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Abstract 
 
 

This paper develops a new bivariate Markov regime switching BEKK-GARCH 

(RS-BEKK-GARCH) model.  The model is a state-dependent bivariate BEKK-GARCH 

model, and an extension of Gray’s univariate generalized regime-switching (GRS) model 

to the bivariate case.  To solve the path-dependency problem inherent in the bivariate 

regime switching BEKK-GARCH model, we propose a recombining method for the 

covariance term in the conditional variance-covariance matrix.  The model is applied to 

estimate time-varying minimum variance hedge ratios for corn and nickel spot and futures 

prices.  Out-of-sample point estimates of hedging portfolio variance show that compared to 

the state-independent BEKK-GARCH model, the RS-BEKK-GARCH model improves 

out-of-sample hedging effectiveness for both corn and nickel data.  We perform White’s 

(2000) data-snooping reality check to test for predictive superiority of RS-BEKK-GARCH 

over the benchmark model, and find that the difference in variance reduction between 

BEKK-GARCH and RS-BEKK-GARCH is not statistically significant for either data set at 

conventional confidence levels.      

 

I. Introduction 

If the true hedge ratio that minimizes the variance of a hedging portfolio is constant, 

then the slope coefficient of an Ordinary Least Squares regression of spot returns on 
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futures returns is an appropriate estimate of the optimal hedge ratio (Ederington, 1979; 

Figlewki, 1984). However, if the true joint distribution of spot and futures returns and 

hence the hedge ratio is changing through time, the (constant) OLS slope coefficient may 

be inferior to more flexible models (Park and Switzer, 1995). 

To estimate time-varying optimal hedge ratios, a considerable amount of research 

has applied the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 

models proposed by Engle (1982), Bollerslev (1986, 1990), and others.  Various GARCH 

models have been applied to investigate foreign exchange rate futures (Kroner and Sultan, 

1993; Gagnon, Lypny, and McCurdy, 1998), interest rate futures (Gagnon and Lypny, 

1995; Cecchetti, Cumby, and Figlewski, 1988), stock index futures (Park and Switzer, 

1995; Tong, 1996; Brooks, Henry, and Persand, 2002), and commodity futures (Baillie and 

Myers, 1991; Myers, 1991; Bera, Garcia, and Roh, 1997; Byström, 2003).   

This paper contributes to this line of research by proposing a new model that 

extends the BEKK-GARCH framework (henceforth BEKK) of Engle and Kroner (1995) to 

allow regime shifts into the by allowing model parameters to be affected by the state of the 

market.  The regime changes are governed by an unobserved state variable that follows a 

first-order, two-state Markov process.  As a consequence, the hedge ratio estimated from 

our Regime-Switching BEKK-GARCH model (RS-BEKK-GARCH; henceforth RS-

BEKK for brevity) is both time varying and state-dependent.1 

RS-BEKK can also be viewed as an extension of Gray’s (1996) univariate 

generalized regime-switching (GRS) model to the bivariate case.  Gray’s GRS model is a 

general regime-switching model that allows for GARCH innovations.  When the GARCH 
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process is subject to regime switching, however, the basic form of the model is intractable 

due to a well-known path-dependency problem (Cai, 1994; Hamilton and Susmel, 1994; 

Gray, 1995, 1996).  Path-dependency occurs when the conditional variance at time t 

depends on the entire sequence of regimes up to time t due to the recursive nature of the 

GARCH process and state dependent GARCH coefficients.  Gray solves the path-

dependency problem by introducing a recombining method that collapses the conditional 

variances in each regime into a single variance at each point in time.  By doing so, the 

model becomes path-independent and is tractable even with large sample size.  However, 

estimation of minimum variance hedge ratios requires estimation of variances and 

covariance of spot and futures returns.  Gray’s univariate GRS model cannot do this. Our  

bivariate generalization of Gray’s model can, but to do so, the path dependency problem 

must be resolved for the conditional variances (as in Gray’s univariate model), as well as 

the conditional covariance of the spot and futures returns.  For the variance terms, we 

apply Gray’s recombining methods for both spot and futures returns.  We then extend 

Gray’s recombining method for the conditional covariance of spot and futures returns to 

completely solve the path-dependency problem encountered in RS-BEKK.   

