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Abstract

We propose to combine recent developments in univariate and mul-

tivariate unit root testing in order to construct a more powerful panel

unit root test. We extend the GLS-detrending procedure of Elliott,

Rothenberg and Stock (1996) to a panel Augmented Dickey-Fuller

test. The �nite sample power properties of the new test demonstrate

a very large gain when compared to existing tests, especially for small

panels. We then investigate the topic of Purchasing Power Parity for

the post Bretton-Woods period via this new test. The results show

strong rejections of the unit root hypothesis.
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1 Introduction

Economic analysis of most time series requires stationarity of the data. Unit

root tests are commonly used to address this matter. The most well-known

among them is the augmented Dickey-Fuller (ADF) unit root test. Recent

works, however have acknowledge the poor power properties of this test,

which leads to a vast literature attempting to overcome these disadvantages.

These developments have occurred at both multivariate and univariate levels.

At the multivariate level, authors such as Levin, Lin and Chu (LLC)

(2002), Im, Pesaran and Shin (1997) and Maddala and Wu (1996) o¤er excel-

lent alternatives to the ADF test by combining time-series information with

cross-sectional variability. The panel approach appears extremely appealing

for two reasons. First, the inclusion of a limited amount of cross-sectional

information induces signi�cant improvement in term of power. Second, the

data needed for this type of analysis is increasingly available.

The LLC test and more speci�cally the LLC hypotheses are widely used.

Indeed, several works propose enhanced versions of this test, producing data

speci�c estimations. Papell (1997) suggests accounting for heterogeneous ser-

ial correlation, while O�Connell (1998) demonstrates the necessity of allowing
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for the cross-sectional dependence in the estimation procedure.2 ;3 Papell and

Theodoridis (2001) incorporate both by considering a panel version of the

ADF test, using the LLC hypotheses and allowing for heterogeneous serial

and contemporaneous correlation.

At the univariate level, Elliott, Rothenberg and Stock (1996) develop a

GLS-detrended/demeaned version of the ADF test. Running the ADF test on

the GLS-transformed data leads to one of the most powerful univariate test,

which they call the DF-GLS test.4 While these innovations deliver substantial

gains in power over the univariate ADF test, they still demonstrate limited

performance when applied to economic time-series data. Indeed, most of the

data sets available have a limited length.

The present work intends to develop a new panel unit root test, o¤er-

ing satisfying performance especially in case of highly persistent series and

limited amount of data. Seeking a signi�cant increase in power over exist-

ing tests, we combine the GLS-detrending of Elliott, Rothenberg and Stock

(1996) with the panel ADF test, using Levin, Lin, and Chu�s (2002) hypothe-

2Papell (1997) shows a strong relation between the size of the panel and the rate of
rejection of the unit root hypothesis.

3O�Connell (1998) points out the sizeable bias induced by the neglect of contempora-
neous correlation when estimating cross-correlated data.

4Hansen (1995) proposes a more powerful alternative to the DF-GLS test by including
covariates to the test, at the univariate level.
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ses. We analyze the behavior of our panel unit root test for various sample

sizes, panel widths, and degrees of persistence with a Monte Carlo experi-

ment. The main result is that our panel unit root test displays signi�cantly

better �nite sample power than existing univariate and panel unit root tests.

We illustrate the test with an application to the Purchasing Power Parity

(PPP) query within industrialized countries. We focus on the post Bretton-

Woods period because neither the panel ADF test nor the DF-GLS test are

able to reject the existence of a unit root. The principal outcome is a robust

overall support for the PPP hypothesis, independently of the width and the

length of the panels considered.

The next section provides a concise review of the literature that relates

to the understanding of our proposed unit root test. Section 3 develops the

new panel unit root test and tabulates the �nite sample critical values, while

Section 4 conducts a detailed power experiment, where it is shown that the

new test provides a signi�cant increase in power over the panel ADF test.

