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José T.A.S. Ferreira and Mark F.J. Steel†

Department of Statistics

University of Warwick, UK

Abstract

We consider classes of multivariate distributions which can model skewness and are closed under
orthogonal transformations. We review two classes of such distributions proposed in the literature
and focus our attention on a particular, yet quite flexible, subclass of one of these classes. Members
of this subclass are defined by affine transformations of univariate (skewed) distributions that ensure
the existence of a set of coordinate axes along which there is independence and the marginals
are known analytically. The choice of an appropriate m-dimensional skewed distribution is then
restricted to the simpler problem of choosing m univariate skewed distributions. We introduce
a Bayesian model comparison setup for selection of these univariate skewed distributions. The
analysis does not rely on the existence of moments (allowing for any tail behaviour) and uses
equivalent priors on the common characteristics of the different models. Finally, we apply this
framework to multi-output stochastic frontiers using data from Dutch dairy farms.

Keywords: Coordinate-free distributions, dairy farm, multivariate skewness, orthogonal transfor-
mation, stochastic frontier.
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1 Introduction

Probability distributions that can model the presence of skewness in the distribution of a phenomenon
have been the focus of interest in recent years (see Genton, 2004 for a review). Some of the classes of
multivariate skewed distributions present in the literature introduce skewness along a pre-determined
set of directions. Here, we are interested in classes that do not make such assumptions. We consider
two classes of such distributions proposed in the literature and focus our attention on a particular
subclass of one of them.

A class of multivariate distributions is defined to be coordinate-free if it is closed under orthogonal
transformations. A simple example illustrates the importance of dealing with a coordinate-free class
of distributions, say S. Suppose that a process is measured using an orthogonal set of coordinates
X = (x1, . . . , xm)′ (i.e. xi is perpendicular to xj , i 6= j, i, j = 1, . . . , m) and that the process can be
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described by a distribution SX ∈ S. Now consider a change to a different orthogonal set of coordinates
Y = (y1, . . . , ym)′, spanning the same space. The class S is coordinate-free if the process can also be
described by a distribution SY ∈ S, for any set of coordinates Y .

One of the many interesting features of elliptical distributions (Kelker, 1970) is that they are
closed under orthogonal transformations (see Fang et al., 1990 for details). When going from elliptical
distributions to skewed distributions, coordinate-free classes become even more valuable. For elliptical
classes, the only characteristic that changes with direction is spread. For skewed distributions both
asymmetry and spread can vary with the direction. As a consequence, classes of skewed distributions
that are not coordinate-free necessarily impose that skewness is manifested along particular directions.
For example, the class of distributions introduced in Sahu et al. (2003) is not coordinate-free and
introduces skewness into a symmetric elliptical distribution along the original coordinates.

We consider in some detail two main classes of multivariate skewed distributions that are closed
under orthogonal transformations. The first is the class of skew-elliptical distributions, initially intro-
duced through its special case of the multivariate skew-Normal distribution of Azzalini and Dalla-Valle
(1996), generalised by Branco and Dey (2001), and extended by a number of authors (see Genton,
2004 for further details). The members of this class can be interpreted as generated by conditioning on
an unobserved variable, so they are multivariate “hidden truncation” distributions. More recently, a
different class of coordinate-free distributions has been suggested in Ferreira and Steel (2004a), hence-
forth FS, based on linear affine transformations of multivariate random variables with independent
components, each having an univariate skewed distribution.

For reasons that will become clear in the sequel, the latter class of distributions is the main focus
of our attention here. FS allows for any non-singular affine linear transformation. In this article, we
restrict the set of transformations by imposing that for any distribution there is one set of orthogonal
coordinates along which the components are independent and have known univariate distributions. In
the (rather different) context of bivariate symmetric distributions with different kurtosis, Hoggart et
al. (2003) introduced a class of distributions with a similar characteristic.

In FS, the authors point out that the skewed distributions of the univariate components in the
transformation can be freely chosen, but focus on distributions that are generated by transforming
originally symmetric distributions through inverse scale factors in the positive and the negative or-
thant (Fernández and Steel, 1998). This method can be viewed as a particular example of a general
mechanism for transforming univariate symmetric distributions (see Ferreira and Steel, 2004b). Here,
in addition to distributions generated by inverse scale factors, we analyse others generated by three
distinct methods: hidden truncation (see e.g. Azzalini, 1985 and Arnold and Beaver, 2002), order
statistics (Jones, 2004) and a construct (Ferreira and Steel, 2004b).

Given the flexibility of this class of multivariate distributions, and in particular the possibility of
using different distributions for the univariate components, one important question is how to select
appropriate forms for a specific problem. We analyse this issue for a general Bayesian regression setup.
Prior specification is of special importance and we tackle the problem by using the same priors on
common parameters. This requires, however, that these parameters share the same interpretation
across models, which we ensure through normalisation of the skewed univariate distributions. The
latter normalisation is based on robust measures of location and spread and does not rely on moment
existence. For parameters that are specific to particular models, the skewness parameters, we propose
prior matching ideas, where the priors on the parameters are not elicited directly but through a prior
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on a quantity common to all models. We achieve this by specifying a prior on a measure of skewness
and deriving equivalent priors on the skewness parameters for each model.

In addition to modelling skewness, it is often important to model tail behaviour of the distribution.
We accommodate varying tail behaviour in our analysis by using two different types of heavy tailed
distributions that differ in whether they assume a common tail behaviour for all dimensions. We specify
Bayesian regression models using a proper prior structure. This implies we do not need conditions on
moment characteristics to ensure posterior existence and, as such, we do not place any restriction on
tail weight. Consequently, our analysis allows for distributions with (extremely) heavy tails.

We take two different approaches to model comparison. We use Bayes factors and we also compare
predictive quality using log predictive scores.

The regression framework is then applied to a multivariate stochastic frontier problem. Such prob-
lems are traditionally dealt with through a composed error framework (as introduced in Aigner et al.,
1977 and Meeusen and van den Broeck, 1977) with separate measurement and inefficiency error terms,
but here we use a skewed distribution to model the composed error directly. One important advan-
tage of this approach is that it immediately generalises to the analysis of multi-output production, in
contrast to the composed error framework. We apply this to a dataset of Dutch dairy farms with two
outputs, milk production and non-milk outputs.

Section 2 introduces the class of multivariate skewed distributions and presents a number of results
for the class. In Section 3, we review four different alternatives for introducing skewness in the
distribution of the univariate components and we describe the normalisation. Section 4 introduces
the Bayesian regression models considered here. Equivalent priors on the skewness parameters for
the different models are determined in Section 5. In Section 6 details about the model comparison
procedures are presented. Section 7 describes the application to the stochastic frontier problem.
Finally, Section 8 gives some concluding remarks.

2 Coordinate-Free Distributions

In this section we briefly review the complete class of distributions introduced in FS and define the
subclass that will be the focus of our attention in this paper. We also briefly review the skew-elliptical
class.

