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Abstract 
This survey reviews diverse academic production on compositional dynamic series analysis. Although 
time dimension of compositional series has been little investigated, this kind of data structure is widely 
available and utilized in social sciences research. This way, a review of the state-of-the-art on this topic is 
required for scientist to understand the available options. The review comprehends the analysis of several 
techniques like autoregresive integrate moving average (ARIMA) analysis, compositional vector 
autoregression systems (CVAR) and state space techniques but most of these are developed under 
Bayesian frameworks. As conclusion, this branch of the compositional statistical analysis still requires a 
lot of advances and updates and, for this same reason, is a fertile field for future research. Social scientists 
should pay attention to future developments due to the extensive availability of this kind of data structures 
in socioeconomic databases. 
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1. Introduction 
Compositions evolve with time. While this is hardly observed in geological sciences where individuals 
under scrutiny (solid rocks, sand, sediments, for instance) usually change their composition only through 
a long period of time (usually longer than the own researcher’s lifetime), these changes usually take 
shorter time in social sciences data and becomes a powerful dimension for determining the explanation of 
several social events. While this has long been take it into account for non-constrained data and an 
enormous amount of literature has been written on Time Series Analysis (Anderson 1994, Hamilton 1994, 
Enders 1995, remain as good examples) little has been said about Compositional Time Series (CTS). This 
paper briefly reviews literature focused on how different research works have dealt with the inclusion of 
time dimension in compositional statistical analysis. 
 
The goal of the paper is to describe four principal aspects on each quoted work: what transformation have 
been applied to raw data for avoiding spurious analysis? What statistical methodology has been used for 
analyzing transformed data? Has this methodology brought new insight into CTS analysis? And lastly, 
what CTS features, if any, remain unanswered?  
 
We find that academic literature is scant and sparse and there seems to be no clear mainstream. Several 
authors freely use the two main Aitchison’s transformations and ad-hoc statistical model and sometimes 
these infrequent modelling approaches seem to be the center of the investigation rather the compositional 
nature of data. The paper follows with section 2 where approaches for CTS divided in two subsections: 
one for Bayesian approaches and the second for the non-Bayesian approaches. Section 3 summarizes 
main findings and Section 4 ends the paper with conclusions. 
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2. Approaches to CTS Analysis 
While non-Bayesian approaches may be considered the mainstream for non-constrained time series 
analysis, it could be argue that this has not been the case for CTS analysis. Many of the work that will be 
quoted have been designed under the Bayes’ theorem spirit and in some cases that requires a quick review 
of these statistics approaches. Chronologically, earlier papers worked with transformed data on the log-
normal distribution and latter papers introduce the Dirichlet distributions as assumption in parameters 
behavior. Original notations are preserved so this could make reading a little bit diffuse. This is an issue 
to solve in future updates. We begin next section describing Bayesian CTS models. 
 
 
2.1 Bayesian Approaches to CTS 
As Broemeling and Shaarawy (1986) summarize, non Bayesian time series analysis can be relative easily 
transformed to Bayesian technique analysis. Bayesian techniques require that researchers explicit their 
expectations on the actual distribution data under analysis have (see Poirier and Tobias, 2005, and 
especially Zellner, 1984: part 3, for an extensive and illustrative text on Bayesian inference).  
 
Bayesian approach applied to compositional time series requires that prior information on time series 
evolution must be defined. Grunwald (1987) works with compositional time series by using state space 
modelling for non-Gaussian time series. He opts for the centered logratio transformation for dealing with 
the constant-sum constraint of data. Then he applies a state space modeling with a Bayesian twist: He 
specifies initial observations and state distributions “which describe either diffuse or well-defined initial 
beliefs” (Grunwald, 1987: 16) for time series forecasting. This process is recursively done by the Kalman 
filter implemented on the filtering stage.   
 
