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Introduction

That IQ is a highly heritable trait has been widely reported.

Rather less well—-known are recent reports in major scientific jourmnals such
as those announcing that the heritability of controllable life events is
53%7among women and 14% among men (Saudino et al., 1997), while the
heritabilities of inhibition of aggression, openness to experience, and
right—wing authoritarianism are respectively 12%, 40%, and 50% (Pedersen et
al., 1989; Bergeman et al., 1993; McCourt et al., 1999). It seems that milk
and soda intake are ip part heritable, but not the intake of fruit juice or
diet soda (de Castro, 1993).

These reported heritabilities are parameter estimates obtained in
structural modeling of measures taken on pairs of siblings --
prototypically, identical (monozygotic) twins and fraternal (dizygotic)
twins, some reared together and others reared apart. The models are of the
linear random effects type, in which an observgd trait -- a phenotype -- is
expressed in terms of latent factors -- genetic and environmental -- whose
prespecified cross—twin correlations differ by zygosity and rearing status.
Estimation is by maximum likelihood applied to the phenotypic variances and
covariances. Heritability, the key parameter of interest, refers to the
proportion of the variance of the phenotype that is attributable to the
variance of the genetic factors.

Regarding these studies, various issues arise. Those that I will
touch on here include: identificétion, nonnegativity constraints,

alternative estimators, pretest estimation, conditioning of the design



matrix, multivariate analyses, and the objectives of structural modeling.
Some of these issues were featured in Thomas Rothenberg’s dissertation
(1972), a remarkable book that led me to appreciate the generality of the
minimum chi—square principle in estimation, and the contrast between
equality and inequality constraints in efficient estimation.

In the present paper, I will focus on the SATSA project -- the
Swedish Adoption/Twin Study of Aging -- which, from the early 1980s on, has
assembled a sample of adult twin pairs: approximately 200 MZT (identical
twins reared together), 200 DZT (fraternal twins reared together), 100 MZA
(identical twins reared apart), and 150 DZA (fraternal twins reared apart).
The fraternal twins are all same—sex pairs. The twins have been assessed in
person and via mail questionnaires on several occasions, on a wide range of
traits, some cognitive and others relating to personality, temperament, and
recollections of childhood upbringing. Concerns about the
representativeness of the samples and the reliability and validity of the
measures were raised in Goldberger & Kamin (1998) and Kamin & Goldberger

(2002) . I suppress those concerns here in order to focus on the modeling.

Primary Model

The specification of the main SATSA model is captured as follows.
Consider a typical individual, whose phenotype (observable trait value) Y
is determined by unobservable factors as

1 Y = .
(1) o G + a, D + a, S + @, U
Here G is the additive genetic factor, D is the nonadditive genetic factor,

S is the shared environment factor, and U is the nonshared environment

factor. (The distinction between the two genetic factors will be exposited



later). Assume that the factors are uncorrelated, and standardize all
variables to have zero means and unit variances, so that the phenotypic
variance is
2 2 2 2

2 v(Y) = =

(2) (Y) a, + o, +a+a 1
The individual is paired with his or her sibling, whose phenotype is
determined as

3 [ 14 1 I I.

(3) Y a, G' + o, D'+ a, S’ + a, U
Across the sibling pair, all factor correlations are assumed to be zero
except perhaps for those that link one sibling’s additive genetic,

nonadditive genetic, and shared environment factors with the corresponding

factors of the other sibling. So the phenotypic sibling covariance is

2

2 2
(4) c(Y,Y’") = C(G,G") a) + c(D,D’) a, + c(s,8") a,

Referring to identical and fraternal twins (MZs and DZs), reared together

and apart (Ts and As), those factor covariances are assumed to be

C(G,G") = 1 for MZs, 1/2 for DZs
(5) .C(D,D’) = 1 for MZs, 1/4 for DZs
c(s,s8’) =1 for Ts, 0 for BAs