2.1 Complete Class of Distributions

The class introduced in FS is constructed using linear transformations of univariate skewed distri-
butions. Let m be the dimension of the random variable ε = (ε1, . . . , εm)′ ∈ <m. In addition, let
f = (f1, . . . , fm)′ denote a vector of m univariate symmetric densities on < and ψ = (ψ1, . . . , ψm)′ be
a vector of parameters ψj , j = 1, . . . , m. We then say that ε has a multivariate distributions with
independent components with parameters f and ψ if its density is given by

p(ε|f, ψ) =
m∏

j=1

sj(εj),

where, for j = 1, . . . , m, sj denotes a density obtained from fj via some skewness-inducing transfor-
mation, indexed by ψj . Different transformations will be introduced in Section 3.
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Following an affine linear transformation, given a vector µ = (µ1, . . . , µm)′ ∈ <m and a non-singular
matrix A ∈ Rm×m, the variable η = (η1, . . . , ηm)′ ∈ Rm, defined as

η = A′ε + µ (1)

has a general multivariate skewed distribution, with density

p(η|µ,A, f, ψ) = ‖A‖−1
m∏

j=1

sj [(η − µ)′A−1
·j ], (2)

with A−1
·j denoting the j-th column of A−1 and ‖A‖ the absolute value of the determinant of A. The

random variable η is then said to follow distribution Skm(µ,A, f, ψ). The dependence between the
components of η is modelled by the matrix A, with µ determining the location of the distribution.
Evidently, ε ∼ Skm(0m, Im, f, ψ), where 0m and Im denote the m-dimensional zero vector and identity
matrix of size m, respectively.

FS illustrates that if sj is not symmetric for all j = 1, . . . , m, then the multivariate distributions of
ε and η are skewed. By varying the parameters we then generate a flexible class of skewed distributions
that is closed under orthogonal transformations.

For this class of skewed distributions, a number of results can be obtained. Here we mention
two results on modality of the distribution and moment characteristics. Proofs are deferred to the
Appendix.

For general f and ψ, it is not possible to derive any results for the modality of the distribution of
η, particularly as the specific forms of sj , j = 1, . . . ,m are yet to be specified. Nevertheless, a useful
result can be derived by imposing a rather plausible restriction on sj , j = 1, . . . ,m.

Property 1. Let f and ψ be such that the densities sj , j = 1, . . . ,m, are unimodal and have mode
at zero. Then, for any µ and A the distribution Skm(µ,A, f, ψ) is unimodal with mode at µ.

When modelling real phenomena, is it not uncommon to assume that the distributions are uni-
modal. Property 1 shows that the unimodality of the multivariate distribution depends solely on the
unimodality of univariate distributions, which is often much simpler to ensure.

The second result is on the existence of moments of η.

Property 2. Let η ∼ Skm(µ,A, f, ψ). Further, let r1, . . . , rm be non-negative integers and r =∑m
j=1 rj . If E

[
εr
j

]
exists for j = 1, . . . , m, then E

[∏m
j=1 η

rj

j

]
also exists.

Property 2 states that the mechanism that generates the multivariate distribution does not restrict
the existence of positive moments. Non-negative integer moments of the distribution Skm(µ,A, f, ψ)
depend solely on non-negative integer moments of the univariate distributions with densities sj , j =
1, . . . ,m.

2.2 Restricted Class of Distributions

In order to gain further insight into the full effect of the transformation matrix A, it is useful to recall
that any nonsingular matrix A can be written as the product of a lower triangular matrix L with
positive diagonal elements and an orthogonal matrix O. Without loss of generality, assume µ to be
the zero vector. The effect of the transformation matrix A = LO is then clear. From (1), η = O′L′ε,
indicating that ε is first subjected to a linear transformation L′ introducing dependence between the
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variables and modifying scales, and then to linear orthogonal transformation O′, a rotation if |O| = 1
or a rotoinversion if |O| = −1. The set of coordinate axes is modified by O′, in effect changing the
correlation in the original variables η. The orthogonal matrix O rotates and/or reflects the axes along
which the joint distribution is a linear combination of the last m− j + 1 components of ε. FS defined
these axes as the basic axes ej , j = 1, . . . , m of the multivariate distribution.

The subclass of distributions that is the focus of interest here is obtained by imposing that along
each one of the basic axes ej , the distribution is a scaled version of the one with density sj , j = 1, . . . , m.
This requirement can be straightforwardly transferred to A. All that is necessary is to replace L by
D, a diagonal matrix with strictly positive diagonal elements. The effect of D and O is immediate.
Matrices D and O parameterise scale and the orientation of the basic axes, respectively. To denote a
distribution that is a member of this subclass we will use Skm(µ,D, O, f, ψ).

By restricting the complete class of distributions we necessarily obtain a less flexible set of dis-
tributions. The main restriction, when comparing to the complete class of distributions, is that now
scale and skewness are introduced along the same directions given by the basic axes, with the corre-
lation of η parameterised by O alone. However, this subclass is more easily interpretable, which is
often of primary importance in the context of applications. In addition, it has the advantage that the
marginals along the basic axes are of known form.

One other advantage of confining the attention to distributions of the form Skm(µ,D, O, f, ψ)
is that these are closer to elliptical distributions. The latter class can be generated as in (1), with
ε having a symmetric distribution (though not necessarily with independent components), and its
parameterisation is in terms of the scale matrix Σ = A′A = O′D′DO = O′D2O. By the singular
value decomposition, Σ = O′D2O can cover all possible covariance structures. Even in the case
when Skm(µ,D, O, f, ψ) represents an elliptical distribution (e.g. sj is the standard normal density,
j = 1, . . . , m), there is no parameter redundancy, as there would be for the complete class (see FS,
Section 2.2.3).

Like for the complete class defined in FS, E(η) and V ar(η), if they exist, can take any value in
<m and in the set of covariance matrices, respectively. Thus, under the conditions of Property 2, it is
always possible to model the expected value and the covariance of the multivariate distribution of η,
irrespective of f and ψ. Another characteristic common to both the complete class and the subclass
is the range of achievable skewness values, as quantified using the multivariate skewness measure β1,m

of Mardia (1970).
In order to achieve a unique parameterisation for the class of distributions, FS restricted O to a

set O, a subset of the set of all orthogonal matrices. Using an argument similar to the one used in
Section 2.3 of FS, we can show that this parameterisation is also valid for the subclass considered
here.

2.3 The Skew-Elliptical Class

As mentioned in the Introduction, the other main class of skewed distributions that we consider is the
class of skew-elliptical distributions of Azzalini and Dalla Valle (1996) and Branco and Dey (2001).

