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Abstract

The Dynamic Conditional Correlation (DCC) model of Engle has made
the estimation of multivariate GARCH models feasible for reasonably big
vectors of securities’ returns. In the present paper we show how Engle’s two-
steps estimate of the model can be easily extended to elliptical conditional
distributions and apply different leptokurtic DCC models to the evaluation of
the Value at Risk (VaR) of a portfolio of realistic dimensions. A free software
(Ox class) written by the authors to carry out all the required computations is
presented as well.

1 Introduction

As Robert Engle has remarked in his Nobel prize lecture, multivariate GARCH
(MV-GRACH) models have been only partially successful despite their great po-
tential usefulness. The reasons for this are i) the fast growth of the number of
parameters to estimate with respect to the number,k, of time series in the model,
ranging fromO(k4) in the unrestricted vech form (Bollerslev et al. 1988), toO(k2)
in the standard BEKK (Engle and Kroner 1995) and in the diagonal vech, just to
name the most cited MV-GARCH, ii) the difficulties of ensuring the positive defi-
niteness of the conditional covariances in many MV-GARCH models and the lack
of interpretation of the constrains suited to this end.

Bollerslev (1990) with his Constant Conditional Correlation GARCH (CCC)
model and, more recently, Alexander (2001) with her Orthogonal GARCH (O-
GARCH), have shown that a feasible way of estimating MV-GARCH models, ap-
plied to portfolios of realistic dimensions, is splitting the estimation in two steps,
one of which is a sequential application of univariate GARCH models. Both of
this models have, nevertheless, some drawbacks. The CCC model does not allow
the correlations between securities vary over time, and this may be a not plausi-
ble restriction for many type of assets. The O-GARCH model, consisting in the
application of univariate GARCH models to time series, orthogonalized through
Principal Component Analysis based on the long run sample correlation, may be
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effective but is a “black box” technique, lacking of interpretation both for the coef-
ficients and for the dynamics driving the conditional correlation evolution.

The Dynamic Conditional Correlation MV-GARCH (DCC) model of Engle
(2002) preserves the ease of estimation of the CCC model through a two stage
procedure, but allows for correlations to change over time. Furthermore, Engle
and Sheppard (2001) derive the asymptotic distribution of the two stage estimates,
making testing possible.

In the present work we show how the use of multivariate, fat tailed elliptical
distributions instead of the normal density may improve the fit of DCC models to
the vector of returns of many real financial assets. The elliptical DCC model is then
used for the computation of the Value at Risk of portfolios with a realistic number
of securities.

2 Review of elliptical distributions: definition and main
properties

The m-dimensional random vectorX is said to be distributed elliptically1, sym-
bolicallyX ∼ ECm(µ,Σ, φ), if its characteristic function may be expressed in the
form

E[exp(it′X)] = exp(it′µ)φ(t′Σt),

with µ m-dimensional vector,Σ definite positivem × m matrix, andφ(.) scalar
function, referred to ascharacteristic generator.

We state without proof the principal properties of elliptical distributions, for a
thorough treatment refer to Fang et al. (1990):

P1. if X ∼ ECm(µ,Σ, φ) has a density, this has the form

f (x) = c|Σ|−
1
2 g

(
(x − µ)′Σ−1(x − µ)

)
with g(.) a scalar function, referred to asdensity generatorand the notation
X ∼ ECm(µ,Σ,g) may also be used;

P2. suppose thatX ∼ ECm(µ,Σ, φ) possessk moments, ifk ≥ 1, then E(X) = µ,
and ifk ≥ 2, then Cov(X) = γΣ, with γ = −2ψ′(0);

P3. if X ∼ ECm(µ,Σ, φ), for any givenp×mmatrixA with rankp ≤ mand any
p-dimensional vectorb

AX + b ∼ ECp(Aµ + b,AΣA′, φ);

P4. if

X =

(
X1

X2

)
∼ EC

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,

1An alternative name for elliptical distributions iselliptically contoured distributions.
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then

X1|X2 ∼ EC
(
µ1 +Σ12Σ−1

22(X2 − µ2), Σ11−Σ12Σ−1
22Σ21, φq(X2)

)
,

whereφq(X2) depends on the value assumed byX2 through the function
q(X2) = (X2 − µ2)′Σ−1

22(X2 − µ2);

P5. if we partition the vectorX as above, then

X1 ∼ EC(µ1,Σ11, φ).