RS-BEKK is different from the switching BEKK model proposed by Gannon and 

Au-Yeung (2004).  Gannon and Au-Yeung allow the bivariate GARCH variance-

covariance structure to be subject to a finite number of shifts implemented by adding event 

dummy variables in the GARCH process.  Often however, the timing of regime changes 

are unknown to researchers a priori.  In contrast to their switching BEKK model, RS-

BEKK estimates the switching points instead of imposing them.  In our model, the regime 
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shifts are governed by a latent state variable that follows a first-order, two-state Markov 

process, the parameters of which is estimated via maximum likelihood along with other 

unknown system parameters. 

We apply RS-BEKK to two futures contracts, corn and nickel, traded on the 

Chicago Board of Trade and the London Metal Exchange, respectively.  We compare its 

performance to the state-independent BEKK model and Ordinary Least Square (OLS) 

based on variance reduction of the hedged portfolio of each model.  Based on out-of-

sample point estimates of hedging performance, RS-BEKK is superior to BEKK for both 

corn and nickel.  In-sample, RS-BEKK is superior to BEKK for nickel but is inferior to 

BEKK for corn.  To test statistical significance of these differences in hedging 

performance, we apply White’s data-snooping reality check (White, 2000).  The null 

hypothesis that the performance of the best dynamic hedging model (RS-BEKK) has no 

predictive superiority over the BEKK model is not rejected for both corn and nickel futures 

contracts.  Thus, point estimates suggest that RS-BEKK perform well relative to BEKK, 

but not significantly so. 

In the next section, the bivariate BEKK-GARCH model is summarized, and section 

III summarizes Gray’s GRS model.  In section IV, we present RS-BEKK.  Hedging 

performance criteria, and White’s data snooping reality check test are discussed in section 

V, and data descriptions and empirical results are reported and discussed in section VI.  

Section VII concludes. 

 

II. BEKK GARCH 
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Bivariate GARCH models are widely used in studying the time-varying minimum 

variance hedge ratio.  The bivariate BEKK model used in this study is specified below 

(Bera, Garcia, and Roh, 1997).  Let r  and  be the returns on the spot and futures, 

respectively.  BEKK- GARCH is specified as  

tc, tfr ,

tcctc er ,, += µ          (1)  

tfftc er ,, += µ ,        (2) 
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1 1
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are { cµ=θ , fµ , ccγ , fcγ , ffγ , ccα , cfα , fcα , ffα , ccβ , cfβ , fcβ , }ffβ , which can be 

estimated by maximizing the following log-likelihood function with respect to :  θ

( ) ( ) ( ) ( )t t θ ( )t θ e ( )t θ
1 1

1 1
2 2

T T

i t= =
∑ ∑log

^
2

,/ tfh

2π

^
*
tβ

log t−HL T= −

^

,tcfh

−θ

^
*
t =β

H '− θ e  ,      (5) 

where T is the total number of observations. The estimated time-varying minimum 

variance hedge ratio  can be expressed with the variances and covariance estimates 

from (4) as 

.        (6) 

  

III. Generalized Regime-Switching (GRS) Model  

The GARCH family of models is a popular approach for modeling the time-varying 

conditional volatility, but the structural forms of the conditional means and variances of 

GARCH models are held fixed throughout the entire sample period.  To condition the 

model coefficients on the state of the market, Hamilton and Susmel (1994) and Cai (1994) 

propose the regime-switching model with ARCH innovations in which the conditional 

variance process is allowed to switch among different regimes according to a latent state 

variable that follows a Markov process.   

Gray (1996) introduced the generalized regime-switching (GRS) model, which 

allows for GARCH innovations.  The GRS model is described as follows.  Let the  be the 

return at time t, modeled as a constant plus a disturbance term such that  

tr

tt stst er ,+= µ ,         (7) 
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, 1 ,|
tt s t t s te − =ψ

t
h z ,        (8) 

where { }2,1=ts  is an unobserved state variable at time t, which follows a first-order, two-

state Markov process, e  is a state-dependent residual term, z   is a standard normal 

random variable, and h  is a state-dependent, conditional standard deviation of r .  The 

conditional volatility is assumed to follow a GARCH(1,1) process 

tst ,

tst ,

t

t

  ,       (9) 2
1

2
1

2
, −− ++= tstssst heh

tttt
βαγ

where 
tsγ , 

tsα , and 
tsβ  are state dependent coefficients.   