Members of the skew-elliptical class can be derived by a conditioning process on a single unobserved
variable. As a consequence, the skewed distribution is generated from the elliptical distribution by
introducing skewness along one single particular direction. This leads to a set of distributions that
is somewhat limited in terms of modelling skewness in a real phenomenon. As an example of these
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limitations, the skew-elliptical class cannot model adequately the (simplest) case when the univariate
components of η are independent, each having a skewed distributions. In order to illustrate this,
Figure 1 presents contour plots of the densities of two bivariate skewed distributions, one belonging
to the subclass defined in Section 2.2 (a), and the other a skew-elliptical distribution (b). While
the contours in Figure 1(a) denote (different amounts of) skewness along both coordinate axes, the
contours in Figure 1(b) illustrate that skewness is introduced along one single direction (in this case
along the direction η1 = η2).
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Figure 1: Contour plots of two bivariate skewed distributions with mode at zero, with pdf as in (2)
(a) and member of the skew-elliptical class (b).

The reduced flexibility of the skew-elliptical class can also be described using the β1,m measure.
As an illustration, we compare the range of achievable skewness for versions of the bivariate Normal
distribution. For the bivariate skew-Normal distribution of Azzalini and Dalla Valle (1996)

β1,2 ∈
[
0, 2

(4− π)2

(π − 2)3

)
.

For both the complete class of FS and the subclass that we analyse here, the upper limit for β1,2 is
twice the value of the right limit of the interval above.

Given the characteristics of the skew-elliptical class, a fair comparison with the set of distributions
defined in Section 2.2, could only allow for one particular sj to be skewed, whilst fixing the remaining
m− 1 densities to be symmetric. In this article, we have decided not to do so.

Despite the different characteristics of the two classes of distributions, we point to the fact that, if
all components of f are fixed and equal, then both use exactly the same number of parameters.

A recent paper by Gupta et al. (2004) introduces a multivariate skewed-Normal distribution by
conditioning on an m-dimensional unobserved random variable. Thus, this distribution does not suffer
from the limitation mentioned above, and it is also coordinate-free (unlike the class in Sahu et al.,
2003). Allowing for conditioning on an unobserved variable of unspecified dimension (possibly even
larger than m) leads to a very general class of distributions in Arellano-Valle and Genton (2003),
which generalises the approaches of Sahu et al. (2003) and Gupta et al. (2004). However, these classes
are heavily (over)parameterised, which is particularly problematic for prior elicitation and inference.
In addition, even with a more restricted parameterisation (for which no clear operational guidelines
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are provided), inference on the basis of these types of distributions will be computationally more
demanding.

3 Univariate Components

The complete definition of a multivariate skewed distribution, as in Sections 2.1 and 2.2, requires
the specification of vectors f and of the transformation that leads to the univariate skewed densities
sj , j = 1, . . . ,m. In addition, this skewness-inducing transformation will be indexed by the parameter
ψ, whereas the densities in f can depend on an extra parameter ν.

The majority of univariate distributions that can model skewness were developed by transforming
an originally symmetric distribution. The skewed version then borrows the name of the original
distribution, usually with the prefix “skew-”. Each element j of vector f is a univariate symmetric
density that is transformed to a skewed density sj using a skewing mechanism parameterised by ψj .
When all elements of f denote the same univariate density f∗, the multivariate skewed distribution
Skm(µ,D, O, (f∗, . . . , f∗)′, ψ) is designated multivariate skew-f∗.

The most important reason for defining distributions that result from skewing a symmetric distri-
bution is that in doing so, it is possible to preserve some of properties of the latter. Different skewing
mechanisms will preserve different sets of these properties.

Recently, Ferreira and Steel (2004b) introduced a constructive representation of univariate skewed
distributions that are generated from symmetric ones. They call a distribution S a skewed version of
the unimodal symmetric distribution F , generated by skewing mechanism P , if its density is of the
form

s(y|F, P ) = f(y)p[F (y)], (3)

where S and F are distributions in < and P is a distribution in (0, 1) and upper (lower) case denote
probability distribution (density) functions. By varying the skewing mechanism P it is possible to
generate different classes of skewed distributions. In general, the skewing mechanism P is indexed by
a parameter ψ, which is specific to each of the methods.

Ferreira and Steel (2004b) review some of the skewing mechanisms that have been proposed in the
literature and introduce others. In the sequel, we will mention four distinct skewing mechanisms, all
described in greater detail in Ferreira and Steel (2004b).

3.1 Hidden Truncation

The first class of univariate skewed distributions that we review here is based on hidden truncation
ideas (see Arnold and Beaver, 2002 for an overview). This is a very well-studied class with the
skew-Normal distribution of Azzalini (1985) as its best known member.

The most common versions of univariate skewed distributions generated by hidden truncation have
densities that are of the form

s(y) = 2f(y)F (αy), (4)

where F is a symmetric distribution and α is a real number. Positive (negative) values of α generate
right (left) skewed distributions.

Distributions with densities as in (4) are generated using

p(x|α) = 2F [αF−1(x)],
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as the density of the skewing mechanism in (3).

3.2 Inverse Scale Factors

A class of skewed distributions generated by introducing inverse scale factors in the positive and the
negative half real lines was proposed in Fernández and Steel (1998). If γ is a scalar in (0,∞), the
distribution of S has density

s(y|γ) =
2

γ + 1
γ

f
[
yγ−sign(y)

]
,

with sign(·) the usual sign function in <.
If γ > 1 then the distribution is right-skewed, whereas it is left-skewed for γ < 1. Such distributions

can be constructed by using P with density

p(x|γ) =
2

γ + 1
γ

f [γsign(1/2−x)F−1(x)]
f [F−1(x)]

,

as the skewing mechanism.

3.3 Order Statistics

Another skewing mechanism is defined by the Beta distribution with density given by

p(x|φ1, φ2) = [B(φ1, φ2)]−1xφ1−1(1− x)φ2−1, (5)

where B(·, ·) is the Beta function. Vector (φ1, φ2)′ ∈ <2
+ parameterises the mechanism. For integer

φ1 and φ2, Jones (2004) points out that distributions generated by such mechanism can be thought of
as distributions arising from order statistics. Skewed distributions generated using (5) were recently
analysed in e.g. Jones (2004) and Eugene (2002).

This skewing mechanism will be applied in this paper using a different parameterisation, suggested
in Ferreira and Steel (2004c). A parameter τ ∈ <+ is introduced and (φ1, φ2) set to

(
τ, 1

τ

)
. With this

parameterisation, the resulting distribution is always skewed for τ 6= 1. Values of τ larger (smaller)
than one correspond to positively (negatively) skewed distributions. An important advantage of this
parameterisation is that for certain choices of f , it leads to a one-to-one correspondence between
skewness (measured as in Section 3.5) and τ . This greatly facilitates prior elicitation, as explained in
Section 5.

3.4 Construct

The last skewing mechanism to be studied here was introduced in Ferreira and Steel (2004b). It was
specifically constructed so that it preserves a number of characteristic of the symmetric distribution,
such as the mode and the tail behaviour, and so as to generate skewed distributions with pre-defined
properties. One of these properties is that right- and left-hand tails are identical.