With all variables standardized, covariances are also correlations.
The consequence is that in the population, the phenotypic correlations for

the four twin types are

2 2 2
MZT = +
py T @ ta o
2 2 2
6) DZT =
(6) Py al/z + al/4 + ag
2 2
MzZA =
Py m @+
2 2
DZA =a /2 + 4
Py al/ az/
Let B, = 02 8. = o> and 8. = a2 and define the vectors
1 1’ 2 2! 3 3
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Then SATSA’s Primary Model has this linear specification for the population

phenotypic correlations:

8 =X + X .
(8) L 1 PL v % Py v By
These PBs are components of phenotypic variance, as is the implied nonshared

. 2 .
environment component, = a =1 — ( + + ) . The parameter is
p 0 0 1 2 3 1

called narrow heritability, while the sum ﬂl + ﬂz is called broad
heritability. .
With 4 correlations expressed in terms of 3 parameters, there is 1

equality restriction, namely

Py T Py T Py T Py,

which says that the difference between MZ and DZ correlations is the same
whether the twins are reared together or apart. Further, with all 4 fBs

assumed to be nonnegative, there is an inequality restriction, namely

p,/4 < p < p3/2,

3 4

which says that the DZA correlation should lie between one—fourth and
one—half of the MZA correlation.
Given random samples from each of the 4 twin groups, one might take

observed phenotypic correlations r,. r r L, interpret them as

2' 737

estimates of the population correlations, and estimate B = (ﬂl ﬂ2 ﬂ3)’ by
~
running the least—squares linear regression of the 4 x 1 vector

= (r., r_. r. r )’ on the 4 x 3 matrix X = (X. X_. X.), thus minimizing
r~

r
~ 17273 "4 1 02 A3

4 2
Lisg (55 ="

A more appropriate procedure would take account of the fact that the



variance of a sample correlation coefficient depends on the population
correlation coefficient as well as the sample size, and choose values for

the f—estimates to minimize

St e = 52
=1 WiV T Py

2.2 , , . ,
where wi = ni/(l - ri ), with ni being the number of observations in the
i—th twin group.
However, it is most convenient to work with Fisher’s z—transforms of

correlation coefficients, namely

N
I

(1/2) logl(l + x)/(1 — )],

¢ = (1/2) logl(1 + p)/(1 — )1,

relying on the presumption that in random sampling, sample size n, the
variable z is distributed approximately N({,1/n); see Wilks (1962, p. 276).

So a particular application of the minimum chi-square principle, which I

label FZLS, chooses values for the f—estimates to minimize

4 2 -
Yi_g mylz, — 607,

i=1 1771
.
which amounts to a straightforward, albeit nonlinear, regression problem.

With 4 observations and 3 parameters, the minimized criterion provides an
. 2 . . .

asymptotic x (1) statistic of model fit which can serve to test the

equality restriction Py TP =p. — Py

3 2

I have oversimplified the procedure of the SATSA group in several
respects. They do not standardize the observed variables, but rather work
with variances and covariances, taking ﬂo as a free parameter. (They then
rescale parameter estimates ex post to obtain the proportional components
of variance). They do not use FZLS, but rather Gaussian ML, following Neale
& Cardon (1992, Chapters 6—7).. Often, they take as data 8 phenotypic

variances: for each twin group, the between—family and within—family



components. That gives them 3 additional degrees of freedom for model fit,
which are implicitly allocated to the hypothesis that the four phenotypic
variances are the same. This may be an interesting hypothesis, but has
little to do with behavior—genetic theory. Sometimes they work with 12
observed phenotypic variances and covariances: for each twin group, a
variance for twin A, a variance for twin B, and a covariance. This gives 4
additional degrees of freedom for model fit, which are implicitly allocated
to equating the phenotypic variances for twins A and B in each twin group.
The labelling of the twins was arbitrary, so those 4 additional degrees of
freedom are in effect allocated to the hypothesis that SATSA’'s own
assignment of the labels was in fact random. This is hardly an interesting
hypothesis, and has nothing to do with behavior—genetic theory. (The
economists Ashenfelter & Krueger (1994), working with twins, albeit not
with behavior genetics, also treat an arbitrary labelling of Twin A and
Twin B as meaningful) .