Remarks:

1. notice that it is always possible to rewrite an elliptical distribution with sec-
ond moments so thatψ′(0) = −1/2 and Cov(X) = Σ;

2. the linear correlation matrix

R =D−1ΣD−1,

with D diagonal matrix with elements that are the square root of the ele-
ments on the diagonal ofΣ, can be sensibly defined even when the second
moment does not exist;

3. it can be easily verified that the normal distribution, Student’s t and Laplace
distribution are members of the class of elliptical distribution.

3 The elliptical DCC model

Let rt bek-dimensional a vector process defined by

rt|Ft−1 ∼ ECk(0,Σt,g), (1)

whereFt is the filtration on whichrt is adapted andΣt is a positive definiteFt−1-
measurable dispersion matrix defined by

Σt =DtRtDt, (2)

withDt diagonal matrix defined by the recursion

D2
t = diag{ωi} + diag{κi} ◦ rt−1r

′
t−1 + diag{λi} ◦D

2
t−1, (3)

◦ representing element by element multiplication, and withRt, conditional corre-
lation matrix defined by the set of equations

ξt = D−1
t rt

Qt = S ◦ (11′ −A −B) +A ◦ ξt−1ξ
′
t−1 +B ◦Qt−1 (4)

Rt = diag{Qt}
− 1

2 Qt diag{Qt}
− 1

2 .
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Equation (3) is just a set of univariate GARCH models with parametersωi , κi

and λi , (i = 1, . . . , k), applied to every element of the vectorrt. Equation (4)
controls the dynamics of the conditional correlation matrixRt through the square
symmetric matrices of parametersS,A andB. Ding and Engle (2001) show that
if A, B and (11′ − A − B) are positive semi-definite andS is positive definite,
thenQt is also positive definite. In order to keep small the number of parameters
to be simultaneously estimated,A andB are usually taken as scalars or set equal
to A = αα′ andB = ββ′, with α andβ k-dimensional vectors of parameters.
For the same reason,S, which can be shown to be the unconditional correlation
matrix, is estimated using the sample correlation of the standardized residualsξt.

If in equation (1) we take an elliptical distribution with density, then it is easy
to build the log-likelihood function

l(θ) =
T∑

t=1

{
logcm−

1
2

log |Σt| + logg(rtΣ−1
t r
′
t )

}
, (5)

which, for a moderate numberk of assets, may be maximized by numerical meth-
ods. When the number of assets, and with it, the number of parameters is too
large, then a three steps estimation procedure may be exploited to obtain consis-
tent, asymptotically normal, although inefficient, estimates of the parameters.

1st step
Since the marginals of an elliptical distribution are elliptical distributions of the
same family (property P2.), the parametersωi , κi andλi of the sequence of uni-
variate GARCH models in equation (3) may be estimated by maximizing thek
univariate likelihoods EC(0, σii ,g), for i = 1, . . . , k. Through the recursion (3) the
matricesDt and the standardized residuals,ξt =D

−1
t rt may be estimated.

2nd step
The sample correlation matrix of the standardized residuals estimated in the first
step is then used as estimate of the matrixS in equation (4).

3rd step
Using the estimatedDt andS, the likelihood

l(A,B) =
T∑

t=1

{
logcm−

1
2

log |Rt| − log |D̂t| + logg(ξ̂tR
−1
t ξ̂
′
t )

}
,

is maximized with respect to the parameters inA andB (usually the two scalarsα
andβ).

Consistency and asymptotic normality of the 3-step estimates may be demon-
strated exploiting the same results of Newey and McFadden (1994) used by Engle
and Sheppard (2001). Letφ = (ω1, κ1, λ1, . . . , ωk, κk, λk)′ be the parameters’ vector
of the first step,ρ = (s1,2, . . . , s1,k, . . . , sk,1, . . . , sk,k−1)′ contain the unique elements
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of matrixS, which are the 2nd step parameters, andψ = (α, β)′ be the vector of
the parameters estimated in the 3rd step. Furthermore, let2

h(1)(r,φ) = ∇φ
{
l i(r i , ωi , κi , λi)

}
i=1,...,k

h(2)(r,φ,ρ) = vech(ξ̂ξ̂′ − S)

h(3)(r,φ,ρ,ψ) = ∇ψ lc(r,φ,ρ,ψ),

wherel i(r i,t, ωi , κi , λi), for i = 1, . . . , k, is thet-th contribution to the log-likelihood
of the i-th univariate GARCH model (1st step) andlc(rt,φ,ρ,ψ) is the t-th con-
tribution to the log-likelihood of the 3rd step. Lettingθ = (φ′,ρ′,ψ′)′, the 3-step
procedure can be cast in GMM form with sample “orthogonality” conditions

h̄(θ) =
1
T

T∑
t=1

h(rt,θ) = 0

where

h(rt,θ) =

 h(1)(rt,φ)
h(2)(rt,φ,ρ)
h(3)(rt,φ,ρ,ψ)


and the estimates are obtained by solving

θ̂T =

{
θ : min

θ
h̄(θ)′h̄(θ)

}
.