For those that are unrelated with state space modelling, we can briefly state that a time series w1, w2, … 
could be thought as a steady model 
 
 ( ) ( )| , ~ Dir ,t t t t ty θ τ τ θ        (2.1) 
 
where, in the case of continuous proportions, we assume yt follows a Dirichlet distribution. This is called 
the observation equation, that evolve conditional to a state tθ  with spread τt.2 The state { }tθ  is assumed 
to evolve over time according to the steady state model, namely 
 
 ( ) ( ){ }1 | D | Dt t t tp p

γ
θ θ+ ∝   with 0 1γ< <     (2.2) 

 
There, Dt is defined recursively by { }1,t t tD I D −=  where, for 1t ≥ , { ,t tI y= all other relevant 
information available at time t but not at t – 1} and D0 are the externally determined estimated parameters 
and all available relevant information at t = 0. 
 
Dirichlet distribution in (2.15) has the following form: 
 

( ) ( )
( )
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11
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d
j dd
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f p p pββτ
β

+ −−
++

=

Γ
=

Γ∏
K  with 1 1dτ β β += + +K    (2.3) 

 
with sample space Sd and parameter space ( ){ }1 1, , : 0 for 1, , 1d j j dβ β β+ > = +K K  

.
 

 
As for any state space model3, it must be defined (i) the assumptions underlying the state behavior, (ii) the 
description of the (recursive) filtering process, as Grumwald stated as described by: 
 

                                                 
2 τt is deliberated introduced by the author to cope with a problem of forecasting. τt is updated separately 
from tθ . See Grunwald (1987: Ch. 4) and Grunwald, Raftery and Guttorp (1993: 108-109) for details. 
3 For a general theory of state space modelling applied to time series analysis see Harvey (1989) and a 
Spanish language version of Abril (1999).  
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Observation Distribution ( )1 1|t tf y θ+ +  (2.4) 

State Forecast Distribution ( )( ) ( )( ) ( )( )1 1| | |t t t
t t t tf y f y f y dθ θ θ θ+ += ∫  (2.5) 

State Distribution Posterior ( )( ) ( ) ( )( )
( )( )

1 1 1

1

1

| |
|

|

t
t t tt

t t
t

f y f y
f y

f y y

θ θ
θ

+ + +

+

+

∫
=  (2.6) 

 
(Note that the state posterior distribution is described by Bayes’ theorem.), (iii) the forecasting stage 
(described in the denominator of the state distribution posterior), and (iv) the smoothing stage (again, 
derived from state distribution posterior for t ≤ n). Finally, a crucial item is the likelihood function that 
can be used for estimating parameters outside the internal updating procedure. This function is usually 
maximized through numerical methods. If it is assumed that the observation distribution ( )|t tf yφ θ  and 

the state forecasting mechanism ( )1 |t tfφ θ θ+  are known in form but depend on an unknown parameter φ. 
The log-likelihood for φ is  
 

 ( ) ( )( )1
1
log |

t t
t

i
L f y yφφ +

=
= ∑       (2.7) 

 
Grunwald finally uses US Federal Government data (on tax revenues and external trade) for testing his 
models and applies the Dirichlet distribution in the updating and forecasting procedures and obtains 
acceptable good fitting and forecasted values.  
 
Quintana and West (1988) model Mexican import time series by using Aitchison’s additive log 
transformation. They model series as a class of dynamic multivariate regression (DMR), close related to 
state space modelling. This technique allows for multiseries variate time series modeling by using a basic 
structure that assume the existence of an observation equation (observed values), evolution equation (state 
equation) and prior information (assumptions on state equation probability distribution). We could write 
as follows: 
 

Observation Equation t t t ty x e′ ′ ′= Θ +  ( )~ 0,t te N v Σ  (2.8) 

Evolution Equation 1t t t tG F−Θ = Θ +  ( )~ 0, ,t tF N W Σ  (2.9) 

Prior Information ( ) ( )1 1| ~ , ,t t tN M C− −Θ Σ Σ  ( )1
1 1~ ,t tW S d−
− −Σ  (2.10) 

 
In the above equations, yt is a ( )1q×  vector of observations made at time t, xt is a ( )1p×  vector of 

independent variables, tΘ  is an unknown ( )p q×  matrix of system (regression) parameters, et is a ( )1q×  

observation error vector, vt is a scalar variance associated with et and Σ is an unknown ( )q q×  system 
scale variance matrix providing cross sectional correlation structure for the components of yt. N (M, C, Σ) 
and W –1 (S, d)  denote the general matrix normal and inverted-Wishart distributions (this are derived in 
the Appendix of the original paper). 
 