  When the GARCH process is subject to regime switching, however, the recursive 

nature of the GARCH process makes the basic form of the model intractable due to the 

dependence of the conditional variance on the entire past history of the data.  This is the 

well-known path-dependency problem in the regime switching literature (Cai, 1994; 

Hamilton and Susmel, 1994; Gray, 1995, 1996).  Appendix A includes a graphical 

expression of the evolution of conditional variances in a path-dependent GARCH model, 

and shows how the path-dependent model can be transformed into a path-independent 

model.  Gray solves the path-dependency problem by introducing a recombining method 

that collapses the conditional variances in each regime by taking the conditional 

expectation of h  based on the regime probabilities, such that the path-independent 

variances are defined as 

2
t

  [ ] [ ]2
11

22 || −− −= ttttt rErEh ψψ

       = ( ) ( ) ( ) ( )[ ]2
2111

2
2,

2
21

2
1,

2
11 11 µµµµ tttttt pphphp −+−+−++ .  (10) 
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As a consequence, the conditional variance depends only on the current regime, not on the 

entire past history of the process and the model is free from the path-dependency problem. 

Similarly, the recombining method for the residual is given by 

 [ ]1|t t t te r E r −= − ψ  

            (11) ( )[ 2111 1 µµ ttt ppr −+−= ]

)1where  is the regime probability of being in state 1 given all 

information up to time t .  After recombining, the path-independent conditional 

variances and residuals can be used as the lagged conditional variances and residuals in 

constructing next period’s conditional variance.   

(1 Pr 1 |t t tp s −= = ψ

−1

 To calculate regime probabilities, Gray (1995, 1996) derived a nonlinear recursive 

expression of the regime probability as a function of transition probabilities and 

conditional distributions.  This recursive expression simplifies the construction of the 

likelihood function and permits easy estimation of relatively complicate models:  
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P  and  are transition probabilities, which are the probabilities that the regime 1 and 2 at 

time  followed by regime 1 and 2 at time t , respectively, and g  is the conditional 

probability density function of the return given that state i occurs at time t  and given all 

information available up to time 

Q

1−t it

1−t .  The parameters { ,P=θ , Q
tsµ , 

tsγ , 
tsα , }

ts
β , for 

 can be estimated by maximizing the following log-likelihood function with 

respect to : 

2,1=ts
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IV. Bivariate Regime Switching GARCH model  

RS-BEKK nests within it both Gray’s univariate GRS model and the state-

independent BEKK model.  The state-dependent cash and futures returns are specified as   

tt stcsctc er ,,,, += µ          (17)  

tt stfsftf er ,,,, += µ ,         (18) 

and their conditional covariance are specified as  

(, ,
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where { }2,1=ts  is the state variable indicating the market regime at time t , which follows a 

first-order, two-state Markov process.  State transition probabilities are assumed to follow 

a logistic distribution such that  
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where  and q  are unconstrained constants to be estimated along with the other 

unknown system parameters via maximum likelihood, e  and  are disturbances 

given state s  at time , and denotes the bivariate normal. H  is a state-dependent 

time-varying  positive definite conditional covariance matrix specified as   
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where  is a conditional covariance at time t given , and  and  are 

conditional variances at time t given . The matrices , , and Β  and  are 

compact representations of the 

tstcfh ,, ts 2
,, tstch

ts

2
,, tstfh

1ts
tsΓ tsΑ t−E

s'γ , s'α , s'β  and e’s, respectively.  

 As in the univariate regime switching GARCH model, the proposed bivariate 

GARCH model is also subject to the path-dependency problem and is intractable in its 

basic form.  Furthermore,  RS-BEKK is a bivariate model, so we must collapse not only 

variances and residuals, but also the covariances of spot and futures returns.  Below, we 

first briefly revisit Gray’s approach for variances and residuals, then we describe an 
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analogous approach for the covariances.  A graphical illustration for the recombining 

method for RS-BEKK model is shown in appendix A.   

