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Abstract

In this paper we provide a Random-Utility based derivation of the Dirichlet-

Multinomial regression and posit it as a convenient alternative for dealing

with overdispersed multinomial data. We show that this model is a natural

extension of McFadden’s conditional logit for grouped data and show how it

relates with count models. Finally, we use a data set on patient choice of

hospitals to illustrate an application of the Dirichlet-Multinomial regression.
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1 Introduction

McFadden’s (1974) conditional logit is the econometric tool of choice for modeling

individuals’ choice behavior. The attractiveness of this approach stems from its

direct link to microeconomic theory. When faced with competing choices, individuals

attribute a level of utility to each choice and select that which provides the highest

utility. From the perspective of the modeler there are unobservable components,

specific to the individual or to the choice, that introduce a random element into the

decision process. Researchers observe actual choices and the factors likely to affect

the indirect utility associated with the available choices, and use this information to

understand how these factors impact the decision making process. The popularity

of this approach extends beyond economics into other disciplines such as marketing,

psychology and transportation, inter alia.

In this paper we focus on the particular situation when the information on actual

choices may be grouped into vectors of counts without any loss of information. This

will occur if, from the perspective of the modeler, there are groups of individuals

facing the same choice set and same choice characteristics. Many examples could

be provided, but we select a few that help establish the argument. Consider the

problem of identification of the relevant regional factors that affect industrial firm

location. Typically, researchers view these individual location decisions as profit

(utility) maximizing actions. Firms from diverse industrial sectors evaluate the re-

gional characteristics of different regions (e.g. counties, states) and, idiosyncrasies

apart, choose to locate in the region that maximizes potential profits. In this case it

is common to assume that all firms face the same choice set and the relevant charac-
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teristics of the regional choices are identical for firms belonging to the same industrial

sector. The available information consists of regional counts of investments by in-

dustrial sector and variables that reflect the characteristics of the regions. A similar

situation applies when modeling the locational choices of immigrants. The avail-

able information may be summarized by the number of individuals by ethnic group

(or country of origin) and the characteristics of regions. Consider another example

taken from the literature on political science. There is substantial spatial variation

in electoral results, and researchers often devote some effort to understanding what

factors impact the choice of a political candidate in an election. In this situation, the

choices are the candidates (possibly different by precinct), and the available data are

the number of votes for each candidate as well as the characteristics of the candidates

and the precincts. A final example, the patient-hospital choice model, is one that we

use in our application. Patients with the same diagnosis in the same location (i.e. zip

code) will face the same choice set and will have the similar idiosyncratic preferences

of a hospital. All patients will be faced with similar travel times and, at least ex ante,

be subject to similar medical procedures. The information about the quality of each

hospital will also be highly correlated within each zipcode if neighbors consult with

each other prior to making a decision (Pauly & Satterthwaite 1981). Thus aggrega-

tion to the zip code-disease level can be done with minimal loss of information, while

at the same time, making analysis of large urban markets computational feasible on

a personal computer. All of the above examples share a common feature. Despite

that the data consist of individual level choices, the true level of variation of the data

is at the group level. Thus, data for the dependent variable may be summarized by
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vectors of counts.

Nevertheless, we are interested in modeling these data as resulting from McFad-

den’s discrete choice Random Utility Maximization (RUM) framework. This means

that inference is based on the multinomial distribution because our interest lies in

studying the impact that covariates have on choice probabilities, treating the num-

ber of individuals in each group as given. In all of the above examples, groups share

some common characteristics: firms share industrial sector characteristics; immi-

grants share ethnic characteristics; voters share characteristics with neighbors in the

same precinct; and patients share location and disease characteristics. This intro-

duces the possibility that there exist some unobservable group specific effects that

are likely to equally influence all individuals belonging to the same group. If this

happens, then the individual choices will be correlated and the vectors of counts will

exhibit extra multinomial variation (overdispersion). Much like what happens with

count models, the statistical properties of the parameter estimates will be affected