Since the system is just-identified with so many equations as parameters, the ab-
solute minimum of the quadratic form (that is, 0) can be reached, and the orthog-
onality conditions relative toh(i) are independent of those relative toh(i+ j) with j
positive integer, the GMM estimate is equivalent to the 3-step estimate.

Now let

H (1)
φ
= E

[
∇φh

(1)(r,φ0)
]
,

H (2)
φ
= E

[
∇φh

(2)(r,φ0,ρ0)
]
,

H (2)
ρ = E

[
∇ρh

(2)(r,φ0,ρ0)
]
,

H (3)
φ
= E

[
∇φh

(3)(r,φ0,ρ0,ψ0)
]
,

H (3)
ρ = E

[
∇ρh

(3)(r,φ0,ρ0,ψ0)
]
,

H (3)
ψ
= E

[
∇ψh

(3)(r,φ0,ρ0,ψ0)
]
,

the expected Jacobian matrix is given by

H = E

(
∂h(r,θ)
∂θ

)
=


H (1)
φ

0 0
H (2)
φ

H (2)
ρ 0

H (3)
φ

H (3)
ρ H (3)

ψ

 (6)

2The vech operator is used with a slightly different definition than usual: it is here defined as the
operator that stacks the elements below the diagonal of a square matrix.
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By adapting from Newey and McFadden (1994, theorem 6.1), under regularity
conditions √

T(θ̂T − θ0) −→D N(0,H−1ΩH−1), (7)

where
Ω = E[h(r,θ0)h(r,θ0)′]. (8)

Consistent estimates ofH andΩ may be obtained by substituting expectations
with sample means:

Ω̂ =
1
T

T∑
t=1

h(rt,θ0)h(rt,θ0)′,

and

Ĥ (1)
φ
=

1
T

T∑
t=1

[
∇φh

(1)(rt,φ0)
]
,

. . .

Ĥ (3)
ψ
=

1
T

T∑
t=1

[
∇ψh

(3)(rt,φ0,ρ0,ψ0)
]
,

as blocks ofĤ.

4 The MultiGARCH object-class for Ox

Since the main advantage of the DCC-MVGARCH model over its competitors is
the ease of estimation, even for a large number of assets, it is quite surprising
that there is no published paper (as far as the two authors have found in the main
econometric journals), in which the model is applied to portfolios of realistic size,
in order to solve common financial problems such as optimal allocation and evalu-
ation of the Value at Risk. Even in the cited articles of Engle the maximum number
of assets used is four. This is probably due to the lack of a main-stream package or
software-library implementing the model. The only econometric package (to our
knowledge) that is about to be released in a new version with the DCC-MVGARCH
model is RATS, although in the beta version we have tried, only standard maximum
likelihood estimation was possible, and the maximum number of time series that
we could successfully model war three!

In order to fulfill the promises of the DCC-MVGARCH and the practitioners’
needs, we have written an object-class for Ox, which estimates DCC models with
the 3-step procedure described above. At the moment the possible choices of con-
ditional elliptical distributions are multivariate normal, multivariate Student’s t3

f (rt|Ft−1) =
Γ [(ν +m)/2]

[π(ν − 2)]m/2 Γ (ν/2) |Σt|
1/2

[
1+

r′tΣ
−1
t rt

ν − 2

]− ν+m
2
,

3We use a version of the multivariate Student’s t with covariance matrixΣ, instead of ν
ν−2Σ.
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and multivariate Laplace,

f (rt|Ft−1) =
2

(2π)m/2|Σt|
1/2

(
r′tΣ

−1
t rt

2

)ν/2
Kν

(√
2r′tΣ

−1
t rt

)
.

whereKν(.) is the modified Bessel function of third kind with indexν (Kotz et
al. 2000, for instance).

We have tested the software using the daily log-returns of 20 high-capitalization
shares listed in the Milan Stock Exchange, dating from January, the 1st 1999 to
April, the 30th 2004. We have estimated the DCC-MVGARCH model with the
three distributions trying different values for the Student’s t degrees of freedom
(DF). The normal and the Student’s t DCC-MVGARCH (with at least 8.7 DF)
converged quite quickly with relatively arbitrary starting points. When we used
the conditional Laplace, even most of the univariate steps couldn’t converge. Since
the same problems were found using conditional Student’s t with few DF, we have
concluded that too leptokurtic densities and, thus, a too small number of tail obser-
vations, may make the likelihood too flat with respect to the parameters.

