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1 Introduction

In this paper we propose tests of linear hypotheses on the parameters in a univariate deterministic

trend model. The tests are designed to have optimal power when the errors are stationary and to be

size-robust to strong serial correlation in the errors including the case of a unit root in the errors.

Robustness to serial correlation is obtained using well known nonparametric heteroskedasticity

autocorrelation (HAC) robust standard errors. Using the newly developed fixed bandwidth, i.e.

fixed-b, asymptotics of Kiefer and Vogelsang (2002) we show that standard HAC robust trend

tests have asymptotic distributions free of serial correlation nuisance parameters regardless of the

bandwidth or kernel used to compute the HAC robust standard errors. This asymptotic pivotal

result holds for stationary errors as well as unit root errors although the limiting distributions are

different in the case of unit root errors compared to the case of stationary errors. This difference in

limiting distributions explains the usual over-rejection problem of HAC robust tests. Because the

tests are asymptotically pivotal, we are able to control the over-rejection problem by implementing

the scaling correction factor proposed by Vogelsang (1998). Therefore, the tests we propose have

well behaved size even when the errors have strong serial correlation.

For the special case of the simple linear trend model, we use a local asymptotic power analysis

to guide the choice of kernel and bandwidth. Confining attention to tests with correct size, we

consider a class of well known and popular kernels and we compute asymptotic power envelopes

that represent maximal power across the kernels and bandwidths. We then show that tests based

on the Daniell kernel have power that effectively attains the power envelope. If we let b = M/T

where T is the sample size and M is the truncation lag or bandwidth used in the HAC estimator,

then b = 0.02 delivers a test with power nearly identical to the stationary power envelope when

the errors are stationary. When the errors have a unit root, b = 0.16 delivers a test with power

nearly identical to the unit root power envelope. The fact that we make concrete and specific

recommendations for kernel and bandwidth choices should appeal to practitioners.

We use the newly developed tests to investigate the well known Prebisch (1950) and Singer

(1950) hypothesis that postulates that over time the net barter terms of trade should be declining

between countries that primarily export commodities and countries that primarily export manufac-

tures. This empirical conjecture has received considerable attention in the international economics

literature. See Ardeni and Wright (1992), Cuddington and Urzua (1989), Grilli and Yang (1988),

Lutz (1992), Powell (1991), Sapsford (1985), Spraos (1980) and Trivedi (1995) among others. The

empirical results in this literature have been mixed. Many authors have interpreted evidence in

support of the Prebisch-Singer hypothesis with caution because of the potential over-rejection prob-

lem caused by strong serial correlation/unit root in the errors. In fact, many authors have focused

on, and in our opinion been distracted by, the question as to whether or not the innovations have
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a unit root or are stationary. Because a time series can have a decreasing deterministic trend

whether the innovations are stationary or have a unit root, the unit root issue is simply a nuisance

parameter in the context of the Prebisch-Singer hypothesis. The advantage of our tests is that

they allow a direct test on the slope coefficient of the linear trend that is robust to the unit root

question. When applied to the net barter terms of trade series used by Lutz (1992)1 we find strong

and consistent evidence to support the Prebisch-Singer hypothesis. Our results are not subject to

the usual “over-rejection problem” critique because of the robust properties of the tests. Further

tests indicate that the trend function of this series is stable over time. Our results confirm what

many authors have been saying for over 20 years: Prebisch and Singer were right!

The rest of the paper is organized as follows. In Section 2 the trend function model is described in

detail, the required assumptions are stated, and some of the basic asymptotic results are presented.

Section 3 describes the scaling procedure that is used to control the over-rejection problem caused

by strong serial correlation. In Section 4 we derive and discuss the asymptotic results under the

new fixed-b asymptotics. In Section 4 the test statistics are defined and the asymptotic distribution

theory is developed. In Section 5 we examine the asymptotic properties of the test statistics in the

simple linear trend model. We compute asymptotic power envelopes and determine kernels and

bandwidths that deliver tests with power close to the envelopes. In Section 6 the results of some

finite sample simulation experiments are reported. The empirical results on the Prebisch-Singer

hypothesis are given in Section 7. Section 8 concludes and proofs of important results are collected

in the appendix.

2 The Model Setup

We are interested in the following model of a time series with deterministic trends:

yt = f (t)
0 β + ut, t = 1, ..., T, (1)

where f (t) denotes a (k × 1) vector of trend functions, β is a (k × 1) vector of parameters, and “ 0 ”
denotes the transpose, when used in the context of a vector. This type of model is used frequently

in macroeconomics and finance to determine the composition of individual data series, like GDP .

When performing tests on β, for example to determine whether a given trend should be included,

the presence of serial correlation and heteroskedasticity in the errors must be taken into account.

In this paper, we will concern ourselves with the situation where the exact error structure is not

of interest. In that case, there is no need to model the error structure explicitly, as tests on the

coefficients on the trends can be tested without doing so. Testing hypotheses on the coefficients of

the trends without modelling the error structure is virtually always done by using HAC estimators

1Lutz (1992) extended the well known Grilli and Yang (1988) series to 1995.
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to estimate the asymptotic variance of the parameter estimates, and that follow that approach in

this paper.

Throughout the paper we assume that ut is a scalar, mean zero time series. The time series

process {ut} may be stationary or have a unit root, and may exhibit serial correlation or conditional
heteroskedasticity. For the purpose of studying the impact of these various error specifications on

the testing procedures, we make the following flexible assumptions about ut.

Assumption 1

ut = αut−1 + εt, t = 2, 3, ..., T, u1 = ε1,

εt = d (L) et, d (L) =
∞X
i=0

diL
i,

∞X
i=0

i |di| <∞, d(1)2 = d (1)2 > 0,

where {et} is a martingale difference sequence with E
¡
e2t |et−1, et−2, ...

¢
= 1 and suptE

¡
e4t
¢
<∞.

Under this specification, the errors are stationary when |α| < 1. Alternatively, the errors can be

modeled as local to a unit root by letting α =
¡
1− α

T

¢
where α = 0 corresponds to a pure unit root

process.

Under Assumption 1 the following functional central limit theorems follow from well known

results (see Chan and Wei (1988), Phillips (1987) and Phillips and Solo (1992)):

T−1/2
[rT ]X
t=1

ut ⇒ σw(r) if |α| < 1

T−1/2u[rT ] ⇒ d(1)Vα (r) if α = 1− α

T
,

where σ2 = d(1)2/(1− α)2, w(r) is a standard Wiener process, Vα (r) =
R r
0 exp (−α (r − s)) dw (s)

and ⇒ denotes weak convergence.