[see McCullagh & Nelder (1989)]. One approach to deal with this problem is through

the use of quasi-likelihood (robust) estimators [eg. Mebane & Sekhon (2004)]. Here

we present a fully parametric alternative based on the Dirichlet-Multinomial distri-

bution. We use McFadden’s RUM framework to explicitly derive a discrete-choice

model that is appropriate for grouped data and that naturally accounts for extra

multinomial variation. The presentation emphasizes the connection with count data

models. The paper is organized as follows. In section 2 we present McFadden’s con-

ditional logit model. In section 3 we present a detailed derivation of the Dirichlet-

Multinomial regression and highlight its connections with count data models. In
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section 4 we provide an application of the Dirichlet-Multinomial to the choice of hos-

pital by a sample of patients from the Tampa-St Petersburg Statistical Metropolitan

Area (SMSA). Section 5 concludes.

2 The Grouped Conditional Logit Model

Following McFadden’s (1974) Random Utility Hypothesis it is assumed that each

individual (consumer, firm, etc.) i faces an exhaustive set of Ji mutually exclusive

alternatives. Each alternative j in his choice set has utility (profit) given by:

Uij = Vij + εij , (1)

where the first term in the right-hand side is a function of observable components

(the systematic component) and εij is a random variable. Assuming that the εij are

independent and identically distributed as Type I Extreme Value and that individ-

ual i selects the choice for which Uij is maximum, then it can be shown that the

probability that the individual selects choice j among the set of Ji alternatives is

given by

pij =
exp(Vij)∑Ji

j=1 exp(Vij)
=

exp(β′xij)∑Ji

j=1 exp(β′xij)
, (2)

where, as usually done, we are assuming that Vij is a linear combination of observable

variables. Thus, β is a vector of unknown parameters and the xij are covariates that

may change with individual, choice, or both. This logit formulation is quite general,

and it contains as a special case the multinomial logit model for the situation when
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covariates are restricted to characteristics of the individual. To estimate the model

by maximum likelihood, we define the variable dij = 1 if individual i picks choice j,

and dij = 0 otherwise. Hence, the likelihood function for the conditional logit model

may be expressed as,

LCL =
N∏

i=1

Ji∏
j=1

p
dij

ij . (3)

The above presentation of the conditional logit model is quite general and admits

the (possible) situation where the number of choices and their characteristics differ

across all individuals. But, as argued earlier, there are many occasions where the

pij are identical for groups (clusters) of individuals. This will happen when a set of

individuals is presented with the same choices and vectors of (choice) characteristics

meaning that covariates change across groups and/or choices but not across individ-

uals within a group. If we index the different groups by g and let G denote the total

number of groups, then the likelihood in (3) becomes that of the grouped conditional

logit model (without loss of generality and to simplify notation we will henceforth

assume that all individuals face choice sets with the same number of alternatives),

LGL =
G∏

g=1

J∏
j=1

p
njg

jg , (4)

where the njg are the number of individuals from group g that select choice j. Within

this context the utility of the choice faced by individual i belonging to group g may

be expressed as

Uijg = β′xjg + εijg , (5)
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where, the xjg are characteristics of the group and/or choice that affect individual

decisions. The other random term, εijg, is as defined earlier. Thus to estimate the

above model, all that is required is information on the vectors of counts by group,

the njg, and the corresponding information on the xjg.

It would have been possible to model njg directly as a count variable. To see this

let,

E(njg) = λjg = exp(αg + β
′
xjg) ,

and assume a Poisson distribution for njg,

fPoi(njg) =
λ

njg

jg e−λjg

njg!
. (6)

This implies that ng, the sum of counts for group g, also follows a Poisson law with

parameter λg =
∑J

j=1 λjg. It is now straightforward to verify that if we construct

the likelihood function by conditioning on the sum of counts for each group,

LPoiC =
G∏

g=1

J∏
j=1

fPoi(njg)f
−1
Poi(ng) , (7)

then the group level constants, αg, cancel out and we will obtain (ignoring multipli-

cation constants in the likelihood) the maximum likelihood function of the grouped

conditional logit shown in (4). As shown in Guimarães, Figueiredo & Woodward

(2003) the grouped conditional logit and the Poisson regression will yield identical

estimates for β and its variance-covariance matrix, i.e., the same estimates will result

whether or not the likelihood for the Poisson distribution is conditioned in the group
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totals.