Gray’s recombining method for collapsing the conditional variances and residuals 

for each regime into a single value at each point in time as applied to both cash and futures 

prices can be characterized as 

( ) ( )( ) ( )[ ]22,11,1
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The regime probability of being in state 1 at time t  is 

  ( )1 1P r 1 |t tp s −= = ψ

        
( ) ( ) ( )

( )






−+

−
−+








−+

=
−−−−

−−

−−−−

−−

11121111

1112

11121111

1111

1
1

1
1 tttt

tt

tttt

tt

pfpf
pf

Q
pfpf

pf
P   (25) 

where   

( ) ( )
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1 ' 12
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1| , 2 exp
2it t t t t i t i t i t if f s i π

−− −
− , ,

 = = = − 
 

R ψ H e H e ,  for { }2,1=i ,  (26)  

and  is a vector of spot and futures returns at time t  . and s are 

defined in equation (19) and (22), respectively.  The recursive expression of the regime 

probability shown in equation (25) is derived in appendix B.  The proof is the same as that 

proposed by Gray (1995, 1996), but with the conditional univariate normal distribution 

replaced by a conditional bivariate normal distribution. 

'

, ,t c t f tr r= R  s'H 'e

The steady-state probabilities of s  used as the initial start value for the recursive 

expression of the regime probability is 

t
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QP

Qs
−−

−
==

2
1|1Pr 01 ψ ,      (27)  

where P and Q  are transition probabilities defined in equation (20) and (21). 

To fully solve the path-dependency problem, we also need to collapse the 

conditional covariance of spot and futures returns.  We propose the following recombining 

method, which extends Gray’s approach to covariances.  Define 

( ), , ,, |cf t c t f t th Cov r r −= ψ 1

| − ψ

  

        .    (28) , , 1 , 1 , 1| |c t f t t c t t f t tE r r E r E r− −   = −    ψ ψ

The conditional expectations
, , 1|c t f t tE r r −  ψ , 

, |c t tE r − 1  ψ ,  E r  are 

defined in terms of estimable parameters as follows: 

, |f t t −  ψ 1

,2( ), 1 1 ,1 1| 1c t t t c t cE r p pµ µ−  = + − ψ ,      (29) 

( ), 1 1 ,1 1| 1 ,2f t t t f t fE r p pµ µ−  = + − ψ ,      (30) 

( )( ), , 1 , , , , , , 1| |
t t t tc t f t t c s c t s f s f t s tE r r E e eµ µ− −

   = + +   ψ ψ  

           ( ) ( )( )2,,2,2,11,,1,1,1 1 tcffcttcffct hphp +−++= µµµµ .   (31) 

With this definition, the conditional covariance depends only on the current regime, not on 

the entire past history of the process.  The model is then state-independent and tractable 

even with large samples.  

Given the structure of RS-BEKK and the recombining approach described above, 

the unknown parameters for the full estimation problem are { 0p , , 
0q tsc,µ , 

tsf ,µ , 
tscc,γ , 

tsfc,γ , 
tsff ,γ , 

tscc,α , 
tscf ,α , 

tsfc,α , 
tsff ,α , 

tscc,β , 
tscf ,β , 

tsfc,β , }
tsff ,β  for .  These 

parameters can be estimated by recursively solving the likelihood function  

{ }2,1=ts
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T

t
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}where  for  are defined in equation (26). Time-varying minimum variance 

hedge ratios are calculated with variances and covariance estimates from (23) and (28) as 

itf { 2,1=i

^
2

,

^

,

^
* / tftcft hh=β .        (33) 

 

V. Measuring Hedging Performance 

The hedging performance is typically evaluated based on the variance reduction of 

the hedged portfolio relative to the unhedged position.  The variance of the estimated 

optimal hedged portfolio can be expressed as 









− tfttc rrVar ,

^
*

, β ,        (34) 

where 
^

*
tβ ’s are the estimated optimal hedge ratios derived from OLS, BEKK, and 

RS-BEKK models. The percentage variance reduction is calculated based on 

equation (34) as [unhedged]- [hedged]0
[unhedged]

Var Var
Var

⋅10 . 

In addition to providing a measure of risk reduction, we also test the statistical 

significance of the variance reduction by applying the bootstrap version of White’s reality 

check for data snooping (White, 2000, Sullivan, Timmermann, and White 1999).  Data 

snooping bias might occur when a given dataset is reused by one or more researchers for 

model selection.  White’s reality check is used for testing the null hypothesis that the best 

model encountered in a specification search has no predictive superiority over a given 
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benchmark model.  The innovation of White’s method is that it uses information provided 

by existing alternative models with intermediate performance to statistically assess the 

performance of the best-performing model.   White’s reality check is based on the 

following l  performance statistic:1× 2 

 ∑
=

+
−=

T

Rt
tfnf
^

1
1         (35) 

where  is the number of alternative models,  is the number of prediction periods 

indexed from 

l n

R  to T  so that 1+−= RTn ,  is the observed performance measure for 

period t  and is defined as:  