The Construct mechanism P is defined through a density of the form

p(x|δ) = 1 + l(δ)[g(x|δ)− 1],

where δ ∈ < and functions g and l are chosen to ensure that the set of characteristics is met. Further
details can be found in the original reference. Positive values of δ induce positive skewness while
negative skewness corresponds to negative values of δ. In the following, we always assume that the
parameter d, controlling the smoothness of p(x|δ) as defined in Ferreira and Steel (2004b), equals two.
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3.5 Quantifying Univariate Skewness

Measuring the skewness of a distribution is an important problem for which a number of alternatives
have been proposed (see Arnold and Groeneveld, 1995 for a review). In order to ensure that the
skewness of a unimodal distribution can always be quantified we choose a measure that does not
involve moments. Such a measure is thus applicable even for distributions with extremely heavy tails.

In this article, we chose the skewness measure proposed in Arnold and Groeneveld (1995), denoted
by AG, and defined as one minus twice the mass to the left of the mode. This measure takes values in
[−1, 1] and has an obvious interpretation for unimodal distributions. AG takes a negative (positive)
value for left (right) skewed distributions and is equal to zero for symmetric distributions.

3.6 Normalisation of Skewed Distributions

The four versions of a single symmetric distribution, generated by the skewing mechanisms above, are
different in several respects. They obviously differ in the way in which the skewness of the distribution
is introduced but they also differ in the way location and dispersion is affected by this. In order to
compare different univariate distributions with the same skewness we will normalise them with respect
to location and scale.

We choose to normalise the distributions using characteristics that do not require existence of the
moments of the distributions. For unimodal skewed distributions, the mode is an obvious measure
of location. It is always well-defined and can be set at any value in < by a shift operation. We use
the interquartile range, henceforth IQR, as a measure of dispersion of the distribution. Less (more)
dispersed distributions have smaller (larger) IQR values. The application of an appropriate scale
transformation can set the IQR of a distribution to any positive value. In the sequel, we will always
normalise the distributions so that the mode is at zero and the IQR is equal to one. Besides the
obvious advantage that we can now deal with distributions for which the first two moments do not
exist, the quantities underlying normalisation are also more robust than moments.

Figure 2 presents plots of the density of the four different normalised skewed versions of the
Student-t distribution with two degrees of freedom for three different values of AG skewness: 0.2 (a),
0.5 (b) and 0.8 (c). For the smallest value of AG, the densities are similar. For larger values of AG,
the differences between the densities is more evident. Particularly, the version generated by order
statistics is very different from the remaining three, both in the central part of the distribution and
in the tails. Also, the figure illustrates the identical behaviour in both tails for the construct.

4 Bayesian Regression Modelling

4.1 The Basic Model

In the remainder we assume that we have n observations from an underlying process, given by pairs
(xi, yi), i = 1, . . . , n, where xi ∈ <k is a vector of explanatory variables and yi ∈ <m is the variable of
interest. The n observations are grouped in X ∈ <n×k, the design matrix, and Y ∈ <n×m, with each
row corresponding to one observation. Throughout, we condition on X without explicit mention.

Let us assume the observables yi ∈ <m, i = 1, . . . , n, are generated from

yi = gi(B) + λ
− 1

2
i ηi, (6)
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Figure 2: Densities of the hidden truncation (solid), inverse scale factors (dashed), order statistics
(dot-dashed) and construct (dotted) versions of the Student-t distribution with 2 degrees of freedom
and AG skewness equal to 0.2 (a), 0.5 (b) and 0.8 (c)

where gi(·) is a known measurable function in <m depending on xi, B parameterises the location, λi

are independently drawn from some common underlying distribution Pλ on <+ and ηi are independent
and identically distributed as Skm(0m, D,O, f, ψ), defined in Section 2.2. In the sequel, we will always
assume that sj denotes the normalised version of the skewed distribution obtained from fj and the
skewness is parameterised by ψj , j = 1, . . . , m. In addition, fj is parameterised by νj . Since all the
skewed densities sj used here are unimodal, the distribution of η is unimodal by Property 1. Even
though this is not necessary, in the sequel we assume that the same skewing mechanism is used in
each dimension j = 1, . . . , m.

The model derived from (6) is a general regression model with skewed disturbances. Function gi(B)
represents the mode of the distribution of yi, given the covariate values, and is chosen in accordance
with the problem at hand.

By incorporating λi in the analysis, it is possible to model aspects of the sampling distribution
that are not captured by the distribution of the disturbance ηi. It enlarges the distribution of the
error term ei = λ

− 1
2

i ηi, by allowing for a mixture of multivariate skewed distributions. In this article,
we will make use of λi in the modelling of a common tail behaviour for the elements of ei.

The effect of D and O on the distribution of the ηis is immediate. Matrix O parameterises the
direction of the basic axes and the diagonal elements of D denote the IQR of the distribution along
these same axes.

The definition of the Bayesian regression model proceeds with the definition of prior distributions
for parameters B, λ, D,O, ν and ψ, where we have defined λ = (λ1, . . . , λn)′ and ν = (ν1, . . . , νm)′.
We assume the prior structure given by

PB,λ,D,O,ν,ψ = PB × PD,O × Pλ × Pψ|ν × Pν , (7)

where all distributions on the right hand-side will be proper, leading to an overall proper prior. This
ensures the existence of a well-defined posterior distribution.
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The conditioning of the prior distribution of ψ on ν indicates that the prior on the skewing
parameters ψ can change with the distributions that are to be skewed. Distributions Pψ|ν will be
defined in Section 5.

The proposed prior distributions for B,D and O can be specified without taking the remaining
parameters into account. They parameterise mode, dispersion and orientation of the distribution
regardless of the mixing parameter λ or even the other parameters of the distribution of η.

The prior on B depends on the specification of the regression functions gi(B) and the particular
application at hand, and is left unspecified for now.

The definition of PD,O is based on the relationship between (D,O) and the matrix Σ = O′D2O,
together with its interpretation with respect to elliptical distributions made in Section 2.2. We define
PD,O via a prior on Σ. For the latter, it is common to assume a inverted Wishart prior with parameters,
say, Q and v, an m ×m positive definite symmetric matrix and a positive scalar, respectively. The
equivalent prior on D and O is then given by density

p(D, O) ∝
∣∣∣∣∣∣

m−1∏

l=1

m∏

j=l+1

(
D2

ll −D2
jj

)
∣∣∣∣∣∣
|D|−(v+m) exp

{
−1

2
tr

[(
O′D2O

)−1
Q

]}
,

with tr denoting the trace operation.
If there is no prior information about the direction of the basic axes, choosing Q = qI, q > 0, leads

to tr
[(

O′D2O
)−1

Q
]

= q trD−2 and thus

p(D, O) = p(O)p(D),

where p(O) corresponds to the Haar distribution (the invariant distribution on orthogonal matrices)
defined on the restricted space O and

p(D) ∝
∣∣∣∣∣∣

m−1∏

l=1

m∏

j=l+1

(
D2

ll −D2
jj

)
∣∣∣∣∣∣
|D|−(v+m) exp



−

q

2

m∑

j=1

D−2
jj



 .

In order to specify the prior on λ and ν we first need to introduce the particular choices of skewed
distributions that we are going to analyse.