3 The Dirichlet-Multinomial Model

3.1 The Model

In the following we admit that the utility ascribed to each choice is also influenced by

an additional unobservable factor specific to each group. This factor, which we will

treat as a random variable, accounts for omitted variables that exert their influence

at the group level but that are not observed by the modeler. To account for this

type of group specific unobserved heterogeneity we modify (5) and let it become,

Uijg = β′xjg + ηjg + εijg , (8)

where the ηjg are random effects that affect identically all individuals belonging to

group g and the εijg are assumed to be independent conditional on the group ran-

dom effects. The existence of these group specific random variates will induce some

correlation across the choices of individuals in the same group. As we will see, this

correlation will translate into overdispersion of the njg count variables. Conditional

on the group level random effects, ηjgs, and drawing again on McFadden’s (1974)

result, we can express the probability that an individual from group g selects choice

j as,

p̃jg =
exp(β′xjg + ηjg)∑J
j=1 exp(β′xjg + ηjg)

=
λ̃jg exp(ηjg)∑J
j=1 λ̃jg exp(ηjg)

, (9)
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where λ̃jg = exp(β′xjg). Now, the conditional likelihood function (conditional on the

ηjg) is given by:

L =
G∏

g=1

J∏
j=1

p̃
njg

jg . (10)

Assume that the random cluster effects, exp(ηjg)s, are i.i.d. gamma distributed with

parameters (δ−1
g λ̃jg, δ

−1
g λ̃jg) where δg > 0 is a group specific parameter. Under this

assumption it follows that the exp(ηjg) have an expected value of unity and a variance

equal to δgλ̃
−1
jg . Moreover, the variables defined by the product λ̃jg exp(ηjg) also follow

independent gamma distributions with parameters (δ−1
g λ̃jg, δ

−1
g ). Given that all these

variables follow independent gamma distributions with the same scale parameter, we

can directly apply a theorem demonstrated in Mosimann (1962) (Theorem 1, pg 74)

to conclude that the vector (p̃1g, p̃2g, ..., p̃Jg) follows a multivariate beta distribution

(Dirichlet distribution) with parameters (δ−1
g λ̃1g, δ

−1
g λ̃2g, ..., δ

−1
g λ̃Jg), that is,

fDM(p̃1g, ..., p̃J−1g) =
Γ(δ−1

g λ̃g)∏J
j=1 Γ(δ−1

g λ̃jg)

J∏
j=1

p̃
δ−1
g
eλjg−1

jg . (11)

with p̃Jg = 1−∑J−1
j=1 p̃jg. From the properties of the Dirichlet distribution it follows

that

E(p̃jg) =
δ−1
g λ̃jg∑J

j=1 δ−1
g λ̃jg

=
λ̃jg∑J
j=1 λ̃jg

. (12)

showing that on average the choice probabilities are identical to those obtained from

the grouped conditional logit model. Mosimann (1962) has also shown that the mul-

tivariate beta distribution is a prior conjugate to the multinomial distribution. Given

that the contribution of group g to (10) amounts to the kernel of a multinomial dis-
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tribution with parameters (ng; p̃1g, p̃2g, ..., p̃Jg) we can use Mosimann’s (1962) result

to arrive at a closed form expression for the unconditional likelihood distribution.

Adding the necessary constants to transform (10) into a product of multinomial dis-

tributions, and computing the unconditional likelihood by integrating with respect

to the p̃jg, we obtain,

LDM =
G∏

g=1

∫ J∏
j=1

ng!
p̃

njg

jg

njg!
fDM(p̃1g, p̃2g, ..., p̃J−1g)dp̃1dp̃2, ..., dp̃J−1 . (13)

The expression under the integral results in the Dirichlet-Multinomial multivariate

distribution (also known as the Compound Multinomial) and, in its closed form,

equals:

LDM =
G∏

g=1

ng!Γ(δ−1
g λ̃g)

Γ(δ−1
g λ̃g + ng)

J∏
j=1

Γ(δ−1
g λ̃jg + njg)

Γ(δ−1
g λ̃jg)njg!