At times it will be useful to stack the equations in (1) and rewrite them as

y = f (T )β + u. (2)

Here f (T ) is the (T × k) stacked vector of trend functions. The following assumptions on the trend
are sufficient to obtain the main results of the paper:

Assumption 2 f(t) includes a constant, there exists a (k × k) diagonal matrix τT and a vector

of functions F , such that τT f (t) = F
¡
t
T

¢
+ o (1) ,

R 1
0 Fi (r)dr < ∞, i = 1, ..., k, and

det
hR 1
0 F (r)F (r)

0 dr
i
> 0.
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Assumption 2 is essentially the same assumption used by Vogelsang (1998) and is fairly standard.

We include the additional assumption that an intercept is included in the model.

Model (1) is estimated using Ordinary Least Squares (OLS) and bβ = (f(T )0f(T ))−1 f(T )0y
denotes the OLS estimate of β, while bu = y − f(T )bβ denotes the OLS residuals. The limiting
distribution of bβ is well known for both stationary and unit root errors:

T 1/2τ−1T
³bβ − β

´
⇒ σ

µZ 1

0
F (r)F (r)0dr

¶−1 Z 1

0
F (r)dw (r) if |α| < 1,

T−1/2τ−1T
³bβ − β

´
⇒ d(1)

µZ 1

0
F (r)F (r)0dr

¶−1 Z 1

0
F (r)Vα (r) dr if α = 1− α

T
.

Notice that when the errors are stationary the only unknown nuisance parameter in the limiting

distribution is σ and when the errors are integrated the only unknown nuisance parameters are

d(1) and α. We focus on the result for stationary errors and consider standard HAC robust tests

designed for that case. The tests will be asymptotically pivotal when the errors are stationary and

only depend on α when the errors are integrated. We deal with the dependence on α by using the

scaling factor approach proposed by Vogelsang (1998).

To construct the usual HAC robust t or Wald tests, an estimator of σ2 is often used.2 We

consider the case where σ2 is estimated nonparametrically using the OLS residuals, but:
bσ2 = bγ0 + 2 T−1X

j=1

k (j/M)bγj , (3)

where bγj = T−1PT
t=j+1 butbut−j and k (x) is a kernel function satisfying k (x) = k (−x) , k (0) = 1,

|k (x)| ≤ 1, k (x) continuous at x = 0 and
R 1
0 k

2 (x) dx < ∞. M is called the bandwidth or the

truncation lag. For bσ2 to be consistent, it is necessary to downweight or eliminate the sample
autocovariances for high values of j. Specifically, it is necessary that M → ∞ and M/T → 0

as T → ∞. Most commonly used kernel functions have the property that k (x) = 0 for |x| > 1,

effectively eliminating the sample autocovariances for all values of j greater than M , inspiring the

name truncation lag.

We are interested in testing hypotheses of the form H0 : Rβ = q. Typically, R is simply a

matrix selecting single entries of β, and q is a vector of zeros, but we maintain the hypothesis in its

general form. As a rule, the test statistics used to test this type of hypothesis on the trend function

2The fact that a single nuisance parameter appears in the limiting distribution of the OLS estimates occurs
because the regressors are deterministic. In a regression model with random regressors, the asymptotic variance of
the OLS estimates depends on a zero-frequency spectral density matrix with rank equal to the number of regression
parameters. In that case, the HAC robust standard errors are computed using a vector of time series comprised of
products of the regressors and OLS residuals.
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are either t or Wald statistics of the form:

t =
Rbβ − rqbσ2R ¡f (T )0 f (T )¢−1R0

WT =
³
Rbβ − r´0 hbσ2R ¡f (T )0 f (T )¢−1R0i−1 ³Rbβ − r´ .

If the errors are stationary and bσ2 is a consistent estimator, then the t test has a standard normal
limiting distribution and W has a limiting chi-square distribution. Unfortunately, when there is

strong serial correlation in the errors, these standard asymptotic approximations are often inac-

curate and the tests suffer from severe over-rejection problems (see Vogelsang (1998, Table I)).

In addition, the finite sample behavior of the tests are sensitive to the choice of bandwidth and

kernel, yet the standard asymptotics is the same regardless of the kernel or bandwidth. We ad-

dress both of these issues. We control the over-rejection problem using a scaling factor proposed

by Vogelsang (1998). We address the bandwidth and kernel problem by deriving the limiting

distributions of the scaled tests under the fixed-b asymptotic framework proposed by Kiefer and

Vogelsang (2002).

3 Scaled Statistics

We now describe the scaling procedure proposed by Vogelsang (1998) and introduce a new variant

of the approach. The basic idea is to multiplicatively scale the t and W tests by a factor that

converges to one when the errors are stationary but converges to a nuisance parameter free random

variable when the errors have a unit root. We consider two scaling factors based on two unit root

tests. Let J denote the unit root test proposed by Park (1990) and Park and Choi (1988). Consider

the regression

yt = f (t)
0 β +

9X
i=j

αit
i + ut, (4)

where tj−1 is the highest order polynomial of t included in f(t). Then the J statistic is defined as

J =
SSR(1) − SSR(4)

SSR(4)
,

where SSR(4) is the sum of squared residuals obtained from the estimation of (4) by OLS, and

SSR(1) be the sum of squared residuals from the OLS estimation of (1). The second unit root test

is the test proposed by Breitung (2002) defined as

BG =

PT
t=1

bS2t
SSR(1)

,
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where bSt =Pt
j=1 buj are the partial sums of the OLS residuals from Model (1). Both the J and BG

statistics share the property that they are asymptotically invariant to nuisance parameters when

the errors have a unit root and they converge to zero when the errors have a unit root.

Let UR generically denote either J or BG and let c denote a constant. The scaling factor

exp(−cUR),

converges to a well defined nuisance parameter free random variable when the errors have a unit

root but converges to one when the errors are stationary. Using the scaling factor we now redefine

the t and W statistics as

t =

 Rbβ − qqbσ2R ¡f (T )0 f (T )¢−1R0
 exp (−cUR) ,

WT =

µ³
Rbβ − q´0 hbσ2R ¡f (T )0 f (T )¢−1R0i−1 ³Rbβ − q´¶ exp (−cUR) . (5)

The limiting distributions of t and W are unaffected by the scaling when the errors are stationary.

When the errors have a unit root, the scaling factor affects the limiting distribution. For a given

percentage point, it will possible to choose the constant c so that the asymptotic critical values of

t and W are the same for stationary errors and unit root errors for a specific value of α. We follow

Vogelsang (1998) and compute c for the case of α = 0. Asymptotically the scaling factors solve the

over-rejection problem caused by strong serial correlation in the errors.