4.2 Choices for Tails and Skewed Distributions

4.2.1 Skew-Normal sampling

The first model that we consider assumes that ηi follows a skew-Normal corresponding to taking all
elements of f equal to the standard Normal density and assigning a Dirac prior on λi = 1, i = 1, . . . , n.
In this case, ν is void.

4.2.2 Skew-Student sampling

A skew-Student sampling scheme is derived by assuming f and ν as above but assigning a Gamma prior
with unitary mean and both parameters equal to ν∗/2 to λi, i = 1, . . . , n. If the distribution of ηi is

multivariate Normal then, given ν∗, the distribution of λ
− 1

2
i ηi is multivariate Student-t with ν∗ degrees

of freedom, henceforth Student-tν∗ . Similarly, if ηi has a multivariate skew-Normal distribution, then
λ
− 1

2
i ηi is said to have a multivariate skew-Student-tν∗ . The skew-Student sampling allows the error
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term λ
− 1

2
i ηi to have a more flexible distribution. In particular, it allows for tail behaviour, common

along all dimensions, which is heavier than the one of the skew-Normal distribution.
We will make use of a proper prior distribution on ν∗, Pν∗ .

4.2.3 Skew-IStudent sampling

The final skewed model that we analyse in this article is derived by assuming that fj denotes the density
of the standard univariate Student-tνj , j = 1, . . . , m, and setting a Dirac prior on λi = 1, i = 1, . . . , n

By allowing the different elements of f to represent densities of Student-t distributions with varying
degrees of freedom, we allow the distribution of η to exhibit different tail behaviours along different
basic axes. This class will be denoted by skew-IStudent distributions.

For the prior on ν = (ν1, . . . , νm)′, we assume that Pν =
∏m

j=1 Pνj where Pνj = Pν∗ , with Pν∗

proper.

5 Equivalent Priors on ψ

Bayesian model comparison is known to be sensitive to the choice of prior distributions (Kass and
Raftery, 1995). A solution to this problem is to assign common priors whenever possible, and to define
priors that are as similar as feasible for the remaining parameters. This is the approach we adopt
here.

In Section 3.6, we introduced a normalisation of skewed versions of an underlying symmetric distri-
bution. Figure 2 compared skewed densities with the same amount of skewness but generated by four
different mechanisms. By restricting our attention to normalised distributions, common parameters
have the same interpretation, irrespective of the particular skewing mechanism. This allows us to
choose common prior distributions on all parameters but ψ, i.e. the skewness parameters. For the
latter, we assume that

Pψ|ν =
m∏

j=1

Pψj |νj

and therefore, we will focus on the definition of Pψj |νj
. For notational ease, we shall drop the subscript

j in the remainder of this section.
The different mechanisms reviewed in Sections 3.1-3.4 all depend on a single skewness parameter

defined over the real line (hidden truncation and construct), or its positive part (inverse scale factors
and orders statistics). The choice of prior distributions for these parameters is achieved by fixing a
prior on a common characteristic of all the skewed distributions and then by deriving the implied
equivalent priors on the original parameters. The common characteristic chosen here is the amount
of skewness, measured by AG.

Let PAG be the prior distribution chosen on AG. For a particular value of ψ, the inverse scale
factors and the construct skewing mechanisms always introduce the same amount of skewness, irre-
spective of the symmetric distribution fj . Thus, the prior on ψ can be specified without taking ν

into consideration. In addition, the relationship between the skewness parameter and AG skewness is
bijective and invertible. This allows us to specify the prior distribution on ψ = γ and δ as

p(γ|ν) = p(γ) =
4γ

(γ2 + 1)2
pAG

(
γ2 − 1
γ2 + 1

)
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and

p(δ|ν) = p(δ) =
48
5π3

arctan2
(

2δ
5

)

1 +
(

2δ
5

)2 pAG

{[
2
π

arctan
(

2δ

5

)]3
}

.

For the two remaining skewing mechanisms, a direct variable transformation from AG to the
parameter of the mechanisms is, in general, not possible. Therefore, we have to resort to methods
that try to find a prior distribution on α and τ such that the induced prior on AG is close to PAG.
Another complication is that the amount of skewness, given the values of α and τ , depends on the
distribution that is being skewed, and thus on ν.

5.1 Approximation using the Kullback-Leibler Distance

We choose the prior distribution on α and τ , given ν, by selecting a member of a parametric family of
distributions Gκ, κ ∈ K, that induces a prior on AG, denoted by PAG|Gκ

, that is closest, with respect
to some distance function, to PAG.

As a distance measure, we use the symmetric Kullback-Leibler distance between two discrete
distributions. We first create a partition of the space of AG, S = {S1, . . . , SL}, where the union of the
elements of S is (−1, 1). The prior distribution on the parameter of the skewing mechanism is then
Gκ∗ , where

κ∗ = arg min
k∈K

L∑

l=1

PAG(Sl) ln
[
PAG|Gκ

(Sl)
PAG(Sl)

]
+ PAG|Gκ

(Sl) ln
[

PAG(Sl)
PAG|Gκ

(Sl)

]
. (8)

5.2 Prior on AG

If no prior information on AG is directly available, it is reasonable to assume that PAG is a unimodal
symmetric distribution with mode at zero. This corresponds to a prior that treats left and right
skewness identically and that concentrates prior mass around symmetric distributions. We suggest a
Beta prior on AG with both parameters equal to a > 0, rescaled to the interval (-1,1), given by density

p(AG|a) = 21−2a[B(a, a)]−1 [(1 + AG)(1−AG)]a−1 . (9)

As the value of a increases, the mass assigned by PAG to heavily skewed distributions decreases.

5.3 Selecting Gk

The selection of a suitable family of distributions Gκ needs to take into account two aspects. First,
the parameter space of α and τ will restrict the choice of families Gκ. Also, we need to take into
account symmetry properties of the prior distribution PAG that is to be induced.

For skewed distributions generated by hidden truncation, if α = α∗ corresponds to a skewness value
AG∗, then −α∗ corresponds to −AG∗. Therefore, if PAG is symmetric then a symmetric family Gκ

on α is called for. Here, we use the class of Student-t distributions with mean zero as Gκ. Parameter
κ is then a two-component vector, one corresponding to the variance and the other to the degrees of
freedom.

The order statistics mechanism is indexed by τ ∈ <+. If τ∗ = exp{b} leads to skewness AG∗, then
1/τ∗ = exp{−b} leads to −AG∗, implying that there is a symmetry in the logscale. Thus, we select
the prior on ln(τ) to be a symmetric Student-t distribution with variance and degrees of freedom to
be chosen as in (8).
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Figure 3 shows the discrete distribution functions for PAG and the fitted PAG|Gκ∗ when PAG

corresponds to (9) with a = 5 and κ∗ is as in (8), for three different combinations of skewing mechanism
and f . The elements Sl of partition S are the intervals

( − 1 + l−1
10 ,−1 + l

10

]
, l = 1, . . . , 20. For the

hidden truncation mechanisms the fit is reasonable, with small deviations around zero. An almost
perfect fit is achieved for the order statistics mechanism skewing applied to the t2 density. We point
out that, for this last case, there is an analytical bijective transformation between ψ and AG. However,
this is an exceptional case and not the rule for this skewing mechanism.
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Figure 3: Discrete distribution functions for PAG and PAG|Gκ∗ when PAG is the distribution in (9)
with a = 5 and κ∗ is as in (8) for the hidden truncation mechanism when f is the Normal (a) or the
Student-t2 (b) density, and for the order statistics mechanism with f the Student-t2 density (c). The
circles correspond to PAG, and the crosses represent PAG|Gκ∗ .