Table 1 reports the estimates and the log-likelihoods of the DCC-MVGARCH
models with different conditional distributions (Student’s t with a range of DF and
Normal). According to the values of the log-likelihoods, the Student’s t DCC-
MVGARCH with 8.7 DF enjoys the best fit.

parameter t(8.7) t(8.8) t(9) t(10) Normal
ω(ALLEANZA) 0.0779 0.0778 0.0778 0.0775 0.0651
κ(ALLEANZA) 0.1205 0.1203 0.1200 0.1189 0.1158
λ (ALLEANZA) 0.8651 0.8652 0.8652 0.8654 0.8798
ω(AUTOGRILL) 0.2375 0.2374 0.2374 0.2364 0.2826
κ(AUTOGRILL) 0.1602 0.1600 0.1598 0.1583 0.1628
λ (AUTOGRILL) 0.7983 0.7982 0.7981 0.7980 0.7842
ω(AUTOSTRADE) 0.1113 0.1110 0.1112 0.1111 0.1433
κ(AUTOSTRADE) 0.1716 0.1710 0.1705 0.1675 0.1456
λ (AUTOSTRADE) 0.7793 0.7798 0.7800 0.7821 0.8073
ω(FIDEURAM) 0.0903 0.0907 0.0916 0.0957 0.1695
κ(FIDEURAM) 0.0607 0.0607 0.0607 0.0606 0.0648
λ (FIDEURAM) 0.9277 0.9276 0.9274 0.9265 0.9147
ω(BNL) 0.2735 0.2735 0.2735 0.2717 0.3128
κ(BNL) 0.1129 0.1127 0.1123 0.1105 0.1063
λ (BNL) 0.8429 0.8430 0.8431 0.8440 0.8444
ω(BENETTON) 0.0530 0.0530 0.0530 0.0521 0.0558
κ(BENETTON) 0.0410 0.0410 0.0409 0.0403 0.0379
λ (BENETTON) 0.9441 0.9441 0.9442 0.9448 0.9506
ω(ENI) 0.0334 0.0335 0.0337 0.0347 0.0513
κ(ENI) 0.0577 0.0577 0.0575 0.0568 0.0527
λ (ENI) 0.9318 0.9318 0.9317 0.9315 0.9307
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ω(FINMECCANICA) 0.0784 0.0786 0.0788 0.0804 0.1256
κ(FINMECCANICA) 0.0913 0.0912 0.0909 0.0899 0.0847
λ (FINMECCANICA) 0.9002 0.9002 0.9001 0.8999 0.8945
ω(GENERALI) 0.0660 0.0661 0.0663 0.0675 0.0960
κ(GENERALI) 0.1131 0.1130 0.1128 0.1120 0.1159
λ (GENERALI) 0.8700 0.8699 0.8698 0.8690 0.8547
ω(BANCA INTESA) 0.0902 0.0900 0.0897 0.0884 0.0848
κ(BANCA INTESA) 0.0917 0.0916 0.0914 0.0907 0.0900
λ (BANCA INTESA) 0.8972 0.8972 0.8973 0.8973 0.8980
ω(MEDIASET) 0.0603 0.0602 0.0601 0.0594 0.0595
κ(MEDIASET) 0.0636 0.0634 0.0631 0.0620 0.0570
λ (MEDIASET) 0.9291 0.9291 0.9292 0.9298 0.9336
ω(MEDIOBANCA) 0.0770 0.0769 0.0769 0.0767 0.0836
κ(MEDIOBANCA) 0.1436 0.1434 0.1431 0.1420 0.1521
λ (MEDIOBANCA) 0.8403 0.8404 0.8404 0.8407 0.8370
ω(MEDIOLANUM) 0.1446 0.1446 0.1445 0.1439 0.1441
κ(MEDIOLANUM) 0.0850 0.0850 0.0848 0.0843 0.0859
λ (MEDIOLANUM) 0.9001 0.9001 0.9000 0.8998 0.8986
ω(PIRELLI) 0.1050 0.1054 0.1060 0.1094 0.1644
κ(PIRELLI) 0.1373 0.1371 0.1366 0.1349 0.1309
λ (PIRELLI) 0.8417 0.8417 0.8419 0.8422 0.8501
ω(RAS) 0.0175 0.0175 0.0175 0.0177 0.0248
κ(RAS) 0.0653 0.0653 0.0652 0.0650 0.0726
λ (RAS) 0.9306 0.9306 0.9306 0.9303 0.9245
ω(SAIPEM) 0.3573 0.3574 0.3575 0.3581 0.4872
κ(SAIPEM) 0.1577 0.1573 0.1569 0.1545 0.1525
λ (SAIPEM) 0.7855 0.7857 0.7858 0.7867 0.7775
ω(SANPAOLO) 0.1360 0.1360 0.1360 0.1361 0.1646
κ(SANPAOLO) 0.0806 0.0805 0.0802 0.0789 0.0718
λ (SANPAOLO) 0.8983 0.8983 0.8984 0.8987 0.8996
ω(STM) 0.0553 0.0554 0.0556 0.0567 0.0743
κ(STM) 0.0594 0.0593 0.0591 0.0584 0.0557
λ (STM) 0.9387 0.9387 0.9387 0.9386 0.9386
ω(TELECOM) 0.0167 0.0167 0.0168 0.0172 0.0141
κ(TELECOM) 0.0532 0.0531 0.0529 0.0521 0.0409
λ (TELECOM) 0.9438 0.9438 0.9439 0.9442 0.9580
ω(TIM) 0.0177 0.0177 0.0178 0.0183 0.0285
κ(TIM) 0.0831 0.0830 0.0828 0.0818 0.0842
λ (TIM) 0.9168 0.9168 0.9169 0.9170 0.9130
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α(DCC) 0.0053 0.0053 0.0054 0.0054 0.0056
β (DCC) 0.9862 0.9862 0.9862 0.9863 0.9880
log-likelihood -54345.6 -54346.1 -54347.3 -54354.7 -55184.4