Typically, the SATSA group residualize the observed traits on age and
gender before beginning the modeling exercise, but occasiocnally they
introduce age into the model itself as a covariate. This adds 2 parameters
(a population age variance and a population trait—on—age slope), and adds
12 observed moments: for each twin group, the covariance of twin A’s trait
with age, the covariance of twin B’s trait with age, and the variance of
age. (As usual, twins in Sweden have the same age). In this manner,
Lichtenstein et al. (1992) were able to report a total of 18 degrees of
freedom for model fit, while the core of the model in correlation terms had

just 1.



Genetic Theory

The genetic basis for this line of research is minimal. The
biological content of the model, after all, consists of the ratios 1/2 and
1/4 for DZ twins relative to MZ twins. (It is true that the theory does
extend to cover kinships other than twins). The formal distinction between
the two genetic factors should be familiar to econometricians: it is the
distinction between the conditional expectation function and the best
linear predictor. Consider a gene with two variants (alleles), - and +. At
this locus, an individual may be --, -+, +-, or ++. Score these as Z = 0,
1, 1, 2, and consider the distribution of phenotypes Y for persons of each
score Z. If E(Y|Z) is linear, that is if the expected observable trait for
heterozygotes (Z = 1) is halfway between those for homozygotes (Z = 0 and Z

= 2), then only an additive genetic factor is present. If E(Y|Z) is
nonlinear, for example if the expected observed trait for Z = 2 is the same
as for Z = 0, then a nonadditive genetic factor is present. In that case,
the BLP(Y[Z) gives the additive factor, and the deviations E(YlZ) -
BLP(YIZ) give the nonadditive factor. So the two genetic factors are
uncorrelated by construction. The Appendix sketches why, under certain
assumptions, MZs and DZs correlate 1/2 and 1/4 on those two factors.
Remarkably, the argument for a single locus extends directly to multiple
loci. On all this, see Falconer & Mackay (1996, Chapters 7-9).

In SATSA’s Primary Model, identification is obtained by ruling out
many possibilities a priori. Covariance between an individual’s genetic
factors and shared environment factor is not allowed, conventional wisdom

on the role of parents to the contrary notwithstanding. Nor is there any

allowance for the possibility that the separated twins were placed into



similar environments. Nor is there any allowance for MZTs to have more
similar environments than DZTs, that is, for C(S,8’) to differ by zygosity;
any excess phenotypic similarity of MZTs over DZTs 1is attributed to their
excess genetic similarity. Joseph (1998) provides a critical assessment of
the evidence in favor of this "equal environment assumption". Even the
specified ratios 1/2 and 1/4 are not sacred; those values are valid under
random mating, but would be different if there is assortative'mating for
the trait.

It is quite ironic that the assumptions of the behavior—genetic model

refer so directly to social behavior, rather than biological processes.

Secondary Model

On occasion, the SATSA group adopts an alternative model that makes
allowance for some environmental similarity for twins reared apart, thus
addressing the objection that the separated twins may not have been reared
in randomly different environments. This is accomplished by replacing the
nonadditive genetic factor with a "selective placement" or "correlated
environment" factor which correlates perfectly across twins of all types.

In terms of the display in (7), replace X, with a new variable X, whose
~

o

value is 1 for all 4 twin groups. Then X, = (1, 1, 1, 1)’ and the Secondary
N

Model has

9 = .