In the application, we will use the order statistics mechanism only in combination with the Student-
t2 distribution1, since the relationship between ψ and AG ∈ (−1, 1) is not bijective for skewed versions
of the Normal or Student-t distributions with large degrees of freedom. This is illustrated in Figure 4
for the skew-Normal distribution.
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Figure 4: Measure of skewness AG as a function of τ > 1 for the order statistics skew-Normal.

1This skewed version of the Student-t2 was studied in detail in Jones and Faddy (2003).
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6 Model Comparison

In order to compare the suitability of the different models we make use of two different measures:
Bayes factors and log predictive scores (LPS).

Bayes factors measures the adequacy of two competing models using the ratio between their
marginal likelihoods.2 Estimates of marginal likelihoods are obtained using the p4 measure in Newton
and Raftery (1994).

The log predictive score is a proper scoring rule, introduced in Good (1952) and discussed in
further detail in Dawid (1986). It can be interpreted as an approximation to the expected loss with a
logarithmic rule. Consider predicting np observables, say, in Y p ∈ <np×m, with each row corresponding
to one out-of-sample observation, where we condition on the corresponding regressor values and use a
model M. Then, LPS is defined as

LPS(Y p|Y,M) = − 1
np

np∑

i=1

ln p (yp
i |Y,M) .

Smaller values of LPS(Y p|Y,M) indicate that model M predicts better. For the models that we
consider in this article, LPS(Y p|Y,M) is not available directly but will be estimated using Markov
chain Monte Carlo methods.

In general, a separate sample Y p is not available and we will take a cross-validation approach. We
randomly partition the original sample Y into M disjoint sets Y i, i = 1, . . . , M of (almost) equal size.
We then calculate LPS(Y i|Y −i,M), where Y −i = Y \ Y i, i = 1, . . . ,M . The LPS for model M will
be computed as the average over all M partitions.

7 Application to Stochastic Frontiers

7.1 Introduction to the Problem

Stochastic production frontiers describe the possibilities of economic agents to transform inputs into
outputs in the most favourable way (“best-practice” production). They are important tools in the
study of firm efficiency, as firms will, in practice, often not attain the optimal frontier production and
this is typically associated with inefficiency. The usual statistical approach to stochastic frontiers is
through a composed error framework (as introduced in Aigner et al., 1977 and Meeusen and van den
Broeck, 1977) with two separate error components: a symmetric measurement error and an inefficiency
error, which is defined to be one-sided. This standard framework has been examined with Bayesian
methods, starting with van den Broeck et al. (1994).

An important problem in this area is how to deal with production frontiers corresponding to firms
producing multiple outputs. Kumbhakar (1996) and Fernández et al. (2000) discuss some of the
statistical problems that arise in this context and Fernández et al. (2000) propose an analysis based
on a parametric production equivalence surface, effectively leading to an aggregate output quantity,
which can then be modelled through a univariate frontier, and use a Dirichlet distribution on output
shares to complete the multivariate stochastic specification.

Here we follow an alternative approach and use instead a skewed distribution to model the com-
posed error directly. In contrast to the composed error framework mentioned above, this approach

2The marginal likelihood is the data density integrated with respect to the prior.
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immediately generalises to the analysis of multi-output production. All we need to do is to use a
multivariate skewed distribution. In effect, we will model the frontier through a multivariate regres-
sion specification with skewed errors, which implies that each output component has its own specific
frontier.

There is a direct link between both approaches in the context of the univariate skew-Normal
generated by hidden truncation as in Azzalini (1985). The latter distribution can be thought of as
arising from summing a Normal and a half-Normal random variable. This fact was mentioned in
e.g. Arnold and Beaver (2002), and in the discussion to that paper possible links with stochastic
frontiers were suggested by Azzalini (2002) and Sarabia (2002). Nakatsuma (2003) uses a univariate
skewed Normal effectively based on inverse scale factors for modelling a cost frontier.

7.2 Description of the data

The data that we analyse here was compiled by the Netherlands Agricultural Economics Research
Institute and relates to highly specialised dairy farms that were part of the Dutch Farm Accountancy
Data Network. Further details on these data can be found in Reinhard et al. (1999).

We have 1545 observations of two outputs and three regressors. The outputs are milk (millions of
kilograms) and non-milk (millions of 1991 guilders). Non-milk output contains sales of meat, livestock
and roughage. The inputs or production factors are family labour (thousands of hours), capital
(millions of 1991 guilders) and variable input (thousands of 1991 guilders). Capital includes land,
buildings, equipment and livestock. Variable input refers to, i.a., hired labour, concentrates, roughage
and fertilizer.

The original data is in the form of an unbalanced panel, with observations of 613 farms for all or
some of 1991-1994. Here we discard the temporal information and treat all observations independently.
This is clearly an assumption we would like to relax in future but we have used it here as this application
is primarily an illustration of the use of multivariate skewed distributions in this context.

7.3 Model Specification

We will entertain ten different multivariate skewed regression models and three symmetric alterna-
tives. The skewed models correspond to Sections 4.2.1-4.2.3, i.e. skew-Normal, skew-Student and
skew-IStudent sampling, in combination with the hidden truncation, inverse scale factors or construct
mechanisms, plus the model defined by the order statistics mechanism applied to skew-IStudent sam-
pling but with all elements of f equal to the Student-t2 density3. The symmetric models are given
as in Sections 4.2.1-4.2.3, but with sj equal to a normalised (as in Section 3.6) symmetric version of
fj , j = 1, . . . , m.

We assume that the bivariate frontier has a simple Cobb-Douglas form. Thus, the regression
function for modelling log outputs yi in (6) is

gi(B) = B′xi,

where B is a k × m matrix of coefficients and xi consists of 1 (as the first element) and the log
input values for observation i. Economic regularity conditions are easily imposed by constraining all
elements of B to be positive, with the exception of the first row. Fernández et al. (2002) use the same

3This means that Pν∗ is Dirac at ν∗ = 2. The reason for this limitation is given in Subsection 5.3.
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data (with an additional bad output) and also consider a Cobb-Douglas specification for the frontier.
A more general translog frontier was used in Reinhard et al. (1999) and Fernández et al. (2004).

The definition of the Bayesian models is completed by fully specifying the prior distribution de-
scribed in Sections 4 and 5.