The versions of the statistics given by (5) will be used for the remainder of the paper. Note

that the value of c used in practice depends on the significance level of the test and depends on

which unit root statistic is chosen for the scaling factor. A detailed discussion of the choice of c is

given below.

4 Limiting Distributions Under Fixed-b Asymptotics

In this section we provide the limiting null distributions of t and W as defined in (5) under the

assumption thatM = bT where b ∈ (0, 1]. This asymptotic nesting for the bandwidth was proposed
by Kiefer and Vogelsang (2002) and results were obtained for stationary models estimated by

generalized method of moments. The results in Kiefer and Vogelsang (2002) do not apply to

parameters associated with deterministic trends. Therefore, the results given here are new.

Before we proceed, some additional notation and definitions are required. As is well known,

estimators of coefficients on different trends will often converge at different rates. Specifically,

the coefficients entering the constraint which converge the slowest will dominate the asymptotic

distribution. In order to formalize this, let µi be the largest non-positive power of time, t, in the
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nonzero elements in the i’th row of RτT . Then define the d×d diagonal matrix A in such a way that
Aii = Tµi , and let R∗ = limT→∞A−1RτT . Under small-b asymptotics, the limiting distributions
depend on the type of kernel used in computing bσ2. The following definition describes the types of
kernel we analyze.

Definition 1 A kernel is labelled Type 1 if k (x) is twice continuously differentiable everywhere

and as a Type 2 kernel if k (x) is continuous, k (x) = 0 for |x| ≥ 1 and k (x) is twice continuously
differentiable everywhere except at |x| = 1.

In addition to kernels which fall in these two categories, we consider the Bartlett kernel (which is

neither Type 1 or 2) separately.

The limiting distributions are expressed in terms of the following functions and random vari-

ables.

Definition 2

NF =

( R 1
0 F (s)dw (s) , if |α| < 1R 1
0 F (s)Vα (s)ds, if α = 1− α

T

H (r) =

½
w(r) if |α| < 1R r

0 Vα(s)ds if α = 1− α
T

QF (r) = H (r)−
Z r

0
F (s)0 ds

µZ 1

0
F (s)F (s)0 ds

¶−1
NF

k∗ (x) = k
³x
b

´
,

k∗0− is the first derivative of k∗ from below

ΦF (b, k) =



R 1
0

R 1
0 −k∗00 (r − s)QF (r)QF (s)0 drds if k (x) is Type 1R R

|r−s|<b−k∗00 (r − s)QF (r)QF (s)drds
+2k∗0− (b)

R 1−b
0 QF (r + b)QF (r)dr if k (x) is Type 2

2
b

R 1
0 Q

F (r)2 dr − 2
b

R 1−b
0 QF (r + b)QF (r) dr if k (x) is Bartlett

In the case of I(1) errors, the limiting distributions of the tests depend on the limiting distributions

of the unit root tests. Let bVα (r) denote the residuals from the projection of Vα (r) onto the space

spanned by F (r), and let V ∗α (r) denote the residuals from the projection of Vα (r) onto the space

spanned by
¡
F (r)0, rj , rj+1, ..., r9

¢0. The following lemma follows directly from Park (1990), Park

and Choi (1988) and Breitung (2002).
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Lemma 1 Suppose Assumptions 1 and 2 hold. If |α| < 1, then as T → ∞, J ⇒ 0, BG ⇒ 0. If

α = 1− α
T , then as T →∞,

J ⇒
R 1
0
bVα (r)2 dr − R 10 V ∗α (r)2 drR 1

0 V
∗
α (r)

2 dr

BG ⇒
R 1
0 Q

F (r)2 drR 1
0
bVα (r)2 dr .

We generically denote these limiting distributions by UR∞ in what follows.

We can now state the main theorem.

Theorem 1 Let M = bT , b ∈ (0, 1]. Then under Assumptions 1 and 2 as T →∞
a)

bσ2 ⇒ σ2ΦF (b, k) if |α| < 1,
T−2bσ2 ⇒ d(1)2ΦF (b, k) if α = 1− α

T
,

b)

WT ⇒
Ã
R∗
µZ 1

0
F (s)F (s)0 ds

¶−1
NF

!0 "
ΦF (b, k)R∗

µZ 1

0
F (s)F (s)0 ds

¶−1
R∗0
#−1

×
Ã
R∗
µZ 1

0
F (s)F (s)0 ds

¶−1
NF

!
exp(−cUR∞),

c)

t⇒

 R∗
³R 1
0 F (s)F (s)

0 ds
´−1

NFr
ΦF (b, k)R∗

³R 1
0 F (s)F (s)

0 ds
´−1

R∗0

 exp(−cUR∞).
Theorem 1 demonstrates that pivotal test statistics are obtained under fixed-b asymptotics regard-

less of kernel or bandwidth, although the limiting distributions of the test statistics depend upon

the choice of kernel and bandwidth. The limiting distributions are clearly different when the errors

are stationary compared to when the errors have a unit root. Given the kernel, bandwidth, scal-

ing factor and percentage point, c can be chosen so that the critical values are the same for both

stationary errors and unit root errors (α = 0). The critical values corresponding to the asymptotic

distributions in Theorem 1 along with the values of c are simple to compute numerically. A power

analysis in the next section indicates specific kernels and bandwidth values that lead to tests with

pseudo-optimal power properties in a model with a simple linear trend. Critical values and details

of their computation are given for the recommended tests in the simple linear trend model following

a discussion power.
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5 Asymptotic Power in the Simple Linear TrendModel and Optimal Kernel/Bandwidths

In this section extensive analysis of local asymptotic power of the simple linear trend model is

provided. We focus on tests of the slope parameter and we derive limiting distributions under a

local alternative. This allows us to compute local asymptotic power for a wide range of kernels and

bandwidths. We base the choice of kernel and bandwidth on how they affect power.

The simple linear trend model is given by

yt = β1 + β2t+ ut, t = 1, ..., T. (6)

The null hypothesis under consideration is H0 : β2 ≤ β0. The alternative is given by

HA : β2 = β0 + δg(T ),

where g(T ) = T−3/2 if |α| < 1 and g(T ) = T−1/2 if α = 1− α
T . The t statistic for this test is given

by

t =

 T 3/2
³bβ2 − β0

´
rbσ2 ³T−3PT

t=1(t− t)2
´−1

 exp (−cUR) . (7)

The limiting null distribution of t follows from Theorem 1. Note that bσ2, J and BG are exactly

invariant to the true value of β2 and are hence exactly invariant to the value of δ. Therefore, onlybβ2 − β0 depends on the local alternative. The following theorem gives the limiting distribution of

t under the local the alternative.