(9 A= L T b Sy - S

As the SATSA group recognizes, it is not feasible to include both genetic
factors along with the new environmental factor because exact collinearity

would result: x =3 x. — 2 X_.
N4 ~l ~ 2



The design columns in (9) span the same space as those in (8), so the

Secondary Model implies the same equality constraint, namely Py T Py = Py~

p However, with all its s assumed nonnegative, the implied inequality

4
constraint is now

2 < <
py/2 < p, S p

3 1

which says that the DZA correlation should lie between 1/2 and 1 times the
MZA correlation. So SATSA researchers are either attracted to this model
immediately when the observed DZ correlations run high relative to the MZ

correlations, or else choose it retroactively after observing that the

nonnegativity constraint binds when fitting the Primary Model.

Agnostic Model

The need to choose between the Primary and Secondary Models may be

‘

avoided by freeing up the relation between Py and Py- This can be

accomplished by allowing two distinct genetic factors, one for MZs and one

for DZs. If we let x5 = (L010)" and x_ = (0 10 1)', we can write the
la%

a6

Agnostic Model as

(10) p=x_ 6. +x_ 6. +x_, 6.
v A5 1 .6 2 33
Observe that x_. = - x_ + 2 x_ and x_ = 4 x. — 4 x_, 80 the columns of this
5 By 2 26 Pz 2

design span the same space as the previous ones did, and this model implies

the same equality constraint, Py T Py = Py — P One may suppose that all

4
3 és are nonnegative, and also 61 > 62 (genetic similarity greater for MZs
than for DZs). But eveh with all §s assumed nonnegative, it allows p4 to
range from 0 up to Py- (A similar idea was employed by Lykken et al.

(1988)). Adopting the Agnostic Model would reduce the need to follow

SATSA’'s model selection strategy, and would also dispel some of the

\
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mystique of a rigorous biological foundation for the SATSA analyses.

Skeptical Model

A crucial feature of SATSA's models is that they make no allowance
for environmental resemblance to differ between MZTs and DZTs, as a result
say of more similar treatment by parents and peers. A simple alternative

3—parameter specification would include the additive genetic factor;sl, an

MZT shared environment factor %ﬂ = (1 0 0 0)', and a DZT shared environment
factorf&-8 = (0 1 0 0)'. This Skeptical Model can be written as

11 =x_ 6_ + 6

() LA L PIAE PPAAS PR PR

These design columns span a different space, and the single equality

restriction is now

p, = p3/2-

4

One may suppose that all 3 fs are nonnegative, and also 02 > 03
(environmental similarity greater for MzZTs than DZTs). This model has, as

far as I know, not been used by the SATSA researchers, and only rarely by

other behavior geneticists, e.g. Loehlin (1987, pp. 122—126).

-Identification and Constraints

" In practice it is rare for SATSA to publish estimates of a full
3—factor version of either their Primary or Secondary Model. Almost
invariably, one or another of the three factors will be dropped and a
reduced model fitted and reported. That happens either when one of the
estimated parameters is "nonsignificant", or when their algorithﬁ (which
apparently precludes negative estimates) finds the nonnegativity constraint

to be binding and sets the offending parameter at zero. As a consequence of
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this general—to—specific strategy, almost always the only model published
is a reduced 2—factor, or l1—factor, omne.

In particular, throughout the SATSA publications, one rarely --
perhaps 5% of the time -- finds traits for which both additive and
nonadditive genetic variance components are estimated to be nonzero. It is
not hard to see why. Consider the Primary Model. If only MZT and DZT data
were available, it would be impossible to distinguish between the additive
and nonadditive genetic components. The availability of separated twins

formally identifies ﬂl, B and ﬂ3, but the identification is tenuous.

5
Treating the 4 x 3 design matrix §/= £§1’§2/§3) as if it simply had 4
observations, the "correlation" (about zero) between X and X, is 0.97.
That high degree of collinearity carries over to FZLS and ML estimation,
producing unreliable and negatively correlated estimates of ﬁl and ﬂz.
Pedersen, Plomin, Nesselroade, & McClearn (1992) cast their lot with the
additive side; Plomin, Pedersen, Lichtenstein, & McClearn (1994), analyzing
the same cognitive traits, cast their lot with the nonadditive side.
Similar considerations apply to the Secondary Model.