1

^

+tf

1+

      (36) 
2
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,

2

,

^

,,1

^







 −+






 −−=+ tfBMtctftktct rrrrf ββ

where  is the estimate of 
^

BMβ β   from the benchmark, and , 
^

,tkβ lk ,,1=∀  is the one-

step-ahead prediction of β  from alternative models at time t.  The null hypothesis that the 

performance of the best dynamic hedging model is no better than the benchmark: 

 ( )*
0 1, ,

: max 0
kk l

H E f
=

  ,≤        (37) 

where *
k

f  is the performance value for each model applied to the data.  Following 

White (2000), we base the test on the stationary bootstrap resampling method of Politis and 

Romano (1994) applicable to time series data, with which pseudo–time series are 

generated by resampling blocks of random size where the length of each block has a 

geometric distribution.  This resampling procedure is repeated to generate an 
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approximation to the sampling distribution of a statistic of interest, which in our case is the 

performance measurement, namely the f  in equation (35). 

 

VI. Data Description and Empirical Results  

For performance comparisons, optimal hedging portfolios are generated with RS-

BEKK, BEKK, and OLS using two futures contracts, corn and nickel, traded in the 

Chicago Board of Trade and the London Metal exchange.  The spot and futures data are 

Wednesday’s closing price for the nearby contract.  Tuesday’s closing price is used when a 

holiday occurs on Wednesday.  The full sample period is from 01/02/1991 to 12/29/2004.  

The data for the period 01/02/1991 to 12/31/2003 are used for estimation and in-sample 

forecasts, and the data for the period 01/07/2004 to 12/29/2004 are used for out-of-sample 

forecasts.  The spot and futures returns are calculated as the first difference in the 

logarithm of price multiplied by 100.  Summary statistics for spot and futures prices of 

corn and nickel are shown in Table I.   

The parameter estimates for the alternative models are presented in table II.  The 

simulations were performed using GAUSS version 6.0 and the parameters are those of 

BEKK and RS-BEKK estimated by maximizing the log-likelihood functions in equation (5) 

and (32) using the GAUSS numerical constrained optimization (CO) procedure.   

Table III provides point estimates for in- and out-of-sample hedging effectiveness 

of the alternative models for corn and nickel.    RS-BEKK has 78.89% and 99.21% 

variance reduction for corn and nickel, respectively.  These are better than that of BEKK, 

which has 76.98% variance reduction for corn and 99.20% variance reduction for nickel.  
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Based on in-sample data, RS-BEKK provides variance reduction of 98.74% for nickel, 

which is slightly better than BEKK, which provides 98.73% variance reduction.  RS-

BEKK provides 62.20% variance reduction for corn, which is inferior to BEKK, with 

63.00% variance reduction.  Both BEKK and RS-BEKK are superior to OLS in-sample.  

Out of sample, RS-BEKK is superior to OLS, which is superior to BEKK. 

To test the statistical significance of the performance improvements of these 

dynamic hedging models, we perform White’s reality check as described in section V.3 

When BEKK is treated as the benchmark, we find that the null hypothesis of no 

improvement of RS-BEKK over the benchmark cannot be rejected for both corn and nickel 

data, based on reality check p-values of 0.315 and 0.257 for corn and nickel, respectively.   

Figure 1 compares the hedge ratios of RS-BEKK, BEKK, and OLS for corn.  The 

OLS hedge ratio is a constant and the hedge ratios estimated from the GARCH models are 

all time varying.  Figure 2 shows the RS-BEKK estimates of the probability of being in 

state 1.  The similar results for nickel data are shown in Figure 3 and Figure 4.  

 

VII. Conclusions  

In this article we propose a new bivariate Markov regime switching GARCH model 

to estimate the time-varying minimum variance hedge ratio.  Our method, RS-BEKK, 

generalizes the BEKK-GARCH model to allow for regime shifts, and generalizes Gray’s 

univariate GARCH model to the bivariate case by proposing a recombining method for the 

covariance term in the conditional variance-covariance matrix to solve the path-

dependency problem.   
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In this study, we investigate whether allowing the BEKK model to be subject to 

regime shifts improves futures hedging performance.  We find that for the corn and nickel 

futures contracts used in this paper, allowing the variance-covariance structure to be state 

dependent improves point estimates out-of-sample hedging effectiveness, but not 

statistically significantly so, based on White’s Reality Check (White 2000). 