Section 5 presents an empirical application to PPP, and, �nally, Section 6

summarizes our �ndings.
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2 Existing Unit Root Tests: A Concise Re-

view of the Literature

In this section, we present the existing tests which have motivated this work

and which help to its understanding. First, the standard ADF unit root test

runs the following regression:

yt = dt + �yt�1 +
kX
i=1

 i�yt�i + ut (1)

where yt is the tested series, dt a set of deterministic regressors, k the

lagged �rst di¤erence terms allowing for serial correlation and ut the error

term of the regression. The unit root null hypothesis is that � = 1, and

the alternative of stationarity is � < 1. This test is well-known for its poor

power, and the subsequent literature suggests several solutions. In the next

two subsections, we describe some recent developments at both multivariate

and univariate levels.
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2.1 More Powerful Unit Root Tests: Panel ADF Tests

The idea behind the panel unit root tests is to combine cross-sectional and

time-series information to achieve a more e¢ cient test. Several panel pro-

cedures have been developed to test the unit root null hypothesis against

various alternative hypotheses. Levin, Lin, and Chu (2002) test the unit

root null hypothesis against a homogenous alternative that every series in

the panel is stationary with the same speed of reversion. Im, Pesaran and

Shin (1997) and Maddala and Wu (1996) test the unit root null hypothesis

against the alternative that at least one series in the panel is stationary. The

new test, later proposed in this paper, focuses on the stationarity of the entire

panel, which automatically leads us to concentrate on the LLC framework.

The LLC test runs the following panel version of equation (1):

yjt = djt + �yj;t�1 +

kjX
i=1

 ji�yj;t�i + ujt (2)

where � is the homogeneous rate of convergence of the panel. The null

hypothesis is that � = 1 and the alternative is that � < 1. For each series

j, j = 1; :::; N; dit = �0jzt is a set of deterministic regressors, which allows for

heterogeneous intercepts and time trends and kj lagged �rst di¤erences term
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are included to account for serial correlation. The error terms are assumed

to be contemporaneously uncorrelated, E(uitujt) = 0 for i 6= j.

While the LLC test leads to substantial improvements over the ADF test

in terms of power, it is based on the extremely restrictive assumption that

the series in the panel are cross-sectionally uncorrelated. Maddala and Wu

(1996) and O�Connell (1998) demonstrate that if the error terms in equation

(2) are indeed contemporaneously correlated, the LLC test exhibits severe

size distortions.5 As an alternative, Papell and Theodoridis (2001) estimate

the system of equations de�ned by (2) using Seemingly Unrelated Regressions

(SUR). This version of the LLC test, which we refer to as the ADF-SUR test,

accounts for serial and contemporaneous correlation. In the rest of this paper,

we shall estimate equation (2) allowing for contemporaneous correlation.

Performing the ADF-SUR test is a two-step procedure. First, for each

series j, j = 1; :::; N , the number of lagged �rst di¤erence terms, kj, must be

selected to account for serial correlation. In this work, we use the general-to-

speci�c (GS) lag-selection procedure of Hall (1994) and Ng and Perron (1995).

Then, having selected kj, the system of equations needs to be estimated via

SUR, constraining the values of � to be identical across equations.

5O�Connell (1998) imposes homogeneous serial correlation properties across the series,
which results in under rejection of the null hypothesis.
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2.2 More Powerful Univariate Unit Root Tests: The

DF-GLS Test

Elliott, Rothenberg, and Stock (1996) construct an e¢ cient univariate unit

root test based on local-to-unity asymptotic theory. The DF-GLS test is

an ADF test on GLS-demeaned (or GLS-detrended) data. Speci�cally, the

DF-GLS test runs the following regression:

The demeaned case, zt = (1):

y�t = �y�t�1 +
kX
i=1

 i�y
�
t�i + ut (3)

The detrended case, zt = (1; t):

y�t = �y�t�1 +
kX
i=1

 i�y
�
t�i + ut (4)

where y�t (y
�
t ) is the GLS-demeaned (GLS-detrended) series.

Equations (3) and (4) can be rewritten as:

yGLSt = �yGLSt�1 +
kX
i=1

 i�y
GLS
t�i + ut , with GLS = (�; �) (5)

with yGLSt = yt � ~�zt. ~� is the least-squares estimate of the regression
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of ~z on ~y, i.e. ~� = (
P
~z2t )

�1P
~zt~yt. ~yt and ~zt are the quasi-di¤erences of

yt and zt respectively, i.e. ~yt = (y1; (y2 � ay1); :::; (yT � ayT�1))
0, and ~zt =

(z1; (z2 � az1); :::; (zT � azT�1))
0. a = 1 + �c

T
represents the local alternative,

with �c = �7 when zt = (1) and �c = �13:5 when zt = (1; t).6 The standard

hypotheses are tested: H0 : � = 1 versus H1 : � < 1.