Had the Agnostic Model been used, in many cases the SATSA group could
have maintained a full 3—factor model for the correlation coefficients. For
example, the condition 61 > 62 > 0 is equivalent to ﬂl + ﬂz > 0.5 ﬂl + 0.25

B

5 > 0, implying 0.5 ﬂl + 0.75 ﬂz > 0, and even when unconstrained
estimates of one of those Bs was negative, the corresponding estimates of

the 6s might be admissible.

Empirical Implementation

To illustrate the applications, for three traits selected from SATSA
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publications I give estimates of the various models. In Pedersen et al.
(1988), Extraversion and Neuroticism were each measured as the sum of
yes—no responses (coded 1-0) to nine items drawn from a‘short form of the
Eysenck Personality Inventory, residualized on age and gender. In
Lichtenstein et al. (1992), Occupation was measured by four nonfarm
occupational categories (coded 1, 2, 3, 4, then logged), gender—specific
and residualized on age; I use only the results for men.

Table 1 refers to those three traits. Firsﬁ, the observed
correlations are given along with sample sizes. Then come model—fitting
results, with Roman letters denoting estimates of the corresponding
Greek—letter parameters, and standard errors where available in
parentheses. SATSA'’s ML.estimates for the particular reduced Primary Model
that they published are given, followed by my FZLS estimates for that
model. (Reassuringly, our numbers are generally élose; the exception, b3
for Neuroticism, I take to be a misprint. For Neuroticism, Pedersen et al.
(1988) also report and prefer the full Secondary Model, with parameter
estimates b1 = .13, b4 = .16, b3 = .07).

Then follow results of my fitting the full Primary, Secondary,
Agnostic, and Skeptical Models by FZLS. Readers may, for each model,
readily calculate the fitted correlations from the parameter estimates. And
they may also estimate reduced versions of these models: the FZLS method
requires only the r.s and n,s, which are often what is available in SATSA
publications.

Throughout the table, the chi—square statistic is the minimized value
of the FZLS criterion..ﬁegrees of freedom for model fit are the number of

correlations, 4, minus the number of parameters estimated, 3 for full
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“models and 2 for the reduced models. For their reduced modgls, the xzs for
model fit approach or exceed significance by conventional standards. As is
to be expected, chi-square values coincide when design matrices span the
same space.

A curiosity of the SATSA analyses, one that is not inherent in the
behavior—genetic approach, is that they typically formulate the model in
terms of path coefficients (such as our as) rather than the variance
components (such as our Bs, the squared as). As a result, they report ML
standard errors for estimated path éoefficients, which do not translate
into standard errors for the parameters of theoretical interest, namely the
contributions to variance. For our FZLS estimates, standard errors are
routinely calculated.

In the table; we observe that the total genetic component, ﬂl + ﬂz’
is estimated virtually the same whether the full or reduced Primary Model
is used, and is the same (apart from rounding) as the estimate of 61 in the
Agnostic Model. So it might be argued that broad heritability of each trait
is clearly discernible in the data. On the other hand, we also observe that
the Agnostic and Skeptical Models appear as plausible competitors for
SATSA’s preferred models, while providing alternative interpretations of
the data. For example, the Skeptical Model attributes only 22% of the
variance in Extraversion to genetic factors, rather than 40% or so.

The FZLS method does not constrain the parameter estimates to be
nonnegative, and indeed for many of the SATSA data sets, FZLS produces
negative estimates where SATSA would reduce the model and effectively
report zeros. One could test the nonnegativity constraints,-a task never

undertaken by the SATSA researchers. For example, in the Primary Model for
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Extraversion, forcing b1 = 0 increases x2 by 3.45 (= 5.84 — 2.29),
approaching significance by conventional standards for a single constraint.
To be sure, the appropriate test procedure is that for inequality
constraints, which is more tolerant of departures: see Kodde & Palm (1986),
Wolak (1987). Recently, some behavior geneticists have reported confidence
intervals using the profile likelihood. The source article is Neale &
Miller (1997), which recommends discarding any negative portion of the
interval, that is, left—truncating the interval at zero.