This is the first paper that incorporates Markov regime shifts into the multivariate 

GARCH time-varying variance-covariance process.  The proposed Markov regime 

switching BEKK GARCH model provides a very general framework in studying time-

varying volatility, and the comparisons with two other commonly applied models are 

promising, though inconclusive based on the data used in this study. 
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Endnotes

                                                 
1  Alizadeh and Nomikos also (2004) propose a Markov regime switching approach 

(Hamilton, 1989) for hedging stock indices.  Instead of estimating the hedge ratio by 

estimating the conditional second moments as all GARCH methods do (including RS-

BEKK-GARCH), they treat the hedge ratio as a time-varying regression coefficient, which 

conditions on the state of market volatility with transition probabilities a function of lagged 

time-varying basis and estimate the coefficient directly.  The rationale behind their model 

is that the dynamic relationship between spot and futures returns, and hence the hedge ratio, 

can be characterized by regime shifts (Sarno and Valente, 2000). 

2  For ease of comparison and reference, we follow the notation of  White (2000) as 

closely as possible in this section.  The values referred to be the symbols f and R in this 

section are unrelated to those in previous sections of this paper. 

3  To apply the stationary bootstrap method of Politis and Romano (1994), we set the 

smoothing parameter q to 0.5 and we resample 1000 times for each application.  Testing 

for statistical significance of point estimates of hedging performance differences is 

relatively uncommon.  Bystrom (2003) tests the statistical significance of the hedged 

portfolio variance by using conventional bootstrap method and finds that no hedge method 

differs in a statistical way from the unhedged spot position and no hedge method 

significantly differs from any other hedge method.  By performing White’s reality check, 

however, we can test the statistical significance of the hedging performance by 

incorporating the potential effect of data snooping bias. 
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Tables 

Table I 

Summary Statistics for Spot and Futures Prices of Corn and Nickel Futures Contracts 
 

 Corn 
 In Sample  Out of Sample 

  Log Level  % Return  Log Level  % Return 
  Spot Futures  Spot Futures  Spot Futures  Spot Futures 
Mean  0.8525 0.8921   0.0135 0.0088   0.8463 0.9137   -0.6820 -0.4204 
SD 0.2036 0.1806   3.2537 3.2101   0.2146 0.1768   4.0253 3.6074 
Skewness  1.2338 1.5327   0.0127 -1.0318   -0.1186 0.0337   -0.3766 -0.1515 
Kurtosis 2.6244 3.4171   1.7424 14.3795   -1.6514 -1.6317   -0.3562 -0.5255 

 Nickel 
 In Sample  Out of Sample 

  Log Level  % Return  Log Level  % Return 
  Spot Futures  Spot Futures  Spot Futures  Spot Futures 
Mean  8.8274 8.8327   0.1022 0.1017   9.5269 9.5198   -0.0747 -0.0645 
SD 0.2363 0.2318   3.8940 3.7825   0.0961 0.0942   6.0697 5.9939 
Skewness  -0.1653 -0.1623   0.2076 0.1603   -0.8553 -0.7951   -0.1180 -0.2241 
Kurtosis 0.3935 0.3894   3.9085 4.2142   0.5913 0.4464   0.3103 0.2723 
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Table II 
Estimates of Unknown Parameters of Alternative Models for Corn and Nickel Futures Contracts. 