The lag-selection issue in the DF-GLS regressions has received much at-

tention recently. Ng and Perron (2001) propose a new lag selection proce-

dure, the Modi�ed Akaike Information Criterion (MAIC), that provides the

best combination of size and power in �nite samples when combined with

the GLS-transformation.7 In subsequent applications, we employ the MAIC

when performing the DF-GLS test.

6 c̄ = -7 ( c̄= -13.5) corresponds to the tangency between the asymptotic local power
function of the test and the power envelope at 50% power in the case with a constant (the
case with a constant and a trend).

7MAIC takes into account the nature of the deterministic components and the de-
meaning/detrending procedure, which allows a better measurement of the cost of each
lag-length choice.
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3 An Improved Panel Unit Root Test : The

DF-GLS-SUR Test

Both the ADF-SUR and the DF-GLS tests demonstrate higher power than

the standard ADF test. They display, however, a limited ability to reject the

unit root hypothesis for economic time series of the length generally encoun-

tered in practice. Consequently, we propose to combine both innovations to

obtain a more powerful unit root test. The new test, which we refer to as the

DF-GLS-SUR test, runs the following system of equations for j = 1; :::; N :

yGLSjt = �yGLSj;t�1 +

kjX
i=1

 i�y
GLS
j;t�i + ujt , with GLS = (�; �) (6)

where � is the homogeneous rate of convergence of the panel. The stan-

dard hypotheses are tested, that is H0 : � = 1 versus H1 : � < 1.

The DF-GLS-SUR test requires a three-steps procedure. For each series

j, the data needs �rst to be GLS-transformed, then kj, the number of lagged

�rst di¤erence terms allowing for serial correlation, must be selected using

MAIC. Finally the system of equations is estimated via SUR, constraining

the values of � to be equal across equations and using the pre-selected kj.
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This procedure allows to test for the stationarity of the entire panel while

accounting for data speci�c serial and contemporaneous correlation.

3.1 Finite Sample Critical Values

For the remaining of the paper, we consider the ADF-SUR test as benchmark.

Even though Papell and Theodoridis (2001) use the ADF-SUR test, they do

not report generic critical values. Therefore, we generate �nite sample critical

values for both the ADF-SUR and the DF-GLS-SUR tests. The Monte Carlo

experiment considers panels with a length of T = 25; 50; 75; 100; and 125; and

with a width of N = 5; 10; 15; and 20.8 The data sets are generated under

the null hypothesis as random walks without drift:

yjt = yj;t�1 + uit (7)

where ujt~iidN(0; 1) and the error terms are contemporaneously uncorre-

lated, E(uitujt) = 0 for i 6= j.9

For each panel unit root test, we generate four sets of critical values. Two

8We consider T = 35; 50; 75; 100; 125 for the case with heterogeneous constants and
trends.

9In the subsequent empirical exercise, we shall explicitly allow for contemporaneously
correlated errors.
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sets for each model (regressions with a constant only, and with a constant

and a trend). First, we assume that the true lag-length is known, that is

we �x k = 0. We are also interested in the e¤ects of lag-length selection on

the �nite sample distribution of the unit root test statistics. Accordingly, we

generate critical values where at each iteration we select the lag length by

GS for the ADF-SUR test and by MAIC for the DF-GLS-SUR test.

Our results are consistent with the fact that the inclusion of serial corre-

lation, selected via the GS procedure, induces a strong increase in absolute

value of the critical values.10 Furthermore, the percentage change in critical

values is more severe for the ADF-SUR test than for the DF-GLS-SUR test,

i.e. when the lag length is selected via GS instead of via MAIC. The true

value of k being 0 and the MAIC procedure providing the best estimation of

the lag length, the critical values for both cases, k = 0 and k = kMAIC , are

relatively close.

The 1%, 5%, and 10% critical values are reported in Tables 1 and 3 for

the ADF-SUR test, and Tables 2 and 4 for the DF-GLS-SUR test.