If the SATSA group insist on the requirement that all fs be
nonnegative, it is because of their insistence on interpreting them as
components of variance. Perhaps the frequent occurrence of binding
constraints should serve as an indication that their general
behavior—genetic approach is not valid. On the other hand, there is nothing
in principle that precludes factors that contribute to dissimilarity rather
than similarity of twins. Perhaps negative parameter estimates should not

serve to reject a particular full model out of hand.

Pretesting Issues

SATSA’s empirical implementation of the behavior—genetic approach is
not a routine exercise, but involves a sequence of choices and stopping
rules. Nothing about the track that leads to their final variant is
accounted for when they engage in statistical inference. So the standard
errors and confidence intervals that they do report are merely nominal. The
pretesting issues associated with such model selection are not mentioned in
the behavior—genetic reports nor in the standard textbook, Neale & Cardon

(1992) . My impression from the econometric and statistical literature is
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that under pretesting, nominal standard errors are misleadingly low, so
that actual precision is overstated.

To investigate this, Monte Carlo runs may be useful. I report on one

here. Adopt the Primary Model with parameter values ﬂl = 0.4, ﬂz = 0.1, ﬁ3
= 0.3, implying p_ = 0.800, p, = 0.525, p, = 0.500, p, = 0.225. Take the
sample sizes to be nl = 100, n2 = 100, n3 = 50, n4 = 100. Generate sample
correlations ri (i =1,...,4), or rather the z—transforms thereof zi, by

random sampling from z, ~ N(gi,l/ni). Estimate parameters by FZLS, reducing
the model and re—estimating when a parameter estimate is negative.

Table 2 summarizes results of a 1000—replication run. Column (1)
gives, for estimation of the full model, the average parameter estimates,
their averaée standard errors; and their actual standard deviations. The
next three columns give that information conditionally for the three
branches of the pretest estimator: column (2) refers to the 71 samples in
which the additive genetic factor was dropped because its unrestricted
coefficient estimate was negative, column (3) refers to the 349 samples in
which the nonadditive factor was drépped because its unrestricted
coefficient estimate was negative, and column (4) refers to the 580 samples
in which all factors were retained because none of the unrestricted
estimates were negative. In the rightmost column, the information is given
unconditionally for the pretest estimator, blanks in columns (2) and (3)
being treated as zeroes. We observe some bias in the pretest estimators of

B

1 and ﬂz, and more variability in them than would be indicated by the

standard errors for the reduced models. On the other hand, we observe that

the sum ﬂl + ﬂz is virtually unbiasedly estimated by bi + b;.
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Multivariate Models

Having analyzed dozens of observed traits individually in the same
manner, the SATSA group has moved on to multivariate analyses, in which
several phenotypes are modeled jointly in terms of latent factors. So now
the concern is with accounting for covariances, as well as variances, of
observed traits. For example, Lichtenstein & Pedersen (1995) analyze five
phenotypes jointly: life events, loneliness, perceived support, quantity of
relationships, and health.

Their structure may be captured as follows. For an individual,

+ A u,

(12) = A s
= 35 00

g + A
%4 o A

1

where the observed vector y is 5 x 1, and the uncorrelated latent factors
o~

g, s, u are 5 x 1 with identity variance matrices, while the parameter
oo N

matrices A_, A
a1l

3 and Ao are at most lower triangular. (Nonadditive genetic
Py ~

factors are dropped a priori, soi&.2 is absent). An individual is paired

with his or her twin, for whom

(13) My’zflg’+ﬁ3i}’+£o%.