. (14)

Maximization of the above likelihood function provides estimates for the β in (8).

We have shown earlier that it is possible to obtain the likelihood for the grouped

conditional logit model by letting the njg follow a Poisson law and conditioning on the

total sum for each group. A similar relationship exists for the Dirichlet-Multinomial

model. To show this suppose that we model njg directly as an overdispersed count

variable by assuming that

E(njg/ηjg) = exp(αg + β
′
xjg + ηjg) .

Now, as we did earlier, let the exp(ηjg) be independently gamma distributed with

parameters (θ−1
g λjg, θ

−1
g λjg) and admit that conditional on the random effect the
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njg follow a Poisson law. Under these assumptions, it is known that the njg are

distributed according to the negative binomial law with a probability density function

given by

fNB(njg) =
Γ(θ−1

g λjg + njg)

Γ(θ−1
g λjg)njg!

(
1

1 + θ−1
g

)njg
(

θ−1
g

1 + θ−1
g

)θ−1
g λjg

, (15)

and with expected value and variance of,

E(njg) = λjg ,

V (njg) = λjg(1 + θg) .

This type of parametrization of the negative binomial is known in the econometric

literature as NEGBIN type 1, (Cameron & Trivedi 1998). Under this particular

parametrization the total sum of counts for each group, ng, also follow a negative

binomial distribution,

fNB(ng) =
Γ(θ−1

g λg + ng)

Γ(θ−1
g λg)ng!

(
1

1 + θ−1
g

)ng
(

θ−1
g

1 + θ−1
g

)θ−1
g λg

. (16)

Now, it is fairly evident that constructing the likelihood by conditioning on the sum

of counts for each group as in

LNBC =
G∏

g=1

J∏
j=1

fNB(njg)f
−1
NB(ng) , (17)

and letting θ−1
g exp(αg) = δ−1

g results in the likelihood for the Dirichlet-Multinomial
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regression. The above derivation also sheds some light into what happens to the

group level intercepts (the αgs). These constants drop out when we condition in the

group totals for the Poisson case but that does not happen for the negative binomial

case. In this latter situation the αgs are not identifiable and are absorbed into the

δg.

3.2 Additional Considerations

Under the Dirichlet-Multinomial model the marginal distributions of the njg follow

a beta-binomial distribution - a mixture of the beta and binomial distributions [see

Johnson, Kotz & Balakrishnan (1997)] with expected value and variance given by

E(njg/ng) = ngE(p̃jg) ,

V (njg/ng) = ngE(p̃jg) (1− E(p̃jg))
λ̃g + ngδg

λ̃g + δg

.

It is now obvious how the Dirichlet-Multinomial model accommodates overdispersion.

The variance of njg is increased by a constant (by group) factor when compared to

the variance that would attain under the multinomial distribution. As δg (or θg)

goes to zero (the variance of the group random effects tend to zero), the variance

of njg collapses to that of the binomial distribution (the marginal distribution for

the multinomial). As mentioned earlier, the introduction of a group random effect

induces a parallel phenomena of correlation across the choices. It is well known

that a variable with a beta-binomial distribution may be interpreted as the sum

of equicorrelated Bernoulli variables [see, for example, McCulloch & Searle (2001)].
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This means that we can interpret each njg as resulting from the sum of ng Bernoulli

variables, each reflecting the individual decisions to select choice j with probability

pjg. The intragroup correlation coefficient between these Bernoulli variables is given

by

γg =
1

δ−1
g λ̃g + 1

=
δg

λ̃g + δg

=
θg

λg + θg

. (18)

As expected, this correlation coefficient tends to zero as δg approaches zero. When

implementing the Dirichlet-Multinomial one should be aware of the fact that the δg

are allowed to vary by group. It could be possible to absorb all that variability by

adding to the specification a constant specific to each one of the groups. However,

this may be impractical in applied work, particularly if we are dealing with a large

number of groups. One possible option (which we designate by Option 1) is to let the

δg be a function of explanatory variables that characterize the different groups (and

consequently that do not affect the choice probabilities). If only a constant is used

then we are assuming that the group specific coefficients are all identical (i.e. δg = δ).