10See, for example, Hall (1994).
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4 Finite Sample Performances: Power Analy-

sis

Being a combination of the ADF-SUR and the DF-GLS tests, we expect the

DF-GLS-SUR test to be more powerful than each one of them. Therefore,

we compute the power of the ADF-SUR and the DF-GLS-SUR tests.11 Con-

sidering the same panels (N, T) than for the critical values, the power is

computed via a Monte Carlo experiment with the data generated under the

alternative, that is:

yit = �yj;t�1 + ujt (8)

where ujt~iidN(0; 1), E(uitujt) = 0 for i 6= j and � < 1. We consider the

following alternatives � = (0:99; 0:97; 0:95; 0:90; 0:85; 0:80); with the nominal

size �xed at 5%. Tables 5, 6, 7, and 8 display the level of power for the ADF-

SUR and the DF-GLS-SUR tests, for the (k = 0) and the (k = (kGS; kMAIC))

cases using regressions with a constant only ( Tables 5 and 6 ) or with a

constant and a trend (Tables 7 and 8 ).

Below, we discuss three aspects of the results for both tests: a change

11Elliott, Rothenberg, and Stock (1996) provide the power analysis for the DF-GLS test
for both demeaned and detrended cases.
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in T , the length of the panel, a change in N , the width of the panel, and a

decrease in �, the persistence of the series.

4.1 Demeaned case: Tables 5 and 6

A comparison between the power of the DF-GLS-SUR test and of the DF-

GLS test demonstrates that the inclusion of few more series to the univariate

DF-GLS test leads to drastic power improvements: for � = 0:95 and T = 100,

the power of the DF-GLS test is equal to 0:26, while for the DF-GLS-SUR

test the power is 0:98, with N = 5.

Commonly, the lag selection induces a uniform power loss, compared to

the case where the lag length is known and equal to 0. The simulations show

this expected outcome, with Table 6 having a lower power than Table 5.

Except for this di¤erence, however, Tables 5 and 6 present similar patterns:

the DF-GLS-SUR test demonstrates an overall higher power than the ADF-

SUR test. Therefore, unless it is clearly speci�ed, the following performance

analysis does not dissociate these two cases.

A sole increase in T leads to consistent increases in power for both tests

with signi�cantly stronger improvements for the DF-GLS-SUR test than the

ADF-SUR test. For example, considering the case with no lags, a highly
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persistent system of series, � = 0:99, a limited amount of series, N = 5,

and a small increase in the length of the panel, T varies from 25 to 50

observations, the DF-GLS-SUR test produces an increase in power ten times

higher than the ADF-SUR test. The same case with a wider panel (N = 20),

demonstrates a similar outcome. For highly persistent series with a small

number of observations, the DF-GLS-SUR test o¤ers higher power than the

ADF-SUR test, and takes better advantage of an increase in T.

For less persistent processes, for example � = (0:97; 0:95), the DF-GLS-

SUR test continues to present a stronger response to an increase in the num-

ber of observations than the ADF-SUR test.

A sole increase in N leads to consistent power improvements, with a

stronger impact on the DF-GLS-SUR test than on the ADF-SUR test. For

example, with lag-length selection, � = 0:99, and T = 25, an increase in

the number of series, N evolving from 5 to 10, leads to a power increase for

the DF-GLS-SUR test �ve times stronger than for the ADF-SUR test. Fur-

thermore, if we compare the impact of a change in T with the impact of a

change in N, the tables show for both tests that an increase in width has a

stronger e¤ect than an increase in length. Considering the case with no lags

and � = 0:95, the DF-GLS-SUR test has a power of 0.83 for (N; T ) = (5; 50).
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A minimum of 50 observations needs to be added to reach a power level close

to 1, while the addition of only 5 series displays the similar result.

(N; T ) = (20; 50) presents an interesting case, especially if the processes

are highly persistent. The ADF-SUR test is well-known for its power de-

�ciency when the width and the length of the panel are too close. In the

presence of lags, and with � = 0:99, this combination presents a power of

0.44 for the DF-GLS-SUR test and of 0.10 for the ADF-SUR test. If � = 0:97,

the DF-GLS-SUR test reaches a power of 0.98 while the ADF-GLS test of-

fers only a power of 0.22. The DF-GLS-SUR test demonstrates an impressive

higher power than the ADF-SUR test for panels including highly persistent

series and with a width close to the length.