Sample Period:  January 2, 1991 to December 31, 2003 
 

 Corn Nickel 
  BEKK RS-BEKK BEKK RS-BEKK 
0p   0.7277 (0.5186)  -0.0672 (0.0789) 
0q   0.1400 (2.3106)  0.8661 (0.3993) 
1cµ  0.1116 (0.1160)a -0.0737 (1.1304) -0.0268 (0.0327) -0.1676 (0.1049) 
2cµ   0.3596 (1.9802)  -0.0094 (0.0112) 
1fµ  0.1746 (0.1196) -0.3022 (1.0892) -0.0261 (0.0330) -0.1505 (0.1052) 
2fµ   0.6837 (1.8631)  -0.0203 (0.0139) 
1ccγ  0.8314 (0.1803) 1.6525 (0.1951) 0.4483 (0.1320) 1.4599 (0.6556) 
2ccγ   0.1074 (0.7434)  0.0002 (0.0414) 
1fcγ  1.2096 (0.1368) 1.7094 (0.2592) 0.4809 (0.1308) 1.4022 (0.7056) 
2fcγ   0.1190 (2.5033)  0.0002 (0.0043) 
1ffγ  0.0050 (0.0400) -0.0010 (0.0938) 0.0000 (0.0082) 0.0004 (0.0244) 
2ffγ   -0.0009 (0.5477)  0.0000 (0.0354) 
1ccα  -0.2623 (0.0652) 0.4095 (0.7155) -0.6180 (0.1723) 0.2042 (0.2730) 
2ccα   -0.6481 (0.3534)  -0.8650 (0.2679) 
1cfα  0.2078 (0.0688) 0.2896 (0.9308) -0.1865 (0.1751) 0.2546 (0.2934) 
2cfα   -0.6157 (0.7344)  -0.3420 (0.2516) 
1fcα  0.4378 (0.0558) 0.2896 (0.6832) 0.7534 (0.1731) 0.1939 (0.0072) 
2fcα   0.6165 (0.6238)  0.8209 (0.3043) 
1ffα  0.1936 (0.0674) -0.0278 (0.8966) 0.3283 (0.1755) 0.1480 (0.1155) 
2ffα   0.3378 (1.1906)  0.3014 (0.2929) 
1ccβ  0.8275 (0.0329) -0.6384 (0.5768) 1.0523 (0.0660) -1.7066 (0.7160) 
2ccβ   1.1243 (1.0253)  -0.0351 (0.0710) 
1cfβ  -0.0493 (0.0357) -0.2239 (0.6950) 0.1645 (0.0698) 1.9025 (0.6334) 
2cfβ   -0.2970 (0.7047)  0.1419 (0.0652) 
1fcβ  0.1302 (0.0486) 0.7683 (0.4951) -0.0699 (0.0718) 1.9025 (1.1850) 
2fcβ   0.1375 (0.7990)  0.1419 (0.0633) 
1ffβ  0.8834 (0.0421) 0.4295 (0.2540) 0.8140 (0.0759) 1.5049 (1.0712) 
2ffβ   1.4814 (0.1865)  1.2110 (0.0730) 

Log-Lb -3027.8804 -2887.9595 -1975.3332 -1927.3166 

a. Figures in parentheses are standard errors. 
b. Log-L stands for log likelihood 
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Table III 
In- and Out-of-Sample Hedging Effectiveness of Alternative Models for Corn and Nickel Futures 

Contracts.a  

 
 Corn 
 Varianceb Variance Reduction (%)c 

  In Sample  Out-of-Sample In Sample  Out-of-Sample 
Unhedged 10.5988 16.0694    
OLS 4.1817 3.6199 60.5450% 77.4732% 
BEKK 3.9212 3.6988 63.0031% 76.9822% 
RS-BEKK 4.0065 3.3924 62.1981% 78.8891% 
     

 Nickel 
 Variance  Variance Reduction (%) 
  In Sample  Out-of-Sample In Sample  Out-of-Sample 

Unhedged 15.1571 37.2118    
OLS 0.1941 0.2952 98.7194% 99.2068% 
BEKK 0.1932 0.2989 98.7256% 99.1968% 
RS-BEKK 0.1914 0.2945 98.7369% 99.2087% 

a. The in-sample data period is from January 2, 1991 to December 31, 2003 and the out-of-sample 
data period is from January 7, 2004 to December 29, 2004. 

 b. Variance stands for the variance of the hedged portfolio calculated based on equation (34) 
c. Percentage variance reductions are calculated as the differences of variance of unhedged position 

and estimated variance of alterative models over variance of unhedged position multiplied by 100. 
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Figures 
 

 
Figure 1 

RS-BEKK, BEKK and OLS hedge ratios for corn  
 
 

 
Figure 2 

Regime probability of being in state 1 estimated from RS-BEKK model for corn 
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Figure 3 

RS-BEKK, BEKK and OLS hedge ratios for nickel 
 

 
Figure 4 

Regime probability of being in state 1 estimated from RS-BEKK model for nickel 
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Appendix A 

To facilitate the explanation of the recombining method for RS-BEKK we replicate 

some figures from Gray’s paper (1996) and compare the difference between our path-

independent BEKK model from path dependent GARCH model and Gray’s univariate 

path-independent GARCH model.  