Table 1: Estimates of the DCC-MVGARCH model with 20 stocks
for different conditional distributions (Student’s t with DF in
parenthesis and Normal).

The software allows also to plot the estimated conditional variances, correla-
tions and covariances. Figure 1 reports all the variances, while in figures 2 and 3 the
covariances and correlations of ALLEANZA with all the other stocks are sketched.
It is interesting to notice that starting form September, the 11th (observation 703),
the correlations between almost all the stocks increase suddenly and remain high
until the beginning of 2003. This underlines the fact that after the terrorist attacks
of September 1999 the investors start giving more weight to international risk fac-
tors than to the health of the companies issuing the stocks.
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Figure 1: Estimated conditional variances for all the stocks.
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Figure 2: Estimated conditional covariances of ALLEANZA with all the other
stocks.
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Figure 3: Estimated conditional correlations of ALLEANZA with all the other
stocks.

10



References

Alexander C. (2001),A Guide to Financial Data Analysis, Wiley and Sons.

Bollerslev T. (1990) “Modelling the Coherence in Short Run Nominal Exchange
Rates: a Multivariate Generalized ARCH Model”,The Review of Economics
and Statistics, 72, 498–505.

Bollerslev T., R.F. Engle and J.M. Wooldridge (1988), “A Capital Asset Pricing
Model with Time-Varying Covariances”,Journal of Political Economy, 96,
116–131.

Ding Z. and R.F. Engle (2001), “Large Scale Conditional Covariance Matrix Mod-
eling, Estimation and Testing”,Academia Economic Papers, 29(2), 157–184.

Engle R.F. (2002), “Dynamic Conditional Correlation: a Simple Class of Multi-
variate Generalized Autoregressive Conditional Heteroskedasticity Models”,
Journal of Business& Economic Statistics, 20(3), 339–350.

Engle R.F. and K.F. Kroner (1995), “Multivariate simultaneous generalized
ARCH”, Econometric Theory, 11, 122–150.

Engle R.F. and K. Sheppard (2001), “Theorethical and Empirical Properties of Dy-
namic Conditional Correlation Multivariate GARCH”,Working Paper 8554,
National Bureau of Economic Research.

Fang K.T., S. Kotz and K.W. Ng (1990),Symmetric Multivariate and Related Dis-
tributions, Chapman and Hall.

Kotz S., T.J. Kozubowski and K. Podgorski (2002), “An asymmetric multivariate
Laplace distribution”, Technical Report No. 367, Department of Statistics and
Applied Probability, University of California at Santa Barbara.

Newey W.K. and D. McFadden (1994), “Large Sample Estimation and Hypothesis
Testing”, inHandbook of Econometrics, vol. 4, Elsevier North Holland.

11


	Introduction
	Review of elliptical distributions: definition and main properties
	The elliptical DCC model
	The MultiGARCH object-class for Ox