As expected, a change in the series persistence also has a major in�uence

on the behavior of both the DF-GLS-SUR and the ADF-SUR tests. In the

case with lags, and (N; T ) = (10; 75), the DF-GLS-SUR test presents a power

of 0.41 for � = 0:99, of 0.98 for � = 0:97 and of 1.00 for � = 0:95. More

generally, the DF-GLS-SUR test has a power of 1.00 or close to 1.00 whenever

� < 0:90.
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4.2 Detrended case: Tables 7 and 8

Commonly, the addition of a trend to the regressions leads to a uniform loss

in power for both tests: with � = 0:97 and (N; T ) = (15; 100), the DF-GLS-

SUR� test produces a power of 1.00 while the DF-GLS-SUR� test reaches

only a power of 0.30.12 However, combining time-series information with

cross-sectional information still provides signi�cant improvements in the test

performance. For � = 0:95 and T = 100, the DF-GLS� test reaches a power

level of 0.10 while the DF-GLS-SUR� test, accounting for four more series

(N = 5), is able to achieve a power level of 0.35.

The GLS-transformation shows a similar impact on the size-adjusted

power than in Section 3. If � = 0:95 and (N; T ) = (5; 125), the DF-GLS-SUR

test has a power of 0.53 while the ADF-SUR test o¤ers a power level of 0.24.

Furthermore, the amplitude of these enhancements varies following changes

in T , in N or in �, as well as the test considered. For � = 0:97 and N = 20,

a raise in T from 50 to 100 observations induces an power increase of 0.23

for the DF-GLS-SUR test and of 0.10 for the ADF-SUR test. Likewise, if N

varies from 15 to 20 series, when � = 0:97 and T = 100, the power augments

12The DF-GLS-SUR�test refers to the demeaned case while the DF-GLS-SUR� refers
to the detrended case.
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by 0.32 for the DF-GLS-SUR test and by 0.03 for the ADF-SUR test. Finally,

a decrease in the persistence, from � = 0:97 to � = 0:95, generates strong

improvements in the performance for both tests: for (N; T ) = (10; 125), the

observed power increase is of 0.45 for the DF-GLS-SUR test and of 0.25 for

the ADF-SUR test.

To sum up, this analysis reveals two major outcomes. First, as expected,

by incorporating cross-sectional variation we are able to signi�cantly en-

hance the power of the univariate DF-GLS test. Secondly, the comparison of

both test performances demonstrates strong improvements due to the GLS-

transformation. Overall the DF-GLS-SUR test has a higher �nite sample

power than the ADF-SUR test, and for each increase in information (either

N or T ), the corresponding increase in power is larger for the DF-GLS-SUR

test than the ADF-SUR test. Furthermore, our new test presents some inter-

esting features: its power is attractively high for small panels and for highly

persistent series.

4.3 Robustness Analysis

One obvious objection to this new test stands in the homogeneity imposed by

the alternative hypothesis. This restriction seems to undermine the enhanced
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power properties previously presented. Consequently, in this section, we

focus on the impact of such a constraint by measuring the performance of

the DF-GLS-SUR test when applied to series with heterogeneous rates of

convergence. Our results show that, even under such conditions, the DF-

GLS-SUR test remains one of the most powerful unit root tests available.

We proceed with the Monte Carlo experiment de�ned earlier for the power

analysis, but allowing for the rate of convergence to vary across the generated

series, i.e. the data generating process follows:

yjt = �jyj;t�1 + ujt (9)

where ujt~iidN(0; 1), E(uitujt) = 0 for i 6= j;and �j � 1. Then we

estimate equation (3) with k = 1.13

Due to the in�nite number of cases existing, we focus on the six subse-

quent panels:

N = 5, T = (50; 100) and �j is divided in two groups such that �i =

(1:00; 0:99; 0:97; 0:95; 0:90; 0:85; 0:80) for i = 1; 2; 3 and �l = (1:00; 0:99; 0:97,

0:95; 0:90; 0:85; 0:80) for l = 4; 5.