Another option (Option 2) is to parameterize the Dirichlet-Multinomial likelihood in

terms of the intragroup correlation coefficient (γg) and let it be a function of group

level covariates. If those covariates are restricted to a constant then it is assumed

that all groups share a common correlation coefficient. This approach was used in

Paul, Liang & Self (1989) and Shonkwiler & Hanley (2003). When parameterized in

terms of the intraclass correlation coefficient, the likelihood function for the Dirichlet-
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Multinomial becomes

LDMeq =
G∏

g=1

ng!Γ(γ−1
g − 1)

Γ((γ−1
g − 1) + ng)

J∏
j=1

Γ((γ−1
g − 1)pjg + njg)

Γ((γ−1
g − 1)pjg)njg!

. (19)

When restricted to just two choices the Dirichlet-Multinomial distribution simplifies

to the Beta-Binomial distribution becoming a version of the binomial logit regres-

sion that allows for overdispersion (or correlation across choices). Applications of

the Beta-Binomial logit regression model have relied on different parameterizations.

Heckman & Willis (1977), who apparently were the first to propose the Beta-Binomial

regression model (the authors called it a ”Beta-Logistic regression”), used a parame-

trization which is equivalent to our Option 1 without group covariates. Applications

in Biostatistics [eg. Kupper, Portier, Hogan & Yamamoto (1986), Prentice (1986)]

parameterized the Beta-Binomial in terms of the correlation coefficient (Option 2).

Estimation of the Dirichlet-Multinomial model offers no particular challenge,

and numerical optimization routines based on the Newton-Raphson algorithm con-

verge rapidly to a global maximum. Functionally, the likelihood of the Dirichlet-

Multinomial model presented in (14) is identical to that of the ”negative binomial

with fixed effects,” a model proposed by Hausman, Hall & Griliches (1984) to deal

with count panel data. Thus, existing routines for estimation of the ”negative bino-

mial with fixed effects” available in econometric packages (eg. LIMDEP, Stata, etc.)

may be readily employed to estimate the Dirichlet-Multinomial (Option 1).

It is intuitive to see that the Dirichlet-Multinomial will collapse to the condi-

tional logit model if: a) The variances of the random effects are zero; b) There
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is a single individual per group. The first of these assertions is quite obvious. The

second one follows directly from inspection of the likelihood function of the Dirichlet-

Multinomial model. With one individual per group, ng = 1 and njg = 1 for the choice

selected by the individual and 0 otherwise. Applying the recursive property of the

gamma function, Γ(x) = (x−1)Γ(x−1), it is immediate to verify that (14) collapses

to (4). As just mentioned, in the absence of overdispersion the Dirichlet-Multinomial

distribution collapses to a standard multinomial distribution. Hence, it is possible

to implement a likelihood ratio test for overdispersion based on the comparison of

the likelihoods of the Dirichlet-Multinomial and the grouped conditional logit [but

note that the null hypothesis for the test is in the boundary of the parameter space

(see Self & Liang (1987))].

4 Application

To illustrate the application of the Dirichlet-Multinomial regression we model the

choice of hospital by patient in the Tampa-St. Petersburg market. Our original data

consists of 1998 inpatient claims from the State Inpatient Database of the Healthcare

Cost and Utilization Project (HCUP-SID) for the general hospitals in Hillsborough,

Pasco and Pinellas counties. All patients in these counties, as well as some of those

from surrounding zip codes, were included (surrounding zip codes are included only

if more than 60 percent of residents sought care in the Tampa-St. Petersburg mar-

ket). We restricted our analysis to non-emergency admissions of patients in the 5

most frequent diagnosis related groups (DRGs) (patients with the same DRGs have
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a clinically similar condition). The 5 most frequent DRGs were: 373 - Vaginal Deliv-

ery w/o Complicating Diagnoses; 209 - Total joint replacement or Major Joint and

Limb Reattachment Procedures of Lower Extremity; 116 - Other Permanent Cardiac

Pacemaker Implant or PTCA with Coronary Artery Stent Implant; 127 - Heart Fail-

ure and Shock and 88 - Chronic Obstructive Pulmonary Disease. Additionally, we

only considered patients who had Medicare, fee-for-service or PPO insurance cover-

age because they were likely to have access to all of the hospitals. We also excluded

patients aged 18 or less years. Our final sample consisted of 13,079 patients.