Theorem 2 Let M = bT , b ∈ (0, 1]. Suppose Assumptions 1 and 2 hold. Let t be given by (7) and
let F (r) = (1, r)0 and R∗ = (0, 1)0 . Then under the local alternative, HA, as T →∞

t⇒

 ν +R∗
³R 1
0 F (s)F (s)

0 ds
´−1

NFr
ΦF (b, k)R∗

³R 1
0 F (s)F (s)

0 ds
´−1

R∗0

 exp(−cUR∞),
where ν = δ/σ if |α| < 1 and ν = δ/d(1) if α = 1− α/T .

Using the results of this theorem, it is easy to simulate asymptotic power of the t statistic

for different choices of kernels and bandwidths. The first step is to simulate asymptotic critical

values under the null hypothesis. This was done using 50,000 replications. For each replication, we

approximated the Wiener processes implicit in the limiting distributions using normalized partial

sums of 1,000 iid N(0,1) random deviates. We focused on five well known kernels: Bartlett, Parzen,
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Bohman, Daniell and Quadratic Spectral (QS). Formulas for the kernels are given in an appendix.

We considered the grid of bandwidths given by b = 0.02, 0.04, ..., 1. Given a percentage point, for

a given bandwidth and kernel we computed values of c such that the asymptotic critical values are

the same for |α| < 1 and α = 1. These values of c are different for the J and BG scaling factors.

Given the values of c and the critical values, the second step is to compute rejection probabilities

for a grid of values of δ using simulation methods thus producing asymptotic power curves.

To guide the choice of kernel and bandwidth, we computed power envelopes and then searched

for specific kernels and bandwidths that deliver power close to the envelopes. When the errors are

stationary, the scaling factor does not play a role asymptotically. For each value of δ, the point on

the power envelope is the maximal power across the five kernels and across the grid of b’s. For the

case of unit root errors, we consider α = 0, 10, 20. For each value of α we computed power envelopes

in the same way as was done for the stationary case except that power depends on whether J or

BG is used as the scaling factor. For unit root errors and a given value of α, the power envelope is

the maximal power between the J and BG scaling factors and across the five kernels and the grid

of b’s.

In Figure 1 we plot asymptotic power for the case of stationary errors. We plot the power

envelope and power of the tests using the five kernels each with b = 0.02. We see that, regardless of

the kernel, power virtually equals the power envelope. Therefore, using b = 0.02 delivers essentially

optimal tests when the errors are stationary.

Next we consider the asymptotic power of the tests when the errors are I (1) . Figures 2 and

3 display the power when α = 0. These two figures plot the overall power envelope as well as

envelopes for the individual kernels. Figure 2 gives power when the J scaling factor is used and

Figure 3 gives power when the BG scaling factor is used. The figures show that the Daniell kernel

with the BG scaling factor attains the power envelope. We label this test Dan-BG. Figure 4 plots

the power of the power envelope and Dan-BG using various values of b. This figure shows that the

Dan-BG test with b = 0.16 essentially attains the α = 0 power envelope and is, for all practical

purposes, optimal.

When the errors have a pure unit root, we recommend that the Dan-BG test with b = 0.16 be

used in practice. When the errors are I(0) we recommend that the Daniell kernel be used with the

J scaling factor and bandwidth b = 0.02. The kernel does not matter when b = 0.02 and the errors

are I(0) and we recommend the Daniell kernel for the sake of convenience. Because the choice of

scaling factor does not matter asymptotically when the errors are I(0) we use the J scaling factor

when b = 0.02 because it delivers higher power than the BG scaling factor when the errors are

nearly integrated, α = 10, 20 (see below)3.

3These values of α correspond to AR(1) processes in a sample of size 100 with α = 0.9, 0.8 which are empirically
relevant for economic data.
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Figures 5-8 compare power of the recommended tests and the t-PS-J test of Vogelsang (1998).4

Figure 5 plots power for stationary errors. In this case, the Daniell kernel with b = 0.02 is optimal.

Using b = 0.16 results in some power loss but delivers a tests with power still slightly higher than

t-PS-J . Figure 6 plots power for the case of pure unit root errors (α = 0). Here the Dan-BG test

with b = 0.16 is optimal whereas using b = 0.02 results in a loss of power. As α increases, the

rankings of the tests begin to switch and the ranking depends on the value of the alternative, δ.

With α = 10 Dan-J with b = 0.02 attains the power envelope for small values of δ. For large values

of δ Dan-BG with b = 0.16 attains the power envelope. Dan-BG with b = 0.02 is dominated by

the other tests and is the reason we do not recommend that the BG scaling factor be used when

b = 0.02. It is interesting to note that while the t-PS-J test does not attain the power envelope

for any value of δ, it is relatively close to the envelope for all values of δ and provides a good

compromise to the relative power strengths of Dan-BG with b = 0.16 and Dan-J with b = 0.02.

Figure 8 plots power when α = 20. Here we see that Dan-J with b = 0.02 have power that is, on

average, the closest to the power envelope and using the J scaling factor when b = 0.02 clearly

dominates using the BG scaling factor.

The power results can be summarized as follows. The two recommended tests, Dan-BG with

b = 0.16 and Dan-J with b = 0.02 have complementary power with the former test optimal for unit

root errors and the latter optimal for stationary errors. The t-PS-J test can also be recommended

given its good average power for errors with strong serial correlation. All three tests are configured

to have robust size for both stationary and unit root errors.

One small but important practical note is needed for Dan-J with b = 0.02. In very small

samples, b = 0.02 will generate a bandwidth, M , that is less than 1. Therefore, in practice, we

recommend using M = max(0.02T, 2) for the Dan-J test.

6 Asymptotic Critical Values For the Recommended Tests in the Simple Linear Trend
Model

The limiting distributions of the recommended test statistics in the simple linear trend model,

which are given by Theorem 1, are non-standard. Because they are functions of Brownian motions,

critical values can easily be computed using simulations. We provide right tail critical values for

the t statistics, the left tail critical value, as usual, follow by symmetry around zero. The critical

values can be found in Table 1. The critical values were calculated via simulation methods using

50,000 replications. Normalized partial sums of 1000 i.i.d. N(0, 1) random deviates were used

to approximate the standard Brownian Motions in the distributions found in Theorem 1. Below

each critical value, we provide the values of c required for the J or BG scaling factors. Although

4The t-PS-J test is calculated using the regression zt = β1t + β2
£
1
2

¡
t2 + t

¢¤
+ St,where zt =

Pt
i=1 yi and

St =
Pt

i=1 ui. The t-PS-J statistic is the standard OLS t-statistic divided by T
1/2 and the J scaling factor is used.
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our theoretical power results only apply to tests regarding the slope parameter, we also provide

asymptotic critical values for t-tests on the intercept in the simple linear trend model for the

convenience of practitioners.