13This allows us to compare the size-adjusted power with Bowman (1999) and Im,
Pesaran and Shin (1997).
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N = 15, T = (50; 100) and �j is divided in three groups such that �i =

(1:00; 0:99; 0:97; 0:95; 0:90; 0:85; 0:80) for i = 1; 2; 3; 4; 5, �l = (1:00; 0:99; 0:97,

0:95; 0:90; 0:85; 0:80) for l = 6; 7; 8; 9; 10 and �m = (0:80; 0:95) for m =

11; 12; 13; 14; 15.

The size-adjusted power resulting from these simulations is reported in

Figure 1.

The 3D graphs demonstrate strong deteriorations in the DF-GLS-SUR-

test performance in presence of random walks among the series. For example,

if (N; T ) = (5; 50) and � = (1:00; 0:99), the power level reached is 0.08 instead

of 0.18 when �i = �j = 0:99. Power losses are also observed when some of

the series estimated include processes more persistent than the alternative

considered in the homogeneous case: if (N; T ) = (15; 50), the DF-GLS-SUR

test achieves a power of 0.88 when (�i; �j; �m) = (0.97,0.99,0.80), instead of

1.00 when �i = �j = �m = 0:80. The converse is also veri�ed: if (�i; �j; �m) =

(0:85; 0:90; 0:95) the power equals 1.00, while if �i = �j = �m = 0:95 it equals

0.99.

The relatively poor performance of the DF-GLS-SUR test in presence of

non-stationary processes encourages a comparison with the Im, Pesaran and

Shin (IPS) (1997) test. Figure 2 graphs the power simulations such that the
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X-axis represents the number of stationary series among the panel and the

Y-axis is the power. The panels considered have a width of N = 5; 10; 15; 20

and a length �xed to T = 100. The rates of convergence for the stationary

processes are � = (0:90; 0:95).

Overall, the DF-GLS-SUR test demonstrates a higher power than the

IPS test when � = 0:95. These results imply that, in highly persistent

cases, the impact of GLS-transformation prevails over the negative e¤ect of

the homogeneous alternative on the test performance. Our �ndings con�rm

that the GLS-transformation improves the �nite sample power properties of

the test, especially when investigating mixes of highly persistent and non-

stationary series, even though the alternative hypothesis is wrong.

The DF-GLS-SUR test alternative hypothesis has a limited impact on the

test performance in presence of series converging at di¤erent rates, but rather

a strong and negative e¤ect when the panel combines stationary and non-

stationary processes. However, the latter observation has limited e¤ects on

the test reliability. Indeed, the DF-GLS-SUR test focuses on the stationarity

of the entire panel: the presence of at least one unit root should lead to no

rejection of the null hypothesis.14

14Di¤erently, the IPS test is supposed to reject the unit root hypothesis if at least one
process in the panel is stationary.
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To sum up, the DF-GLS-SUR test was designed to answer more accu-

rately whether or not the panel converges. Its overall satisfying performance

in presence of homogeneous or heterogeneous rates of convergence in a sta-

tionary data set con�rms its accuracy. Furthermore, the relatively low power

achieved in presence of random walks in the panel is not a major issue because

it is still signi�cantly higher than the nominal size (5%).15

5 Illustration: Purchasing Power Parity

As an illustration, we apply this new test to the Purchasing Power Par-

ity (PPP) query. We consider quarterly CPIs and nominal exchange rates

in dollars, from 1973(1), �rst quarter, to 1998(2), second quarter, (Source

IFS, CD-Rom for 03/2002), for 21 industrialized countries: Australia, Aus-

tria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland,

Italy, Japan, Netherlands, Norway, New Zealand, Portugal, Spain, Sweden,

Switzerland, the U.K., and the U.S..We then construct the corresponding

15The only issue could be to over-reject the null hypothesis but by controlling for the
size, i.e. the tendency to over-reject the null, we solve this issue as long as the power is
signi�cantly higher than the size.
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real exchange rate, qj (in logarithm) follows:

qj = ej + p� � pj (10)

where ej, pj and p� are the logarithm of the nominal exchange rate (U.S.

dollar as numeraire), the foreign CPI and the US CPI.