The nature of the model component series can be seen as follows. For 1, ,j q= K  let ytj be the 
observation on the jth series, simply the jth element of yt; etj the corresponding element of et; θt the jth 
column of tΘ ; ftj the jth column of Ft; mtj the jth column of Mt; and 2

tσ  the jth diagonal element of Σ. Then, 
ytj marginally follows the DRM 
 

Observation Equation tj t tj tjy x eθ′= +
 ( )2~ 0,tj t je N vσ  (2.11) 

Evolution Equation 1tj t t tjG fθ θ −= +  ( )2~ 0,tj t jf N Wσ  (2.12) 

Prior Information ( ) ( )2
1, 1,| ~ ,t j t j t jN m Cθ σ− −Σ  ( )1

1 1~ ,t tW S d−
− −Σ  (2.13) 

 
The join structure comes in via the covariances, conditional upon Σ,  

( ), ,ti tj t ijCov e e vσ=   (2.14) 
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( ), ,ti tj t ijCov f f Wσ=   (2.15) 

( ) 1, ,ti tj t ijCov Cθ θ σ−=   (2.16) 
 

for i ≠ j, where σij is the ij off-diagonal element of Σ.   
 
They use the clr-transformation by Aitchison (1986). More specifically they concentrate on 

( )1, ,t t tqz z z′ = K , 1, 2,t = K , be a multivariate time series such that zti > 0 for all i and t. They are 

concerned only in the proportions ( ) 1
1

q
it ti tp z z

−

== ∑  
 
Logratio transformations map the vector of proportions pt into a vector of real-valued quantities yt. A 
particular, symmetric log ratio transformation is given by  
 

 ( ) ( )log log log ,  1, , ,tj
tj tj tj

tj

p
y p g p j q

g p

 
 = = − =
 
 

K
 

   (2.17) 

 
where g(ptj) is the geometric mean of the pij. This is known as the centered logratio transformation. 
Modelling yt  with the DRM previously presented implies a conditional multivariate normal structure. 
Thus the observational distribution of the proportions pti is the multivariate logistic-normal distribution as 
defined in Aitchison and Shen (1980). 
 
A difference between state space modelling and DRM approach is that DRM include discount factors to 
adapt Wt to subjective or exogenously given interventions. Thus, for a given discount factor δ, such that 
0 1δ< ≤ , we have that 
 
 ( )1

11t t t tW G C Gδ −
− ′= −        (2.18) 

 
When δ = 1, Wt = 0 and tΘ  will evolve purely deterministic, or static model, or with smaller values 
model greater variation in tΘ . This is use, for example, for taking into account shocks or trends they 
could modify Wt evolution. Notice that state space modelling approach simply add covariates (for 
instance, dummies that represents such shocks or trends) explicitly and then it could measure their 
statistically impact.      
 
Following Quintana and West (1988) noted the first complication on the transformed data. As we suppose 
that yt in (2.1) follows (2.11) then emerges the singularity of the model due to the zero-sum constraint, 
where 1 0ty′ = , for all t, where ( )1 1, ,1′ = K . This follows from the definition and leads to singularity of 

the matrices Σ, Vt, *
tV , etc. The way they deal with this problem is by transforming yt using ty K′  where 

 

  [ ]111 ,  1 1, ,1K I q− ′′= − = K      (2.19) 
 
Now we have to retransform (2.11) by including (2.18), so we get: 
 

Observation Equation ( ) ,t t t ty K x Ke ′′ ′= Ψ +  ( )~ 0, ,t tKe N v Ξ  (2.20)   

Evolution Equation 1 ,t t t tG F K−Ψ = Ψ +  ( )~ 0, ,t tF K N W Ξ  (2.21) 

Prior Information ( )1 1 1~ , , ,t t tN M K C− − −Ψ Ξ  ( )1
1 1~ ,t tW K S K d−
− −′Ξ  (2.22) 

 
Where Ψt = ΘtK and Ξ = K´ΣK. By these linear transformations, quantities tx′ , vt, Gt, Wt, and Ct remain 
unaffected by the transformation. This way, the constrained data follows now a DMR. Quintana and West 
end the paper with an application to Mexican import composition with very good results. 
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Grunwald, Raftery, and Guttorp (1993) review Grunwald (1987) thesis. They specify transformation on 
raw data as symmetric logratios (centered logratios) and delineate more concisely the Dirichlet state space 
modelling approach described as based on the idea that dynamic proportions are made up of an 
unobserved random walk component and a noise component. They apply their stylized model in world 
car production composition forecasting. 
 