The now familiar assumptions are made about cross—twin correlations among

the latent factors. Gaussian maximum—likelihood estimation of the parameter

matrices yields-a decomposition of the 5 X 5 variance matrix of y into its
lad

genetic and environmental constituents. This leads Lichtenstein & Pedersen

to conclude, for example, that of the 0.17 correlation between perceived

support and health among women, 0.15 is due to genetic factors, and 0.02 to

nonshared environment.

Following Neale & Cardon (1992, Chapter 12), they refer to their

specification as a Cholesky model. Indeed, the recursive structure will be
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familiar to macroeconomists, but here the ordering of the elements of vy is
to some extent arbitrary. Behavior geneticists credit Martin & Eaves (1977)
for introducing the idea of multivariate twin modeling. In the same year
the economists Behrman, Taubman, & Wales (1977) empirically implemented
such a twin model, one with a natural recursive ordering running from

education to initial occupation to current occupation to earnings.

Objectives

The stream of human behavior—genetic research tapped here represents
structural modeling in several senses: the equations depict causal links
rather than mere empirical associations, the regressions among observable
variables are derived in terms of more fundamental parameters, the
parameters of interest are not those of the conditional expectation of one
observed variable given'others. However, the requirement that one of the
structural parameters may change while others remain unchanged has not been
invoked by the behavior geneticists.

It is fair to ask what the objectives of the behavior—genetic
exercises are. Should one be reassured by a finding that broad heritability
ﬂl + ﬁz is estimated robustly? What indeed does one learn from a report
that genetic factors account for, say, 50% of the variance of a certain
trait? It might be argued that to the extent that a trait is heritable, it
is not malleable, that is, not subject to change by policy intervention.
That argument is incorrect. The geneticist Newton Morton (1974) wrote "one
would be quite unjustified in claiming that heritability is relevant to
educational strategy. The teacher confronted with a neighborhcod in which a

substantial fraction of the children appear uneducable by either academic
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or vocational criteria seems to me like a physical therapist treating a
case of poliomelitis: neither need be concerned with the extent to which
susceptibility to the observed disorder is genetic." The geneticist Richard
Lewontin (1974) wrote, "The fallacy is that a knowledge of the heritability
of some trait in a population provides an index of the efficacy of
environmental or clinical intervention in altering_the trait either in
individuals or in the population as a whole." In a review article that does
recognize some contributions of the behavior—genetic approach, the
developmental psychologist Maccoby (2000) wrote, "... high heritability of
a trait does not imply that it is not also subject to the influence of
environmental factors, or that it cannot be changed by alterations in
environmental conditions."

But economists need not go that far afield. After all, the
behavior—genetic parameters are effectively R2s£ they measure the
proportion of the variation in an observed trait that is accounted for by
variation in this or that latent factor. As Cain & Watts (1970) explained
years ago, such measures of "importance" are simply not indicators of
policy effectiveness. Their argument was applied to the heritability

context by Goldberger (1979).
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Appendix

Consider a single locus at which there are two possible alleles - and
+, so that individuals are either --, -+, +-, or ++. Let Z = "the score"
denote the number of +s an individual has at that locus, so Z2 = 0, 1, 2.
For simplicity suppose that the two alleles are equally prevalent, and that
in equilibrium, Prob(Z=0) = 1/4, Prob(Z=1) = 1/2, Prob(Z=2) = 1/4. Assuming
that all phenotypic variance is genetic, for each Z there is a phenotype Y
= Y{(Z), which we can code as

Y(0) =-a , Y(1) =b, Y(2) =a
Then E(Y) = b/2 and V(Y) = a2/2 + b2/4. The two terms in V(Y) are the
additive and nonadditive genetic variances respectively. If b = 0, Y is
linear in Z, the heterozygote’s phenotype is halfway between those of the
homozygotes: all genetic variance is additive. If a = 0, there is no linear
component in Y(Z), the two homozygotes’ phenotypes are the same: all
genetic variance is nonadditive.

Denote the scores of husband, wife, and child by H, W, S respectively.