The prior on B is a matricvariate Normal truncated to the regularity region, corresponding to

p(B) ∝ exp
[
−1

2
tr M−1

1 B′M−1
2 B

]
I(Bi,j>0, i≥2)(B)

where we choose M1 = 100Im and M2 = 100Ik, and with IA(x) denoting the indicator function on A.
This corresponds to a quite dispersed prior on the matrix B, centred at the zero matrix.

We set Q = 0.1Im and v = 4, leading to a vague prior on D and O. For the prior on AG in (9) we
choose a = 5. Finally, an Exponential prior with mean and standard deviation equal to 10 was chosen
for ν∗.

7.4 Inference

Inference is conducted using Markov chain Monte Carlo methods (MCMC). We use Metropolis-
Hastings sampling for all parameters with the exception of λ and ν∗, where we use Gibbs steps.
For the Metropolis-Hastings samplers, simple random walk steps are used in updating the elements of
B, νj , αj and δj , j = 1, . . . , m. The diagonal elements of D, alongside with γj and τj are updated in
logscale, again using random walks. The sampling of O is more complicated and we refer the reader
to FS for further details.

LPS as described in Section 6 is calculated using a partition of the data into M = 10 subsets,
which are kept constant for the evaluation of the performance of each model.

Inference was conducted using MCMC chains of 125,000 iterations. We retained every 20th sample
after a burn-in period of 25,000 draws. Matlab code is available from the authors upon request.

7.5 Results

Table 1 presents the logarithm of the Bayes factors for the different models with respect to the
symmetric Normal alternative. A positive value for an entry indicates support in favour of that
alternative. The results show that the hidden truncation and, in particular, the inverse scale factors
skewed versions find most support in the data. The construct alternatives do not improve on the
symmetric counterparts and the order statistics model performs poorly. There is no real evidence
in favour of a tails other than Normal, which can be seen from Table 1 and from the fact that the
posterior distributions of ν∗ and νj have most mass on relatively large values. This helps to explain
the poor performance of the order statistics method based on the Student-t2 distribution, as for
this model one of the tails of the distribution is necessarily very heavy. This is a consequence of
the parameterisation used here, which allows for the prior elicitation described in Section 5. When
allowing for tail behaviour different from Normal, the inverse scale factors skewing mechanism appears
to be quite robust.

We now concentrate our attention on the posterior distribution of the residuals for the Normal
alternatives. Figure 5 presents contour plots for the densities of these distributions. For the four
alternatives, the orientation of the density and of the basic axes, is very similar. In plots (b) and (c),
corresponding to the hidden truncation and inverse scale factors models, the presence of skewness is
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Table 1: Log of Bayes factors for the different models with respect to symmetric Normal model. The
entry for the order statistics model corresponds to choosing fj equal to the density of the Student-t2
distribution, j = 1, 2.

Distribution Symmetric Hidden Truncation Inv. Scale Factors Construct Order Statistics

Normal 0 22.3 24.6 -0.4 -
Student -3.0 13.0 24.6 -2.7 -
IStudent -1.0 18.0 24.0 -5.5 -227.4

evident. The contours for the two distributions are similar, which is also supported by the results in
Table 1. Figure 5(d) illustrates that the construct distribution does not really induce much skewness,
in line with Table 1, even though, interestingly, the shapes of the contours are changed with respect
to the symmetric ones in Figure 5(a).
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Figure 5: Contour plots of the posterior density of the residuals for the symmetric (a), hidden trun-
cation (b), inverse scale factors (c) and construct (d) versions of the Normal distributions.

In order to further investigate skewness, we can analyse the posterior distribution of AG. Figure
6(b) and (c) present posterior densities of AG for the skewed versions of the Normal distribution, and
for the order statistics version of the Student-t2 distribution, measured along the basic axes. Figure
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6(a) presents a grayscale plot of the direction of the basic axes for the inverse scale factors version of
the Normal distribution. For the other models, the directions for these axes have a similar posterior
distribution. As expected from Figure 5(d), the posterior densities of AG for the construct model are
centred at zero. Despite the fact that the order statistics Student-t2 is not supported by the data, it
can still capture some of the skewness present in the application. Finally, even though Figures 5(b)
and (c) seem to exhibit similar contours at first sight, the respective posterior densities of AG are
quite different. The densities for the hidden truncation model concentrate mass on smaller values of
AG than the inverse scale factor version.
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Figure 6: (a) Grayscale plot of the posterior density of the basic axes as defined in Section 2, for
the inverse scale factors version of the Normal distribution; marginal posterior densities for the AG

measure of the distribution along the first (b) and second (c) basic axes for the hidden truncation
(solid), inverse scale factors (dashed) and construct (dotted) versions of the Normal distribution and
the order statistics version of the Student-t2 (dot-dashed).

A link of these distributions with efficiency behaviour is less immediate than in the composed
error framework, and will be the focus of future research in this area. As an initial idea, however,
we can simply compute the orthant probabilities in terms of the original output coordinates. For a
skewed error distribution to behave in line with the composed error framework for production frontiers
(where a positive error term is subtracted from a symmetric one), it needs to be negatively skewed. It
is important to stress that we are not restricting the direction of skewness in our setting. Thus, our
framework implicitly investigates whether the distribution of the data is compatible with the frontier
idea. Table 3 presents the median posterior orthant probabilities along the original coordinate axes
for the most favoured model. There is a clear negative skewness in the milk dimension, corresponding
to a median AG of -0.3, indicating a noticeable level of inefficiency in the sector. This is mostly
due to the negative skewness along the first basic axis (e1 in Figure 6(a)), which is roughly in the
same direction. The non-milk dimension, however, indicates skewness in the opposite sense, thus
contradicting the interpretation of the regression model in this direction as a frontier. This is perhaps
not overly surprising as these farms are specialised in milk production and the behaviour of farms is
bound to be more in line with the usual economic rationale in that direction, whereas the non-milk
production is much more incidental and less of a planned economic activity. In other words, farms are
not really looking to reach the frontier in that direction, so we can not necessarily expect a left-skewed
distribution. This is also in line with the findings of Fernández et al. (2004), who measure efficiency
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(with respect to a common frontier) separately for both outputs and find efficiency to be much lower
for non-milk output than for milk.

Table 2: Median posterior orthant probabilities of the residuals for the inverse scale factors version of
the Normal.

Milk
Negative Positive Marginal

Negative 0.18 0.18 0.36
Non-milk

Positive 0.47 0.17 0.64
Marginal 0.65 0.35 1

From Table 2, we can also deduce that the correlation between the error terms in terms of the
original output directions is negative, indicating that a farm which does particularly well with respect
to its frontier in terms of milk is expected to do worse than average in terms of the production of
non-milk output. This may reflect the level of specialisation of the farm.

Inference on the regression models for both outputs is summarized in Table 3. As mentioned
above, only the one for milk is consistent with the interpretation of frontier in the usual economic
sense. The coefficients corresponding to the different inputs are input elasticities and their values for
the milk frontier are reasonable, and rather close to those obtained in Fernández et al. (2002): the
main difference is a somewhat larger capital elasticity. Returns to scale are founds to be increasing,
as in Fernández et al. (2002) and Reinhard et al. (1999).