Cargnoni, Müller, and West (1995) use the forecasting of the number of high school students in Italy as 
the motivating case study for CTS analysis. They divide students as (i) students that repeat the same grade 
in consecutive years, (ii) students that proceed to the following grade and do not leave the school, and (iii) 
students that leave the school. They don’t clearly specify the transformation to apply, but they put in the 
options of transformation those of Aitchison’s (1986). As previous investigations, they rely on a kind of 
state space time series modelling. By assuming that there exists cross-sectional conditional independence 
of the series (independence among individuals) they derive a class of conditionally Gaussian dynamic 
models, a bit more complex than Quintana and West’s. 
 
Ravishanker, Dey, and Iyengar (2004) study the relationship between air pollution and mortality 
proportions in Los Angeles by using a Hierarchical Bayesian modeling framework. They first transform 
raw data by the additive logratio (alr) transformation. Then they use linear regression with vector 
autoregressive moving average (VARMA) errors. Inference is derived from Bayesian framework using 
Markov chain Monte Carlo algorithm in order to simultaneously generate samples from the posterior 
distributions of the parameters.  
 
The framework can be described as follows: Let xt denote a g-dimensional composition at time t; i.e. a 
vector of quantities Xtj, j = 1,…,G such that 1 1G

j tjX= =∑ , t = 1,…., T. Let yt denote the vector resulting 
from the alr transformation of xt, i.e.,  
 

 ln ,tj
tj

tG

X
Y

X
 

=  
 

 with 1, ,j g= K , 1, ,t T= K      (2.23) 

 
Let zt be a t-dimensional vector of covariates at time t. A normal linear regression model with VARMA 
errors for the g-dimensional vector time series yt is given by 
 
 ,t t ty z wα η′= + +         (2.24) 
 ( ) ( )at tB w BΦ = Θ         (2.25) 
 
where α is a g-dimensional intercept term, η is a t g×  matrix of regression coefficients, wt denotes the g-
dimensional vector of regression errors, at are g-variate iid N (0,Σ) variates with unknown positive 
definite covariance matrix Σ. It is assumed that wt = (W1,t,…, Wg,t) are generated by a zero mean VARMA 
(p, q) process. Once this model is estimated arises the problem that solution may be non-unique, so the 
authors apply a Bayesian selection mechanism among best solution candidates. For this to be done they 
maximize a Gaussian likelihood function, then they specify a prior density function and, using Bayes’s 
theorem, they specify the posterior density. As this last posterior density is analytically intractable they 
must rely on numerical simulations. They use Monte Carlo simulations for the expected composition 
proportions based on the samples from the (simulated) posterior density function. 
 
All of this enormous and complex simulated process makes difficult for direct interpretation of the steps 
of the estimation procedure. As final result, they obtain twelve possible models from where they choose, 
by selecting those with lower Bayesian Information Criterion (BIC). 
 
Next section explores non-Bayesian models of CTS. 
 

2.2 Non-Bayesian Approaches to CTS 
While Bayesian approaches rely on the research specifying a priori what distribution she believes to have 
that data and then updating with the observed values, non-Bayesian procedures, as linear regression, 
assume some known (usually Gaussian) probability distribution of the stochastic part of the model. 
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Although the data constitute a multivariate time series, ARIMA techniques based on multivariate 
autoregressive integrated moving average are usable due to the sum-constraint. Time as inter-periodic 
correlated is the base of the ARMA approach. Brunsdon (1987), Brundson and Smith (1988) and Smith 
and Brundson (1989) use the additive logistic transformation for modelling time series as autoregressive 
processes. On the second paper, they review main Aitchinson’s findings on compositional data and adapt 
them into a time series framework. Finally, they try to test subcompositional independence on time series 
by applying their methodology to UK vote-intention’s poll time series data, in the first and third paper, 
and try to forecast unemployment rate in Australian labor force in the second one. 
 