We used data from the 1998 American Hospital Association’s Annual Survey

of Hospitals to identify for-profit hospitals, teaching hospitals, and each hospital’s

nursing intensity. We define these as indicator variables showing whether or not

the hospital is a teaching institution (TEACH), as well as a measure of nursing

intensity calculated as full time equivalent (FTE) nursed per inpatient day (NURSE).

We also used MAPQUEST.COM to measure the drive time from the epicenter of

each zipcode to each hospital in the choice set, defined as DVTIME. We interact

DVTIME with the other patient and hospital characteristics to fully account for

spatial preferences across hospitals and diagnoses. We also merged in zipcode level

median income from the Census Bureau. Other variables include the approximate

drive time between the patient’s residence zip code and the hospital (DVTIME), and

interactions between drive time and hospital characteristics. For patients in DRGs

116 and 127 we added an additional hospital indicator variable (CIRC) indicating

whether or not the hospital had specialized services in circulatory diseases.

For our example the level of variation of the data is at the zipcode × DRG level.
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Given that patients in our sample originate from a total of 133 different zipcode

areas, this results in a potential maximum number of 665 groups. After excluding

groups with a zero number of patients, the number of groups dropped to 598. We

assumed that all the patients could choose between any of the 25 hospitals in our

sample.

In Table 1 we present the results of our estimation. Column 1 shows the estimates

from the conditional logit model. Overall, the sign and magnitude of the coefficients

are consistent with theory. First, patients choose hospitals based on various at-

tributes. The negative coefficient on drive time is consistent with the expectation

that patients are more likely to go to a closer hospital. In addition, the coefficient

on nurse FTE per day is positive and significant, implying that hospitals with high

nurse staffing ratios are preferable. Teaching hospitals are less attractive to patients

holding drive time constant but are more likely to be selected as drive time is in-

creased. Teaching hospitals generally have the most advanced technology and the

capability of treating the most complicated cases. Thus, patients that live far from a

teaching hospital with relatively complicated cases are likely to travel to a teaching

hospital. Thus the coefficient on the teach / drive time interaction is positive and

beyond about 30 minutes larger than the teach variable This can be seen by noting

that the coefficient on teach/drivetime is positive and about 0.050, whereas the coef-

ficient on Teach is about −1.80. Thus, patients that live beyond 30-40 minutes from

the teaching hospitals are actually more likely to visit them because 40∗0.05 > 1.80.

For profit hospitals are less attractive, ceteris paribus and the interaction between

profit and drive time is not significant. Finally, the coefficient on CIRC is positive
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and significant, as expected. However, most variables present high z-statistics a sign

that overdispersion may be a problem.

In column 2 we estimate the Dirichlet-Multinomial model imposing the restric-

tion that δg = δ (Option 1). The large improvement in the log-likelihood reinforces

the idea that overdispersion is a problem with this data. As expected, the higher z-

statistics were substantially deflated, but overall there were not considerable changes

in the estimated coefficients. The variables more affected are the DVTIME inter-

action variables. One of them (DVTIME*PROFIT) becomes non-significant, and

DVTIME*NURSE reverses sign and significance suggesting now that importance of

nurse staffing ratios declines as drive time is increased. As discussed earlier we can

account for some of the potential variability in δg by introducing covariates that

change with group. The analysis of the impact of these covariates may be of sec-

ondary interest (they do not affect choice probabilities), but its introduction may

help provide a better fit to the data. In line with this idea we estimated a second

version of the Dirichlet-Multinomial, introducing as covariates dummy variables for

each of the DRGs (the omited category was DRG 88) as well as a variable containing

average household income at the zipcode level. All of these variables prove statisti-

cally significant, suggesting that there is substantial variation across groups in the

δg. However, the results for the estimated coefficients affecting probabilities remain

practically unchanged.