7 Finite Sample Evidence

In this section, we discuss some finite sample simulations designed to assess the accuracy of the

asymptotic approximations and compare the finite sample performance of the recommended tests.

For the finite sample simulations, we again use the model given in (6). We test the hypothesis

that β2 ≤ 0 against β2 > 0 at the 5% significance level. The errors are generated according to

ut = αut−1+et+φet−1, where et is i.i.d. N (0, 1). Simulations are reported for α = 0.0, 0.3, 0.5, 0.7,
0.8, 0.9, 0.95, 1.0, and φ = −0.8, −0.4, −0.0, 0.4, 0.8 and for sample sizes 50, 100, and 200. 5, 000
replications were used in all cases. Table 2 provides empirical rejection probabilities of the t-tests.

It is clear that unless a large negative MA-term and a unit root are simultaneously present, all of

these tests have empirical rejection probabilities either close to 0.05 or below. Therefore, the J and

BG scaling factors work well in practice. This contrasts with standard HAC robust tests were it is

well known that strong serial correlation causes over-rejections that can be severe. See Vogelsang

(1998, Table I). The reason the tests over-reject when there is a unit root and a large negative MA

component is because the J and BG statistics are oversized as unit root tests. In other words, J

and BG tend to be too small in finite samples and they do not scale down the t-statistics enough to

control the over-rejection problem. Note that the test that tends to over-reject the least is Dan-BG.

This is a fortunate given that Dan-BG is the test with the highest power when the errors have a

unit root.

We also report some finite sample power results to show that power in practice is qualitatively

similar to that implied by the local asymptotic analysis. Figures 9-16 plot power for α = 0.0, 0.8,

0.9, 1.0, φ = 0, for T = 50 and 100. The results show that the asymptotic patterns are also reflected

in the finite sample results. Dan-BG with b = 0.16 performs best when serial correlation is high,

while Dan-J with b = 0.02 performs best when serial correlation is low. In addition the Daniell

t-statistics perform better than the t-PS-J test, sometimes providing substantial power gains. The

highest power gains over t-PS-J test are obtained when serial correlation is very high, and the gain

increases as T increases from 50 to 100.

8 Evidence on the Prebisch-Singer Hypothesis

In this section we provide empirical evidence on the Prebisch-Singer hypothesis. We analyze the

logarithm of the net barter terms of trade series constructed by Grilli and Yang (1988) and extended

by Lutz (1992). See Grilli and Yang (1988) and Lutz (1992) for details on the construction of this

12



time series. The data is annual from 1900-1995. The net barter terms of trade is the ratio of a

non-fuel primary commodities price index to a manufacturing price index. The Prebisch-Singer

hypothesis asserts that the net barter terms of trade should be falling over time. We plot the

data in Figure 17 and it is clear from the plot that the logarithm of net barter terms of trade has

been decreasing over time. Is this decrease systematic? If we take regression (6) as a reasonable

model of the statistical time series behavior of the logarithm of the net barter terms of trade, then

the Prebisch-Singer hypothesis asserts that the trend slope coefficient is negative. If we take as

the null hypothesis that the Prebisch-Singer hypothesis does not hold against the alternative that

the Prebisch-Singer hypothesis holds, then we can parameterize the hypothesis as H0 : β2 ≤ 0,
H1 : β2 > 0.

Note that the Prebisch-Singer hypothesis is an empirical notion about the long run behavior of

a time series; namely that the time series is steadily decreasing over time. It is important to keep

in mind that this notion has nothing to do with the correlation in the data. More specifically, the

Prebisch-Singer hypothesis has nothing to do with whether the error term is stationary or has a

unit root. In our opinion, the empirical literature on the Prebisch-Singer hypothesis has become

distracted by the unit root issue. This is not surprising given the technical difficulties the presence

of a unit root brings with it. The advantage of the tests proposed in this paper is that they allow

a direct and very simple test of the Prebisch-Singer hypothesis that does not depend on whether

or not a unit root is in the errors.

Using the logarithm of the net barter terms of trade series, we estimated regression (6) by OLS

and obtained bβ2 = −0.0645.We computed the Dan-J(b = 0.02) and Dan-BG(b = 0.16) t-statistics.
Recall that the value of c used for the scaling factors depends on the significance level of the tests

and we provide results for significance levels 5%, 4% and 3%. We also report results using the

t-PS-J test. The results are given in Table 3. All three tests indicate that the null hypothesis

that the Prebisch-Singer hypothesis does not hold can be rejected at the 5% level. The null can be

rejected at the 4% level using the Dan-J(b = 0.02) statistic. These rejections are robust because

the tests do not suffer from over-rejection problems even if the errors have a unit root. Our results

suggest that there is relatively strong evidence that Prebisch-Singer hypothesis holds implying that

Prebisch and Singer were right5.

5As an additional robustness check, we applied the partial sum trend function structural change tests proposed by
Vogelsang (1999). We computed variants of the Vogelsang (1999) tests designed to jointly detect a shift in intercept
and/or slope in the deterministic trend function. The break date was treated as unknown. The tests also use the
J scaling factor to control the over-rejection problem caused by strong serial correlation. We computed the mean,
mean-exponential and supremum statistics using 1% trimming (see Vogelsang (1999) for details). The results were:
mean=0.084, mean-exponential=0.0103 and supremum=0.0948. The 5% asymptotic critical values for these tests
when using the J scaling factor are 2.0917, 1.3325 and 5.1651 respectively. Therefore, the null hypothesis that the
trend function is stable over time cannot be rejected.
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9 Conclusion

In this paper we have proposed tests for hypotheses regarding the parameters of a the deterministic

trend function of a univariate time series. The tests do not require knowledge of the form of serial

correlation in the data and they are robust to strong serial correlation. The data can even contain a

unit root and the tests still have the correct size asymptotically. The tests we analyze are standard

HAC robust tests based on nonparametric variance estimators. We extend the small-b asymptotic

framework for HAC robust tests recently proposed by Kiefer and Vogelsang (2002). This allows

us to analyze the power properties of the tests with regards to bandwidth and kernel choices. Our

analysis shows that among popular kernels, there are specific kernel and bandwidth choices that

deliver tests with maximal power within a specific class of tests that have the correct asymptotic

size whether the errors are stationary or have a unit root. We achieve this size robustness using

the J scaling factor proposed by Vogelsang (1998) and a new scaling factor based on the unit root

test of Breitung (2002).