 Figure A  illustrates the evolution of conditional variances in a path-dependent 

GARCH model.  Each conditional variance depends not just on the current regime, but on 

the entire past history of the process.  The subscripts show the evolution of regimes.  The 

term, , for example, stands for the conditional variance at time 2, given that the 

process was in regimes 1 and 2, respectively, at times 1 and 2.  Similarly, e  represents 

the square residual at time 1, given that the process was then in regime 2.  
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Figure  illustrates the evolution of conditional variances in a univariate path-

independent GARCH model.  At each point in time, the conditional variance and residuals 

in each possible regime are recombined into a single conditional variance and residuals by 

taking expectation over the possible states in period 1.  The conditional variance then 

depends only on the current regime, not on the entire past history of the process.  The term 

, for example, stands for the conditional variance at time 2, given that the process is 

then in regimes 1.   and  are the conditional variance and residual, respectively, after 

recombining at time 1.   
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recombining at time 1.   is the covariance of spot and futures returns after recombining 

at time 1.  , , and  are 2 by 2 coefficient matrices that include for 

2
1,cfh

ΒΓ Α s'γ , s'α , and 

s'β , respectively (see equation 22). E  and  are the residual matrix and variance matrix 

defined in equation (22).  
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At each point in time, the conditional variances and residuals in each possible 

regime are collapsed into a single conditional variance and residual by using Gray’s 

recombining method for both spot and futures returns.  Since our model is bivariate, we 

also need a recombining method for the covariance term.  By taking the conditional 

expectation we can recombine the conditional covariance of spot and futures returns in 

each regime into a single conditional covariance, so that it depends only on the current 

regime, not on the entire past history of the process.  
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Appendix B  

 The recursive expression of the state probability  of being in regime 1 at time t  

given all information up to time 

tp1

1−t  shown in equation (25) is proved in this appendix.  It 

is a bivariate extension of Gray (1995, 1996).  

 According to a first-order Markov process, ( )1 P r 1 |t tp s 1t −= = ψ  depends only on 

the regime the process is in at time 1−t .  By conditioning on the regime at time t , we 

have 

1−

( ) ( ) (
2

1 1 1 1
1

P r 1 | P r 1 | P r |t t t t t t t
i

p s s s i s i− − −
=

= = = = = =∑ψ ψ )1−
 

      ( ) ( ) ( )1 1* P r 1 | 1 * 1 P r 1 |t t t tP s Q s− − = = + − − = ψ ψ ,  

 (B1) 

where , and [ ]1|1Pr 1 === −tt ssP [ ]2|2Pr 1 === −tt ssQ . 

 By using Bayes’ Rule, ( )11 |t ts −= ψP r  can be written as a function of 

:  ( )1 2P r 1 |t ts − −= ψ

  ( ) (1 1 1P r 1 | P r 1 | ,t t t t ts s Y− − −= = =ψ ψ )2−

 ( ) ( )
( ) ( ) ( ) ( )

1 1 2 1 2

1 1 2 1 2 1 1 2 1 2

| 1, Pr 1|
| 1, Pr 1| | 2, Pr 2 |

t t t t t

t t t t t t t t t t

f s s
f Y s s f s sψ

− − − − −

− − − − − − − − − −

= =
=

= = + = =
R ψ ψ

ψ R ψ ψ
 (B2) 

where  is a vector of spot and futures returns at time t.  Define  as: 
'

, ,t c t f tr r= R  itf

 ( ) ( )
1

1 ' 12
1 , ,

1| , 2 exp
2it t t t t i t i t i t if f s i ψ π

−− −
− , ,

 = = = − 
 

R H e H e 2,1, =i  

and substitute (B2) into (B1), we can derived the recursive expression of the regime 

probability  as   tp1
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 where B3 is the same as equation (25) in the text.  

 31


	A Bivariate Markov Regime Switching GARCH Approach to
	a Assistant Professor, Department of Banking and Finance,
	National Chi Nan University, Taiwan
	b Assistant Professor, School of Economic Sciences,
	Introduction
	Measuring Hedging Performance
	
	References
	
	Tables



	Table II
	In- and Out-of-Sample Hedging Effectiveness of Alternative Models for Corn and Nickel Futures Contracts.a
	Appendix A
	To facilitate the explanation of the recombining 
	Figure � illustrates the evolution of conditional variances in a path-dependent GARCH model.  Each conditional variance depends not just on the current regime, but on the entire past history of the process.  The subscripts show the evolution of regimes.
	Appendix B







