Λx

-1 Γ (I - Β)-1 (x - δ) + Λy (I - Β)-1 ζ + ε (5) 
 

where I is the identity matrix, and Λx
-1 is the generalised inverse of Λx.  

 
 The GME principle stated that one chooses the distribution for which the information 
(the data) is just sufficient to determine the probability assignment. Hence the GME is to 
recover the unknown probabilities, which represents the distribution function of the 
random variable. However, the unknown parameters in customer satisfaction model are 
not in the form of probabilities and their sum does not represent the unity, which is the 
main characteristic of the probability density function. Therefore, in order to recover the 
unknowns in the model we need to rewrite the unknowns in terms of probabilities values. 
In this context we need to reparametrized the unknowns as expected values of discrete 
random variable with two or more sets of points, that is to say;  
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Using these re-parameterisation expressions the model (5) can be rewritten as 
 

yp = ψ(b,f,dx,dy,wx,wy,w) 
where  
 
ψ(b,f,dx,dy,wx,wy,w) =  
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(6) 

 
The weight support of the disturbance parts (vx,vy,v) will be chosen such that they 

are symmetric around zero for all j, q and p. However, the choice of the support of the 
other parameters are chosen to span the possible parameter space for each parameter 
(Golan et al (1997) Golan et al(1996) and Al-Nasser and Abdullah (2000)). 
 

3.2 REFORMULATION AND SOLUTION 
 
Given the re-parameterisation, the GME system can be expressed as a non-linear 
programming problem subject to linear constraints. Its objective function can be stated in 
scalar summation notations, maximising this function subject to the consistency and the 
add-up normalisation constraints can solve the problem. The model reformulation using 
the GME is given by: 
 

Maximize                  H(b,f,dx,dy,wx,wy,w) = 
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      Subject to 
 

(i) yp = ψ(b,f,dx,dy,wx,wy,w) 

(ii) 1
1
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where   ψ(b,f,dx,dy,wx,wy,w) as given in (6). 

 

In this system we have (p + m2 + nm + qn + pm + m + q + p) equations including (Sm2 + 
nmL + qnA + pmC + mT + qR + pE) unknowns. However, to solve this non-linear 
programming system a numerical method should be used. The following diagram 
describes the GME algorithm in four steps,   
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4. A SIMULATION STUDY 
 

To illustrate the GME estimation method, we conducted a simulation study using 
simplified model that is used for the Swedish customer satisfaction index, proposed by 
Claes .C et al (1999), that consists of three exogenous variables ξ1, ξ2, and ξ3, and one 
endogenous variables η. The inner structure is defined as 
 

η = γ1 ξ1 + γ2 ξ2 + γ3 ξ3 + ζ 
 

where γ1, γ2 and γ3 are regression coefficients, and ζ is disturbance term. The 
manifest variables are denoted as x for the ξ variables, and y for the η variable. The 
measurement models for ξ variables are formative (Bagozzi and Fornell (1982)) and 
given by: 

Step .4  Solve the non-linear programming by using numerical methods  
 

 
Step .1 

Reparametrized the unknown parameters and the disturbance terms (if they are not in 
probabilities form) as a convex combination of expected value of a discrete random 
variable 

Step .2 Rewrite the model with the new reparametrization as the data constraint 
 

 
Step .3 

Formulate the GME problem as non-linear programming problem in the 

following form 
 

  Objective function = Shannon’s Entropy Function 
 

   With respect to the following constraints 
 

1. The Normalization constraints 
2. The consistency constraints, which represents the new 

formulation of the model 

Generalized Maximum Entropy Algorithm 
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ξ1 = π1 x1 + π2 x2 + π3 x3 + δ1 

ξ2 = π4 x4 + π5 x5 + π6 x6 + δ2 

ξ3 = π7 x7 + π8 x8 + π9 x9 + δ3 

 
where π are regression coefficients, and the δ are disturbances. The measurement 

model for the η variable is reflective and given by: 
 

y1 = λ1 η + ε1 
y2 = λ2 η + ε2 

y3 = λ3 η + ε3 

y4 = λ4 η + ε4 

 
where λ are coefficients and ε are disturbance part. Given this structural model, the 

simulation study was done under the following conditions: 
 

1- Generate 100 random samples each of size 15,20,25,30,40 from the 
given model. 

2- For the formative model the x values were generated from symmetric 
Beta distribution with parameters (6,6). 

3- All  π coefficients are set to be 1/3. 
4- The γ coefficients are initialled by (0.8, 0.1, 0.1). 
5- The λ coefficients are initialled by (1.1, 1.0, 0.9, 0.8). 
6- The error terms δ and ε are generated from the Uniform distribution 

U(0,1), while ζ generated from the standard Normal distribution. 
7- Using the Fortran power station environment programs linked to IMSL 

library, all Normal varieties were generated from the subroutine 
ANORIN, the Beta varieties from RNBET and the GME system were 
solved by using successive quadratic programming method to solve a 
non-linear programming problem depending on NCONF based on the 
subroutine NLPQL. 

 
Under these conditions the results for the MSE are given as shown in Table (1) for the 
GME approach and in Table (2) for the PLS method.  
 