For inference regarding the slope parameter in the simple linear trend model, our analysis

suggests that three specific tests should be used in practice. When the errors are stationary, the

Daniell kernel with bandwidth equal to 0.02 times the sample size provides a test with optimal

power. We recommend that the J scaling factor be used with this test. When the errors have a

unit root, the Daniell kernel with bandwidth equal to 0.16 times the sample size provides a test

with optimal power when the Breitung scaling factor is used. Although not optimal, the partial

sum test of Vogelsang (1998) is also recommended because it provides a viable compromise between

the two Daniell kernel tests when serial correlation is strong. In this case neither Daniell tests are

optimal and the partial sum test can have average power closer to the power envelope.

We applied the three recommended tests to the logarithm of a net barter terms of trade series

and the tests suggest that this series has a statistically significant negative slope. This finding is

consistent with the well known Prebisch-Singer hypothesis. Because our tests are robust to strong

serial correlation or a unit root in the data, our results in support of the Prebisch-Singer hypothesis

are relatively strong.

References

Ardeni, P. G. and Wright, B. (1992), The Prebisch-Singer Hypothesis: A Reappraisal Independent

of Stationarity Hypotheses, Economic Journal 102, 803—812.

Breitung, J. (2002), Nonparametric Tests for Unit Roots and Cointegration, Journal of Economet-

rics 108, 343—363.

14



Chan, N. H. and Wei, C. (1988), Limiting Distribution of Least Squares Estimates of Unstable

Autoregressive Processes, Annals of Statistics 16, 367—401.

Cuddington, J. T. and Urzua, C. M. (1989), Trends and Cycles in the Net Barter Terms of Trade:

A New Approach, Economic Journal 99, 426—442.

Grilli, E. R. and Yang, C. (1988), Primary Commodity Prices, Manufactured Goods Prices, and

the Terms of Trade of Developing Countries, World Bank Economic Review 2, 1—47.

Kiefer, N. M. and Vogelsang, T. J. (2002), A New Asymptotic Theory for Heteroskedasiticy-

Autocorrelation Robust Tests, Working Paper, Center for Analytic Economics, Cornell Uni-

versity.

Lutz, M. G. (1992), A General Test of the Prebisch-Singer Hypothesis, Review of Development

Economics 3, 44—57.

Park, J. Y. (1990), Testing for Unit Roots and Cointegration by Variable Addition, in T. Fomby

and F. Rhodes (eds), Advances in Econometrics: Cointegration, Spurious Regressions and

Unit Roots, London: Jai Press, pp. 107—134.

Park, J. Y. and Choi, I. (1988), A New Approach to Testing for a Unit Root, Center for Analytic

Economics, Cornell University, Working Paper 88-23.

Phillips, P. C. B. (1987), Time Series Regression with Unit Roots, Econometrica 55, 277—302.

Phillips, P. C. B. and Solo, V. (1992), Asymptotics for Linear Processes, The Annals of Statistics

20, 971—1001.

Powell, A. (1991), Commodity and Developing Country Terms of Trade: What Does the Long Run

Show?, Economic Journal 101, 1485—1496.

Prebisch, R. (1950), The Economic Development of Latin America and Its Principle Problems,

United Nations Publications, New York.

Sapsford, D. (1985), The Statistical Debate on the Net Barter Terms of Trade Between Primary

Commodities and Manufactures: A Comment and Some Additional Evidence, Economic Jour-

nal 95, 781—788.

Singer, H. (1950), The Distributions of Gains Between Investing and Borrowing Countries, Amer-

ican Economic Review, Papers and Proceedings 40, 473—485.

Spraos, J. (1980), The Statistical Debate on the Net Barter Terms of Trade Between Primary

Commodities and Manufactures, Economic Journal 90, 107—128.

15



Trivedi, P. K. (1995), Tests of Some Hypotheses About Time Series Behavior of Commodity Prices,

Advances in Econometrics and Quantitative Economics: A Volume in Honor of C. R. Rao,

Blackwell, Oxford, pp. 383—412.

Vogelsang, T. J. (1998), Trend Function Hypothesis Testing in the Presence of Serial Correlation

Correlation Parameters, Econometrica 65, 123—148.

Vogelsang, T. J. (1999), Testing for a Shift in Trend When Serial Correlation is of Unknown Form,

Center for Analytic Economics Working Paper 97-11, Cornell University.

16



Appendix
In this appendix we give the proof of Theorem 1. Theorem 2 follows easily from Theorem 1

using simple algebra and details are omitted.

Proof of Theorem 1.

Proof of part a):

Following Kiefer and Vogelsang (2002), we define

k∗ (x) = k
³x
b

´
,

and

∆2κij =

½
k

µ
i− j
[bT ]

¶
− k

µ
i− j − 1
[bT ]

¶¾
−
½
k

µ
i− j + 1
[bT ]

¶
− k

µ
i− j
[bT ]

¶¾
,

and use this expression to rewrite bσ2 as
bσ2 = −T−1 T−1X

l=1

T−1
T−1X
i=1

T 2∆2κil
³
T−1/2 bSi´³T−1/2 bSl´ . (8)

For (8) to be valid it must be the case that the residuals sum to zero. So, for the asymptotic results

to hold, a constant must be included in the model. The following lemma provides the distribution

of T−1/2 bSt.
Lemma 2 T−1/2 bS[rT ] ⇒ σQF (r) .

Proof of Lemma 2: Simple matrix manipulations yield:

T−1/2 bS[rT ] = T−1/2 [rT ]X
t=1

ut −
T−1 [rT ]X

t=1

f (t)0 τT

T 1/2τ−1T ³bβ − β
´
. (9)

where

T 1/2τ−1T
³bβ − β

´
=
¡
T−1τT f (T )0 f (T ) τT

¢−1 ³
T−1/2τT f (T )0 u

´
. (10)

Clearly the terms consisting only of trend functions will have limiting distributions which do not

depend on whether or not ut is stationary. It is well know that these terms have the following

limits:

T−1τT f (T )0 f (T ) τT ⇒
Z 1

0
F (s)F (s)0 ds, and (11)

T−1
[rT ]X
t=1

f (t)0 τT ⇒
Z r

0
F (s)0 ds. (12)

17



The last term in (10) and the first term in (9) depend on ut and therefore their limiting distributions

will depend on whether or not ut is stationary. Again using standard results, those asymptotic

distributions are:

T−1/2τT f (T )0 u ⇒ σ

Z 1

0
F (s)dw (s) if |α| < 1,

T−3/2τT f (T )0 u ⇒ d(1)

Z 1

0
F (s)Vα (s) ds if α = 1− α

T
,

T−1/2
[rT ]X
t=1

ut ⇒ σw (s) if |α| < 1,

T−3/2
[rT ]X
t=1

ut ⇒ d(1)

Z r

0
Vα (s)ds if α = 1− α

T
.