So, they transform data by applying alr transformation like: 

 

 
( ) ( )

1

log ,  1, ,i
i m i

m

u
v a u i m

u +

 
= = = 

 
K        (2.26) 

 

where 11 1 m
im iu u=+ = −∑  with inverse ( ) ( )1

1

, 1, ,
1

t

j

v

i m i vm
j

eu a v i m
e

−

=

= = =
+ ∑

K ( )
1

1 , 1
1 jvm

j

i m
e=

= = +
+ ∑

 

 
where um+1 is the so-called fill-up value. 
 
In Brunsdon (1987) and Smith and Brundson (1989), they first try to test whether subcompositions in 
time series compositional data could be analyzed independently. They finally define a test for causality 
under Granger’s test of causality framework (Granger 1969) on data from UK Gallup poll test. They 
verify in the survey that independence exists between vote intentions on main political and other kinds of 
responses in political survey questions but that there was no independence within vote intentions on main 
political parties. 
 
In Brundson and Smith (1988), they apply Box-Jenkins methodology directly to alr-transformed data. 
This is by far the most common technique taught in time series courses. The goal is to predict labor force 
components in the Australia. They model transformed data as a VARMA process and helped with 
autocorrelograms and partial autocorrelograms they identify the order of the time series. Forecasted 
proportions were reasonably close to actual data.  
 
Brandt, Monroe, and Williams (1999) implement a vector autoregression (VAR) representation for 
dealing with compositional series that vary with time. The VAR was originally proposed by Sims (1980) 
for non-constrained data. They try to elucidate how the evolution of economic and political indexes 
affects vote intentions in the USA.  
 
As VAR models assume that we can best explain the current values of the endogenous variables (both 
compositions and non-compositions) using a sequence of predetermined past values. Formally, they write 
a system of compositions in reduced form for each observation as: 
 
  1

P
jt t j t j tY Z Yγ β ε= −= + +∑        (2.27) 

 
where Yt is an M × 1 = (Q + S) × 1 vector. Zt is a matrix of exogenous variables (including an intercept) 
and Yt – j  is the jth lag of Yt. If we assume that the M × 1 error term εt ∼ N(0,Σ) then we have a time series 
model for the symmetric (clr-transformed) log-ratios of the components. Assuming that the series Yt are 
multivariate log-normal is a sufficient condition for the proportions to have a logistic-normal distribution 
(Aitchison 1986, Quintana and West 1988). They called this system a Compositional VAR or CVAR. 
 
As noted by Quintana and West (1986), there is singularity into this VAR model due to the zero-sum 
constraint of the transformed values of the dependent variables. A traditional solution implemented in 
economic literature has been to drop one of the variables (usually the last variable) as Theil (1971: 326-
356) suggested. So, they adopt Quintana and West proposal and create a matrix K defined as: 
  

 1 ,K I hh
q

′= −          (2.28) 
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where, again, q is the number of components, I is a q q×  identity matrix and h is a 1q×  vector of ones. 
The matrix performs an elementary row operation that maps the logarithms of the proportions to the 
symmetric logratio space. By using K they impose a constraint in the VAR system represented by (2.27) 
which is modified by (2.28) in the following way: 
 
 1

P
jt t j t j tKY Z Y Kδ θ ε= −= + +∑        (2.29) 

 
where Kδ γ= , and j jKθ β= . This way, as in Quintana and West (1988), the transformation leaves the 
lagged and exogenous right-hand side variables unaffected. 
 
Final estimation requires the usual procedure for VAR estimation (i.e., to estimate the q equations one by 
one or the system simultaneously), and then used a numerically extensive work for compute bootstrap 
samples and Monte Carlo integration for computing the moments of the posterior distribution. They apply 
the model to estimate the incidence of socioeconomic and political variables to voters’ partisanship in the 
USA. 
 
A summary is presented on the next section. 

3. Summary 
The following Table summarizes the previous reviews. There it can observed the respective paper 
reference, the transformation applied to raw data, the statistical technique, specific comments of the 
reviewer (if any), and the application field authors’ did for testing their models. As observed, alr and clr 
transformations were both applied in the different papers, the predominant statistical method is (variations 
of) state space modelling and most of the cases of study are from social sciences area. 
 