We �rst proceed with univariate estimations of the real exchange rates

through the ADF and the DF-GLS tests, using as lag-length selection the

GS and the MAIC procedures respectively. The results are shown in Table 9.

Few rejections of the unit root hypothesis are observed: the ADF test never

rejects while the DF-GLS test o¤ers several rejections, varying from a 10%

level for Denmark and Italy to a 5% level for Belgium, France, Germany,

Greece and the Netherlands.

Next, we estimate the real exchange rates at the multivariate level with

the ADF-SUR and the DF-SUR-GLS tests. The ADF-SUR test is a version

of the LLC test accounting for contemporaneous correlation. The inclusion

of correlation among the errors invalidates the limit distribution of the LLC

test.16 Maddala and Wu (1996) propose a bootstrapping alternative, and

16Maddala and Wu (1996), Banerjee (1999), Bowman (1999), and Chang (2002) point
out this issue.
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demonstrate that the LLC test o¤ers good performances when this technique

is used. Therefore a Monte Carlo experiment is employed, allowing us to

generate the critical values under the standard hypotheses, i.e. H0 : � = 0

versus H1 : � < 0.

Section 4, we have described the estimation process as well as the Monte

Carlo experiment used to generate critical values. However, the data gener-

ating process used for the nonspeci�c analysis did not include cross-sectional

correlation. For the data-speci�c critical values, we need to estimate them by

estimating the non-diagonal variance-covariance matrix of the innovations.

The jth real exchange rate, j = 1; :::; N , follows:

qjt = djt + �jqj;t�1 + ujt (11)

where ujt = �juj;t�1+ �jt with (�1t:::�Nt)
0
~N(0N ;
) and E(uitujt) 6= 0 for

i 6= j.

We �rst run ADF regressions for each series, using Schwarz information

criteria lag selection in order to estimate the characteristics of each process.

Those estimates are assumed to de�ne the true data generating processes

of �jt. Then we are able to deduce the ujt and �, the variance-covariance
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matrix of the innovations, i.e. (u1t:::unt)~N(0N ;�). The unit root is im-

posed in the generated process by taking partial sums. Finally, we proceed

with the rest of the Monte Carlo experiment: for each process the estimation

of equation(3)((1)) selects kMAIC
j (kGSj ), then equation(6)((2)) is estimated

using SUR, with the pre-selected kMAIC
j (kGSj ).17 Repeating each procedure

5000 times creates a vector of statistics. Then the critical values are calcu-

lated.

The data is grouped such that the panel of the 20 U.S.-real exchange

rates (All20) includes Australia, Austria, Belgium, Canada, Denmark, Fin-

land, France, Germany, Greece, Ireland, Italy, Japan, Netherlands, Norway,

New Zealand, Portugal, Spain, Sweden, Switzerland, and the U. K. Then

we consider the following panels: the European Community (EC), the Eu-

ropean Monetary System (EMS), the 6 and 10 most industrialized countries

(G6, G10), the Euro area as of 1999 (E10), the Euro area as of 2001 (E11),

and the OECD countries (13).18 For each panel, Table 10 reports the esti-

17We consider the case with constants only because we focus on the mean-reverting
behavior of the real exchnage rates.
18EC includes Belgium, Denmark, France, Germany, Greece, Ireland, Italy, the Nether-

lands, Portugal, Spain, and the U.K. EMS includes Belgium, Denmark, France, Germany,
Ireland, Italy, and the Netherlands. G6 includes Canada, France, Germany, Italy, Japan,
and the U.K. For G10, Belgium, the Netherlands, Sweden, and Switzerland are added. E11
includes Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Nether-
lands, Portugal, and Spain. E10 does not include Greece. 13 includes Australia, Belgium,
Canada, Denmark, Finland, France, Germany, Italy, the Netherlands, Norway, Sweden,
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mated �, the t-statistic and the corresponding half-life (HL�) for the period

1973(1)� 1998(2).19

The panels considered vary in size with a width including between 6 and

20 US-real exchange rates and a length of 102 observations. As shown in the

performance analysis, the DF-GLS-SUR test demonstrates an high power for

these speci�c cases (a minimum power level of 90%) while the ADF-SUR test

behaves poorly, at least for the small panels (a power level of 20%). For the

studied panels, the bias of the DF-GLS-SUR test is negligible compared to

the bias of the ADF-SUR test. Furthermore, the high power observed for the

DF-GLS-SUR test combined with a size �xed at 5% implies that the results

strongly re�ect the information available in the data.