Using these limits the asymptotic distribution of bS[rT ] is as follows.
T−1/2 bS[rT ] ⇒ σ

Ã
w (r)−

Z r

0
F (s)0 ds

µZ 1

0
F (s)F (s)0 ds

¶−1 Z 1

0
F (s) dw (s)

!
= σQF (r) if |α| < 1,

T−3/2 bS[rT ] ⇒ d(1)

ÃZ r

0
Vα (s) ds−

Z r

0
F (s)0 ds

µZ 1

0
F (s)F (s)0 ds

¶−1 Z 1

0
F (s)Vα (s) ds

!
= d(1)QF (r) if α = 1− α

T
.

The rest of the proof is split into three cases, corresponding to Type 1, Type 2 and the Bartlett

kernels.

Case 1: k (x) is a Type 1 kernel. By definition of the second derivative, T 2∆2κil → k00, and using
Lemma (2) it follows easily for the case when |α| < 1 that

bσ2 = T−1
T−1X
l=1

T−1
T−1X
i=1

−T 2∆2κilT−1/2 bSiT−1/2 bSl
⇒ σ2

Z 1

0

Z 1

0
−k00 (r − s)QF (r)QF (s) drds.

When α = 1− α
T we have

T−2bσ2 = T−1
T−1X
l=1

T−1
T−1X
i=1

−T 2∆2κilT−3/2 bSiT−3/2 bSl
⇒ d(1)2

Z 1

0

Z 1

0
−k00 (r − s)QF (r)QF (s) drds.
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Case 2: k (x) is a Type 2 kernel. Following Kiefer and Vogelsang (2002), we use simple algebra and

the definition of ∆2κij , to establish that when |i− j| > [bT ] , ∆2κij = 0, and when |i− j| = [bT ] ,
∆2κij = −k

³
[bT ]−1
[bT ]

´
. Also recall that when |i− j| < [bT ] k (x) is twice continuously differentiable.

First consider the case when |α| < 1. We split up the expression of bσ2 as follows:
bσ2 = T−1

T−1X
l=1

T−1
T−1X
i=1

−T 2∆2κilT−1/2 bSiT−1/2 bSl
= T−1

T−1X
l=1

T−1
T−1X
i=1

−1{|i−j|<[bT ]}T 2∆2κilT−1/2 bSiT−1/2 bSl
+ 2T−2

T−[bT ]−1X
l=1

T 2k

µ
[bT ]− 1
[bT ]

¶
T−1/2 bSiT−1/2 bSi+[bT ]

= T−1
T−1X
l=1

T−1
T−1X
i=1

−1{|i−j|<[bT ]}T 2∆2κilT−1/2 bSiT−1/2 bSl
+ 2k

µ
1− 1

[bT ]

¶ T−[bT ]−1X
l=1

T−1/2 bSiT−1/2 bSi+[bT ]
⇒ σ2

ÃZ Z
|r−s|<b

−k∗00 (r − s)QF (r)QF (s)drds+ 2σ2k∗0− (b)
Z 1−b

0
QF (r + b)QF (r)dr

!
,

where the asymptotic distribution follows directly from Lemma (2) and Kiefer and Vogelsang (2002).

The result when α = 1− α
T follows analogously for T

−2bσ2 where bSi is normalized by T−3/2 instead
of T−1/2.
Case 3: k (x) is the Bartlett Kernel. Here again using simple algebra following Kiefer and Vogelsang

(2002), it can be verified that when |i− j| = 0, ∆2κij =
2
[bT ] , and when |i− j| = [bT ] , ∆2κij =

− 1
[bT ] . Using these expressions and Lemma (2) in (8), we obtain the following limiting distribution

when |α| < 1:

bσ2 = T−1
T−1X
l=1

T−1
T−1X
i=1

T 2∆2κilT
−1/2 bSiT−1/2 bSl

=
2

[bT ]

T−1X
i=1

³
T−1/2 bSi´2 − 2

bT

T−[bT ]−1X
i=1

T−1/2 bSiT−1/2 bSi+[bT ]
⇒ σ2

µ
2

b

Z 1

0
QF (r)2 dr − 2

b

Z 1−b

0
QF (r + b)QF (r)dr

¶
,

The result when α = 1− α
T follows analogously for T

−2bσ2 where bSi is normalized by T−3/2 instead
of T−1/2. Comparing the distributions from Cases 1-3 with the definition of ΦF (b, k) completes

the proof of a).
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Proof of part b): First note that WT can be written as

WT =
³
Rbβ − q´0 hbσ2R ¡f (T )0 f (T )¢−1R0i−1 ³Rbβ − q´ exp (−cUR) .

= T
³
Rbβ − q´0 "bσ2RτT µ 1

T
τT f (T )

0 f (T ) τT
¶−1

τTR
0
#−1 ³

Rbβ − q´ exp (−cUR)
=

h¡
A−1RτT

¢
τ−1T T

1/2
³bβ − β

´i0 "bσ2 ¡A−1RτT ¢µ 1
T
τT f (T )

0 f (T ) τT
¶−1 ¡

τTR
0A−1

¢#−1
×
h¡
A−1RτT

¢
τ−1T T

1/2
³bβ − β

´i
exp (−cUR) ,

By definition A−1RτT → R∗. Furthermore we established the asymptotic distribution of bσ2 in a).
It therefore directly follows that when |α| < 1

WT ⇒
"
σR∗

µZ 1

0
F (s)F (s)0 ds

¶−1
NF

#0 "
σ2ΦF (b, k)R∗

µZ 1

0
F (s)F (s)0 ds

¶−1
(R∗)0

#−1

×
Ã
σR∗

µZ 1

0
F (s)F (s)0 ds

¶−1
NF

!
exp(−cUR∞)

=

"
R∗
µZ 1

0
F (s)F (s)0 ds

¶−1
NF

#0 "
ΦF (b, k)R∗

µZ 1

0
F (s)F (s)0 ds

¶−1
(R∗)0

#−1

×
Ã
R∗
µZ 1

0
F (s)F (s)0 ds

¶−1
NF

!
exp(−cUR∞).