 

Table 1. Summary of papers 

Author/s Transformation 
applied on raw 

data 

Statistical 
Technique 

Comments Applied Case of 
Study 

Brunsdon 
(1986) Additive logratio 

Log-Normal based 
autoregressive 

integrate moving 
average (ARIMA) 

model. 

 UK poll data on 
vote intentions 

Grunwald 
(1987) Centered logratio Dirichlet conjugate 

state space model. 

Several other time 
series approaches are 

presented. 

Tax revenues 
compositions and 

world car 
production 

composition. 

Brunsdon and 
Smith (1988) Additive logratio 

Log-Normal based 
vector 

autoregressive 
moving average 

(VARMA) model 

They use (more 
traditional) Box-

Jenkins methodology. 

Forecasting of 
Australian labor 

force composition 

Quintana and 
West (1988) Centered logratio 

Log-normal state 
space model 

(Dynamic Linear 
Model) 

They must introduce 
transformations on the 

regressand for 
avoiding singularity 
emergence on the 

variances and 
covariances matrix. 

Mexican imports 
and exports 
composition 

Smith and 
Brunsdon 
(1989) 

Additive logratio Log-Normal based 
ARIMA model.  UK poll data on 

vote intentions 

Grunwald, Centered logratio Dirichlet conjugate  World car 
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Raftery, and 
Guttorp 
(1993) 

state space model production 
composition. 

Cargnoni, 
Müller, and 
West (1995) 

Logratio 
Conditionally 

Gaussian dynamic 
model 

 

Forecasting of 
number and 

composition of 
secondary school 
students in Italy. 

Brandt, 
Monroe, and 
Williams 
(1999) 

Centered logratio 

Compositional 
Vector 

Autoregression 
(CVAR) system. 

They deal with the 
same problem that 
Quintana and West 

(1988) and introduce 
analogous 

transformations on 
regressands. 

Socioeconomic 
and political 

determinants of 
Partisanship 
composition. 

Ravishanker, 
Dey, Iyengar 
(2004) 

Additive logistic 

Linear regression 
with (VARMA) 

errors and 
Hierarchical 

Bayesian selection 
model. 

 
Los Angeles 

mortality 
composition. 

     
 
We finish the paper in the next section with the conclusions. 

4. Conclusions 
Throughout the review three main variables have been observed: the transformations, the statistical 
models, and the cases of study. For the first ones, additive and centered logratios have been equaled used 
for the scant literature. However, none of the papers have compared the efficiency or appropriateness of 
each of the transformations for the specific case of study or statistical modelling. We know that alr 
transformation is not isometric and the clr transformation is isometric but constrained4. As a good remark 
has to be noted that Quintana and West (1988) and Brandt, Monroe, and Williams (1999) have deal with 
the problems of clr-tranformation zero-sum constraint by exogenously modifying the regressands in the 
linear regression equation. Further studies are required, again, for the appropriateness of this ad-hoc 
solution. 
 
Second, several statistical techniques have been quoted. Such diversity ironically points out the lack of 
any methodology conventionally applied for dealing with CTS. Traditional time series analysis has a 
stock of available techniques that has not been applied using transformations from compositional data 
analysis, for instance, error-correction models, panel data analysis (Baltagi, 1995), dynamic panel data 
(Arellano and Bond, 1991). While works that use VAR and ARIMA modelling procedures have been 
quoted, most of the literature relies on state space modelling variants that diverse degree of success have 
shown in dealing with constrained data. But for many social scientists this specific model usually is not 
study in regular courses of Statistics or Econometrics.  
 
Finally, the majority of the motivational cases of study of these papers came from social sciences 
problems. This is paradoxical with the finding that only some of these statistical techniques are widely 
available for the average social scientist. We could argue the same in terms of the required transformation 
for solving the constant-sum constraint. 
 
Dynamic compositional problems are of substantive interest for social sciences. Examples like the 
evolution of federal budgets components, tax revenues compositions, income distribution, savings and 
investment composition during periods of crisis, represent interesting issues for future analysis. We think 
that it is lacking the application of well known transformations into also well known least squares 
methods for widening the knowledge and understanding of these methods in time series social sciences 
research and teaching.  

                                                 
4 Besides, none of the works have used the isometric logratio that possesses such nice mathematical 
proprieties (Egozcué et al. 2003). 
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