TABLE-1  MSE of The Estimated Coefficients By Using The GME 
 

N MSE(π̂ ) MSE( 1γ̂ ) MSE( 2γ̂ ) MSE( 3γ̂ ) MSE( λ̂ ) 
15 7.406E-3 4.266E-2 6.679E-4 6.675E-4 7.406E-2 
20 4.788E-3 2.081E-2 5.493E-4 4.970E-4 4.788E-2 
25 4.046E-3 2.030E-2 5.111E-4 3.449E-4 4.606E-2 
30 3.974E-3 1.965E-2 4.042E-4 2.577E-4 3.009E-2 
40 3.915E-3 8.032E-3 3.827E-4 1.348E-4 1.470E-2 
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TABLE 2 MSE Of The Estimated Coefficients By Using The PLS 
 

N MSE(π̂ ) MSE( 1γ̂ ) MSE( 2γ̂ ) MSE( 3γ̂ ) MSE( λ̂
) 

15 2.716E-1 6.456E-1 1.474E-1 1.570E-1 2.6287 
20 2.037E-1 4.842E-1 1.105E-1 1.178E-1 1.9715 
25 1.629E-1 3.874E-1 8.845E-2 9.425E-2 1.5772 
30 1.086E-1 3.228E-1 7.370E-2 7.854E-2 1.3143 
40 0.148E-1 2.421E-1 5.528E-2 5.890E-2 9.857E-1 

 

Where π̂ (the estimate mean of the coefficients in the measurement models for ξ 

variables) and λ̂ (the estimate mean of the coefficients the measurement model for the η 
variable).  From the results it could be note that the GME outperform the PLS method, 
and it gives better estimate with a very small sample size.    

 
4.1  APPLICATION TO SIMULATED DATA 

 
In order to illustrate the GME algorithm in solving customer satisfaction models to compute 

CSI, the model described in this article  for the Swedish customer satisfaction index used under 
conditions (1-7) given in the last section to generate a  hypothetical data of size 12. The GME 
estimated values are given in the following diagram: 
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CS represents the latent variable for customer satisfaction, then the CSI computed as 
follows (Bryant E. B (1995)):  

 

100
)()(

)()(
×

−
−

=
CSMinCSMax

CSMinCSE
CSI  

 
Where E(.),Min(.) and Max(.) denote the expected, the minimum and the maximum 

value of the variable, respectively. Those of corresponding manifest variables determine 
the minimum and the maximum values of CS latent variable: 

 

∑
=

=
4

1

)()(
i

ii yMinwCSMin   , ∑
=

=
4

1

)()(
i

ii yMaxwCSMax  

 

where, wi are the weights, for this example a uniform weights were used .  Therefore, 
the CSI using GME model is 82.03. The CSI results indicate that the service quality 
regarding to the simulated data is Excellent. 

 
5. CONCLUDING REMARKS 

 
In this article we proposed the generalised maximum entropy (GME) estimation 

approach to the customer satisfaction models, which provide a better approach as it is 
meant for situations with limited or incomplete data and it is more robust against 
departures from classical assumptions on statistical distributions. The performance of the 
GME approach investigated and compared with an existing technique from the 
literatures, partial least squares (PLS). It can be observed from the simulation results that 
PLS are unreliable when the sample size relatively small, and the GME approach 
outperform the PLS in terms of MSE. Therefore, the GME can be considered as an 
alternative to the conventional method PLS to measure customer satisfaction index.  
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APPENDIX. A 
PARTIAL LEAST SQUARE ALGORITHM 

  
Suppose we have the following structural equations with the following relation 

 

X = AAA Eptptpt +′++′+′ ...2211   
                                           

  y = AAA fqtqtqt +′++′+′ ...2211   
 

where X is a matrix of size (N x K ), y is a vector of size N , ta are N vectors of latent 
variables, pa are k vectors of loading variables, qa are scalars with same scores, Ea is the 
residual matrix and fa the residual vector.  The PLS algorithm has the following steps: 
 

(i) Define the starting values for the X residuals (e0) and y residual (f0) as 
follows; 

e0 = x - µx 
f0 = y - µy 

 where  

N

y

Kk
N

x

N

i
i

y

N

i
ik

x

∑

∑

=

=



















= =

µ

µ ,...,2,1,1  

 

and x is k vectors of size N. For a = 1,2,…  do steps (ii)-(vi) below: 
 

(ii)  Calculate the loading weight,    wa = Cov(ea-1,fa-1) 
 

(iii) Estimate the score for the next PLS component by 
 

ta = e`
a-1 wa 

 
(iv) determine x loading and y loading by Least Squares with 
 

pa = Cov(ea-1,ta) / Var(ta) 
qa = Cov(ea-1,ta) / Var(ta) 

 
(v) Find the new residuals  

ea = ea-1 – pa ta 
fa = fa-1 – qa ta 
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(vi) Compare the t values with the one from the preceding iteration. If they 
are equal (with certain error, say 0.00001) then exit with the results or 
else go to (ii). 

 
Deciding the number of components to include in regression model is a tricky 

problem (Garthwaite, 1994). However, Helland (1988) noted that the number of factors 
to retain in final equation is usually determined by a cross-validation procedure: The data 
set is divided into G parts, with calibration is done with one part and validation on the 
other part of the data. The number of factors is chosen so that the estimated error of 
prediction is minimised Wold (1978) discussed this method in context of PLS. 
 