When α = 1 − α
T the desired result follows by normalizing

³bβ − β
´
by T−1/2 and normalizing bσ2

by T−2. Part c) of the theorem follows directly from part b). ¥
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A List of Kernels

The kernels we use:

Bartlett k (x) =

½
1− |x| for |x| ≤ 1

0 otherwise

Parzen (a) k (x) =


1− 6x2 + 6 |x|3 for |x| ≤ 1

2

2 (1− |x|)3 for 12 ≤ |x| ≤ 1
0 otherwise

Quadratic Spectral (QS) k (x) =
25

12π2x2

µ
sin (6πx/5)

6πx/5
− cos (6πx/5)

¶
Daniell k (x) =

sin (πx)

πx

Bohman k (x) =

½
(1− x) cos (πx) + sin (πx) /π for |x| ≤ 1

0 otherwise

The second derivatives of the kernels we use are:

Parzen (a) k00 (x) =

½ −12 + 36 |x| for |x| ≤ 1
2

12 (1− |x|) for 12 ≤ |x| ≤ 1

QS k00 (x) =


−36π2125 for x = 0

125
72π3x5

h³
12− 36π2x2

5

´
sin (6πx/5)+³

216π3x3

125 − 72πx
5

´
cos (6πx/5)

i
otherwise

Daniell k00 (x) =

½ −13π2 for x = 0
2(sin(πx)−πx cos(πx))

πx3
− π sin(πx)

x otherwise

Bohman k00 (x) = π sin (πx)− π2 (1− x) cos (πx)
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Table 1: Asymptotic Critical Values of t-tests in the Simple Linear Trend Model

yt = β1 + β2t+ ut.

Dan-J , b = 0.02 Dan-BG, b = 0.16 t-PS-J
β1 β2

90% 1.337 1.329
(c) (.5791) (.9648)
95% 1.726 1.710
(c) (.7315) (1.322)
97.5% 2.064 2.052
(c) (.8975) (1.795)
99% 2.436 2.462
(c) (1.167) (2.466)

β1 β2
90% 1.773 1.752
(c) (53.84) (148.8)
95% 2.405 2.391
(c) (57.42) (191.1)
97.5% 3.065 3.035
(c) (60.55) (241.5)
99% 3.964 3.995
(c) (66.21) (317.3)

β1 β2
90% 1.857 1.321
(c) (.1748) (.5039)
95% 2.451 1.737
(c) (.2275) (.7266)
97.5% 3.021 2.134
(c) (.2915) (1.017)
99% 3.699 2.599
(c) (.3877) (1.479)
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TABLE 2: Empirical Null Rejection Probabilities in the Simple Trend Model

5% Nominal Level, 5,000 Replications

yt = β1 + β2t+ ut, ut = αut−1 + et + φet−1, et, i.i.d.N(0, 1), u0 = 0, H0 : β2 ≤ 0, HA : β2 > 0.
T = 50 T = 100 T = 200

φ α Dan-J Dan-BG t-PS-J Dan-J Dan-BG t-PS-J Dan-J Dan-BG t-PS-J
-0.8 0.00 0.000 0.022 0.000 0.000 0.041 0.000 0.001 0.046 0.002

0.50 0.001 0.018 0.004 0.001 0.036 0.009 0.003 0.047 0.019
0.70 0.005 0.025 0.016 0.010 0.042 0.030 0.018 0.045 0.037
0.80 0.020 0.034 0.034 0.041 0.049 0.052 0.049 0.046 0.053
0.90 0.063 0.056 0.074 0.128 0.063 0.093 0.129 0.050 0.081
0.95 0.106 0.075 0.099 0.196 0.082 0.128 0.193 0.057 0.108
1.00 0.190 0.126 0.165 0.297 0.152 0.213 0.314 0.133 0.208

-0.4 0.00 0.003 0.039 0.020 0.014 0.045 0.033 0.036 0.045 0.039
0.50 0.026 0.025 0.031 0.045 0.037 0.044 0.047 0.040 0.047
0.70 0.043 0.023 0.033 0.071 0.031 0.049 0.064 0.034 0.049
0.80 0.046 0.023 0.034 0.077 0.028 0.047 0.075 0.029 0.047
0.90 0.054 0.026 0.042 0.071 0.022 0.042 0.076 0.023 0.042
0.95 0.067 0.034 0.049 0.070 0.024 0.043 0.058 0.018 0.034
1.00 0.113 0.078 0.100 0.107 0.069 0.092 0.081 0.058 0.072

0.0 0.00 0.020 0.030 0.033 0.034 0.040 0.043 0.043 0.042 0.045
0.50 0.035 0.018 0.026 0.050 0.029 0.041 0.046 0.034 0.045
0.70 0.028 0.016 0.020 0.052 0.024 0.035 0.052 0.026 0.041
0.80 0.025 0.014 0.018 0.045 0.019 0.031 0.055 0.022 0.038
0.90 0.019 0.013 0.017 0.036 0.016 0.023 0.045 0.016 0.027
0.95 0.023 0.021 0.022 0.030 0.016 0.021 0.033 0.013 0.022
1.00 0.045 0.051 0.045 0.052 0.049 0.052 0.048 0.048 0.048

0.4 0.00 0.032 0.022 0.028 0.036 0.035 0.041 0.040 0.038 0.045
0.50 0.030 0.015 0.020 0.043 0.027 0.036 0.042 0.030 0.043
0.70 0.020 0.012 0.015 0.041 0.020 0.031 0.047 0.024 0.038
0.80 0.015 0.011 0.013 0.036 0.017 0.027 0.048 0.020 0.033
0.90 0.013 0.012 0.011 0.026 0.014 0.020 0.038 0.014 0.025
0.95 0.014 0.017 0.014 0.024 0.014 0.017 0.029 0.012 0.019
1.00 0.028 0.042 0.030 0.040 0.046 0.042 0.042 0.045 0.043

0.8 0.00 0.034 0.021 0.026 0.033 0.033 0.040 0.038 0.036 0.045
0.50 0.027 0.015 0.018 0.041 0.026 0.034 0.041 0.029 0.041
0.70 0.018 0.011 0.014 0.039 0.020 0.029 0.046 0.024 0.037
0.80 0.015 0.009 0.012 0.034 0.017 0.026 0.047 0.020 0.033
0.90 0.012 0.011 0.009 0.024 0.013 0.019 0.037 0.014 0.024
0.95 0.013 0.015 0.013 0.022 0.013 0.017 0.028 0.012 0.018
1.00 0.026 0.041 0.028 0.037 0.045 0.040 0.041 0.044 0.042
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Table 3: Empirical Results for the Logarithm of Net Barter Terms of Trade

Annual Data, 1900-1995

Dan-J (b = 0.02) Dan-BG (b = 0.16) t-PS-J
Slope Estimate -0.0645 -0.0645 -0.0598
t-stat (5% c) -2.490 -2.427 -1.818
(5% cv) (-1.710) (-2.391) (-1.737)

t-stat (4% c) -2.185 -2.279 -1.686
(4% cv) (-1.824) (-2.588) (-1.867)

t-stat (3% c) -1.830 -2.119 -1.498
(3% cv) (-1.960) (-2.860) (-2.029)
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