The next version of the Dirichlet-Multinomial is parameterized in terms of the

correlation coefficient (Option 2). Curiously the model assuming identical correlation

coefficient provides a better fit then any of the other estimations. Nevertheless, we
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obtain results that do not differ much from the previous models. The estimated

intragroup correlation, γ̂, is significantly different from zero.

Our final specification admits the possibility that the intragroup correlation coef-

ficient is linearly related with group level covariates (income and dummies for DRG).

Again, except for small changes in magnitude, we do not observe any change in the

sign and significance of the coefficients associated with the choice probabilities. An

interesting result is that median income is linked to stronger intragroup correla-

tions. Note that the Medicare patients do not face different prices across hospitals

and most private patients in our sample do not face differences in out-of-pocket

payments across hospitals. Thus for these patients this could reflect better infor-

mation/education which is likely to be correlated with income. In addition, DRG

373, Vaginal Delivery w/o complicating diagnoses, also exhibits strong intragroup

correlation. This is likely due to the fact that expectant mothers gather information

regarding hospitals prior to delivery. This is possible with normal deliveries because

it is predictable in advance, leaving plenty of time to shop around. Clearly a major

source of information is their neighbors. DRG 209, total joint replacement or reat-

tachment of the lower extremity exhibits relatively low correlation, possibly due to

the fact that patients in these DRGs are more likely to be elderly, and have less time

to shop before the procedure is done. Thus there may be less information sharing

amongst people in the same zip code.
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5 Conclusion

In this paper we showed that Dirichlet-Multinomial regression is a natural extension

of McFadden’s conditional logit model. The relationship of the Dirichlet-Multinomial

regression to the grouped conditional logit regression is much like that of the neg-

ative binomial regression to the Poisson regression. It provides a viable parametric

alternative to deal with the problem of overdispersed data that may arise when the

conditional logit model is applied to grouped data. Moreover, because the Dirichlet-

Multinomial regression allows for parameterizing of the intra-class correlation coeffi-

cient in terms of group specific covariates, it may reveal additional information which

may not be captured by the grouped conditional logit model.
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Table 1: Choice of Hospital: Estimates for Different Parametrizations of the
Dirichlet-Multinomial

CLM Dirichlet-Multinomial
δg = δ δg = f(xg) γg = γ γg = f(xg)

PROFIT -0.654 -0.656 -0.626 -0.660 -0.604
(-16.77) (-7.51) (-7.21) (-7.87) (-7.20)

TEACH -1.875 -1.868 -1.860 -1.754 -1.655
(-20.28) (-10.37) (-10.27) (-10.27) (-9.69)

NURSE 0.068 0.198 0.165 0.191 0.139
(3.19) (4.33) (3.57) (4.26) (3.09)

DVTIME -0.151 -0.085 -0.089 -0.100 -0.105
(-40.72) (-12.72) (-13.10) (-15.37) (-15.93)

DVTIME * PROFIT -0.009 0.004 0.004 0.003 0.002
(-4.46) (1.06) (0.99) (0.75) (0.42)

DVTIME * TEACH 0.038 0.059 0.059 0.050 0.050
(9.83) (8.62) (8.59) (8.01) (7.90)

DVTIME* NURSE 0.002 -0.008 -0.007 -0.006 -0.006
(2.18) (-3.76) (-3.38) (-3.32) (-2.83)

CIRC 0.896 0.643 1.097 1.081 1.038
(22.55) (10.80) (12.70) (12.68) (12.17)

ZIPINC -0.016 0.003
(-2.37) (2.19)

DRG116 -0.867 0.043
(-6.19) (1.94)

DRG127 -0.721 -0.013
(-4.92) (-0.58)

DRG209 0.708 -0.083
(5.82) (-4.43)

DRG373 -0.352 0.089
(-2.96) (4.01)

Constant 0.006 0.505 0.232 0.186
(0.04) (2.39) (36.680) (7.77)

Log-Likelihood -14559.2 -7465.9 -7360.2 -7226.6 -7167.6

Note: z-statistics in parentheses.
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