Table 3: Posterior median and percentiles for regression parameters.

2.5% Median 97.5%

Intercept -2.62 -2.24 -1.99
Labor 0.05 0.11 0.14

Milk Capital 0.62 0.65 0.71
Variable 0.39 0.42 0.44
RTS 1.15 1.17 1.21
Intercept -2.17 -1.48 -0.81
Labor 0.15 0.26 0.35

Non-milk Capital 0.0002 0.008 0.044
Variable 0.78 0.83 0.88
RTS 1.02 1.10 1.17

The LPS results on out-of-sample prediction for the different models are summarised in Table 4,
which presents the number of times (out of the ten prediction subsets) that each model performed best
and worst (including ties), as well as the average of the LPS values over the ten different subsets. The
results are in close agreement with the evidence from Bayes factors. The predictive performances of the
Normal alternatives are again favoured. Also, the inverse scale factor versions do somewhat better than
the hidden truncation ones, whereas the construct does not really improve on the symmetric models.
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Throughout, the worst predictions come from the order statistics model (based on the Student-t2).

Table 4: LPS for the different models.

Version Distribution # best # worst Average

Normal 0 0 .711
Symmetric Student 0 0 .713

IStudent 0 0 .712

Normal 1 0 .696
Hidden Truncation Student 0 0 .701

IStudent 0 0 .700

Normal 6 0 .694
Inv. Scale Factors Student 2 0 .695

IStudent 2 0 .695

Normal 0 0 .711
Construct Student 1 0 .712

IStudent 0 0 .713

Order Statistics Student-t2 0 10 .859

An additional visual aid for the assessment of the predictive quality of different models is provided
by the plot in Figure 7. There, the LPS values for the ten prediction subsets are presented for the
symmetric, hidden truncation and inverse scale factors version of the Normal distribution, with lines
connecting LPS values corresponding to the same subset. The plot highlights the predictive gain of
the two skewed models with respect to the symmetric one. It also shows the (slight) edge of the
inverse scale factors model. As can be expected, there is quite some variation in the LPS values for
the different prediction subsets. For example, the range of LPS values for the inverse scale factors
Normal model is [0.547, 0.781].
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Figure 7: Comparison of the LPS values for the symmetric, hidden truncation and inverse scale factors
versions of the Normal distribution. Each line corresponds to a different prediction subset.
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8 Conclusion

In this paper we consider model comparison of coordinate-free skewed distribution through Bayesian
methods. We discuss various classes of such distributions and use a new class (a subclass of an existing
proposal), which is useful for our purposes. The skewed distributions are used as error distributions
in a multivariate linear regression framework.

As the coordinate-free class of skewed distributions that we use is based on affine linear transfor-
mations of univariate skewed variables, one important issue is how to select appropriate forms for the
distributions of these univariate components. We consider a variety of models, differing in the skewing
mechanism and in the underlying symmetric distributions, allowing for e.g. potentially heavy-tailed
distributions.

We propose a Bayesian framework for comparison, where we make sure that the prior distributions
on the various models are equivalent. We elicit the priors on model-specific (skewness) parameters
through a common implied prior on a skewness measure that can be defined irrespective of moment
existence. This elicitation process is exact for some candidate distributions and for other distributions
we propose a Kullback-Leibler approximation. We also normalise the distributions of the skewed
univariate components, so that the other parameters have the same interpretation across models.
Again, the normalisation we use does not rely on moments, but on robust measures of location and
spread, so that we do not need to exclude models with very fat tails. These ideas of prior matching
and normalisation provide a general framework for comparing multivariate skewed regression models
based on the entire class of distributions considered here.

We use two different measures to assess model performance: Bayes factors, to assess within-sample
fit, and log predictive scores, to capture out-of-sample predictive ability.

An application to stochastic production frontiers is provided. In this context, we depart from
the usual composed error framework with two separate error terms (a symmetric measurement error
and a one-sided inefficiency error) in favour of direct modelling through a skewed distribution. This
framework carries over immediately to the multi-output case, where we simply use the classes of
multivariate skewed distributions mentioned above, and the regression function captures the frontiers.
We feel this is an interesting modelling development in the frontier literature, and we intend to pursue
further research in this area. The present application is mainly a pilot study, illustrating that such
models can be used in practically relevant frontier problems.

The data used consist of 1545 observations on specialised Dutch dairy farms with two separate
outputs. In the context of this application both model comparison criteria lead to similar conclusions.
The inverse scale factors and the hidden truncation skewing mechanisms are the most adequate and
represent a strong improvement over the symmetric alternatives. Results for the main focus of the
economic activity of these farms (milk production) are in line with economic theory and with previous
results obtained using the composed error framework (where the frontier was shared for both outputs).

This article deals with model comparison based solely on the two model performance criteria
mentioned above. In practice, other issues can also be of importance: simplicity and interpretability of
the models, and computational ease of the inference. The simplicity of the class of skewed distributions
that we analyse does not depend on the particular choices for the distributions of the univariate
components. Interpretability favours the inverse scale factors and construct skewing mechanisms, as
for these choices skewness only depends on the skewness parameter and not on the properties of the
underlying symmetric distribution. In terms of computational ease, the inverse scale factors mechanism
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is certainly the easiest to work with. This is due to the fact that, unlike the other methods, it is not
necessary to compute values of a probability distribution function.4 For conducting Bayesian inference
with the hidden truncation mechanism, this can be replaced by performing data augmentation in the
sampler.

Appendix: Proofs

Proof of Property 1. As the densities sj are unimodal and have mode at zero, η is a stationary
point of p(η|µ,A, f, ψ) if

dp(η|µ,A, f, ψ)
dη

= 0m ⇔ (A′)−1(η − µ) = 0m. (10)

Since the matrix A is nonsingular, the equation on the left hand-side of (10) is satisfied if and only
if η = µ.

That η = µ is the unique mode follows directly from the fact that the sjs are unimodal, j =
1, . . . ,m. ¤

Proof of Property 2.
Let η be defined as in (1) and, without loss of generality, let µ = 0m. Further, let r1, . . . , rm be

non-negative integers and aij denote the element in row i and column j of A. Then,

E




m∏

j=1

η
rj

j


 = E




m∏

j=1

(
m∑

l=1

aljεl

)rj

 . (11)

By the multinomial theorem (11) is equal to

E




m∑

j=1

r∑

l=1

dljε
l
j


 =

m∑

j=1

r∑

l=1

dljE
[
εl
j

]
, (12)

where dlj are constants, r =
∑m

j=1 rj and the equality in (12) follows because the εjs are independent,
j = 1, . . . , m.

Therefore, if E
[
εl
j

]
exists for j = 1, . . . , m and l = 1, . . . , r then E

[∏m
j=1 η

rj

j

]
also exists, conclud-

ing the proof. ¤
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