The DF-GLS-SUR test demonstrates uniformly stronger rejections, with

7 rejections at 1% and 1 at 5% while the ADF-SUR test shows a majority of

rejection at 5% or less.20 By using a more powerful alternative to the existing

tests, we are able to produce the strongest evidence of PPP for the �oating

period.

and the U.K.
19We calculate the half-life based on �, that is HL� = ln 0:5

ln� .
20However, the DF-GLS-SUR test generates larger half-lives than the ADF-SUR test.

Studies such as Murray and Papell (2002), and Lopez, Murray and Papell (2003) produce
similar results.
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6 Conclusion

The literature already provides several more powerful alternatives to the

ADF unit root test. However, all of them demonstrate limited ability to

reject correctly the unit root hypothesis when applied to highly persistent

time series with a limited span. This paper attempts to produce a more e¢ -

cient panel unit root test allowing a more reliable analysis of such data sets.

Our new test, the DF-GLS-SUR test, is an extension of Elliott, Rothenberg,

and Stock�s (1996) GLS-transformation to a version of the Levin, Lin and

Chu�s (2002) test. The use of Monte Carlo simulations allow us to show

the interesting behavior of this new test. For both the demeaned and de-

trended cases, the DF-GLS-SUR test o¤ers a uniformly higher �nite-sample

power than the ADF-SUR test. Furthermore, the DF-GLS-SUR-test perfor-

mance remains attractive when studying a data with heterogeneous rates of

convergence across the series.

The most pertinent feature of the DF-GLS-SUR test stands in its satis-

fying power when applied to highly persistent processes with limited amount

of observations. Indeed, it is always a challenge to increase signi�cantly the

time-series dimension of economic data while the cross-sectional dimension

is easily extendable.
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Table 9: Univariate Unit Root Tests

ADF DF-GLS

Australia -0.3014 -0.3014 0 -0.0055 -0.2447 1
Austria -0.0638 -2.0407 0 -0.0343 -1.3519 6
Belgium -0.0440 -1.5798 0 -0.0538 -1.9745** 1
Canada -0.0083 -0.6009 4 0.0037 0.3204 4
Denmark -0.0421 -1.4943 0 -0.0418 -1.7438* 1
Finland -0.0541 -1.7942 0 -0.0341 -1.4104 0
France -0.0549 -1.7576 0 -0.0720 -2.3718** 1
Germany -0.0549 -1.7720 0 -0.0699 -2.0650** 6
Greece -0.0628 -1.9407 0 -0.0649 -2.1180** 5
Ireland -0.0946 -2.4182 0 -0.0658 -1.9506** 0
Italy -0.0647 -1.9340 0 -0.0646 -1.9398* 0
Japan -0.0442 -1.8689 5 -0.0138 -0.9673 1
Netherlands -0.0585 -1.8615 0 -0.0603 -2.0685** 1
Norway -0.0419 -1.3657 0 -0.0442 -1.7194 1
New Zealand -0.0271 -0.9547 0 -0.0491 -1.7777 1
Portugal -0.0494 -1.7244 0 -0.0366 -1.4140 0
Spain -0.0508 -1.8404 0 -0.0360 -1.7018 2
Sweden -0.0066 -0.2838 0 -0.0168 -0.7311 1
Switzerland -0.0657 -2.1218 0 -0.0273 -1.4288 1
U.K -0.0889 -2.2337 5 -0.0471 -1.6549 0

αtα GSk MAICkα αt
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Figure 2: The DF-GLS-SUR Test (� ) Versus The IPS Test (��)

N=5, 5,...,2,1,90.0 == jjρ N=5, 5,...,2,1,95.0 == jjρ ,

N=10, 10,...,2,1,90.0 == jjρ N=10, 10,...,2,1,95.0 == jjρ

N=15, 15,...,2,1,90.0 == jjρ N=15, 15,...,2,1,95.0 == jjρ

N=20, 20,...,2,1,90.0 == jjρ N=20, 20,...,2,1,95.0 == jjρ
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