It is easy to verify the tabulations of Pr(S|H,W) below, and then E(Y|H,W)
for the two extreme cases. The final column gives the probabilities for

each H,W combination under the assumption of random—mating equilibrium.

Conditional probabilities Expected phenotypes

HW S§=0 §=1 §=2 Ifb=0 Ifa=20 Pr(HdW
00 1 0 0 —a 0 1/16
01 1/2 1/2 0 -a/2 b/2 2/16

02 0 1 0 0 b 1/16



10 1/2 1/2 0 —-a/2 b/2 2/16
11 1/4 1/2 1/4 0 b/2 4/16
12 0 1/2 1/2 a/2 b/2 2/16
20 0 1 0 0 b 1/16
21 0 1/2 1/2 a/2 b/2 2/16
22 0 0 1 a 0 1/16

Conditional on H,W, any two (non—MzZ) siblings are drawn
independently, so across all families, C(Y,Y’), the covariance of their
phenotypes, is the same as the variance of the sibship means.

2
For the b = 0 case, where E(Y) = 0 and V(YY) = a" /2, we calculate
2 _ 2
VIE(Y|H,W)] = (a/16) (1 + 4/2 + 1) =a"/4 ,
which is one—half of the additive variance. For the a = 0 case, where
2
E(Y) = b/2 and V(Y) = b /4, we calculate
2 _ 2 2

E[E"(Y|H,W)] = (b"/16) (1 + 4/2 + 1 + 1) = b (5/16),

so
_ 2 2 _ .2

VIE(Y|H,W)] = b" (5/16) — (b/2)" = Db"/16,
which is one—fourth of the nonadditive variance. (A similar calculation
will show that parent and child share one-half of the additive wvariance,
and none of the nonadditive variance).

The same conclusions follow when Y(Z) has both additive and
nonadditive components, when allele probabilities are unequal, when
there is random variation in Y for given Z, and when multiple loci are
introduced: Falconer & Mackay (1996, Chapter 9). When Y(Z) is not
deterministic, then one extreme case has E(Y|Z) linear so BLP(YlZ) =

E(Y|Z), and the other has BLP(Y|Z) horizontal with E(YIZ) not constant.

20
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TABLE 1. ALTERNATIVE MODELS FOR THREE TRAITS

Extraversion

OBSERVED
Correlations r xr
1 2
.54 .06
Sample sizes n
i3 1 M
150 204

MODEL-FITTING

Reduced Primary Model

bl b2
SATSA ML 0 .41
My FZLS 0 .40
. (.07) (.
Full Models
Pri
rimary b1 b2
-.41 80
(.22)(.22) (.
Secondary c1 c2
78 -.40
(.14) (.11) (.
A ti
gnostic d1 d2
38 -.01
(.07) (.06) (.
Kk .
Skeptical t1 t2
22 .37 -
(.08) (.10) (.

r3 r4
30 .04
n3 n4
95 220

2

b

;X
.07
.06 5.84
06)
b

3
12 2.29
07)
€3
(12 2.29
07)
a

3
12 2.29
07)

3
.05 1.79
08)

Neuroticigm

1 T2 T3
41 .24 .25
N, By By

.31

.35

.07)

.64 -.

.21) (.

.07) (.

151 204 202 201

.06

.06)

07)

.04

07)

.06

.08)

3

.83

Occupation

rl r2 r3 r4
82 .36 .44 .44
nl n2 n3 n4
38 42 24 36
b1 b2 b3
60 0 09
.59 0 .20
(.11) (.11)
b1 b2 b3
49 10 . .20

.83

.83

.83

.83

C1 02
.64 -.05
(.22) (.20) (

dl d2
.59 .27
(.11) (.12) (.

tl t2
.53 29
(.13) (.14) (.

.10

15)

25

3.40

1.78



‘TABLE 2. MONTE CARLO RESULTS

Unrestricted
(1)
Mean b1 .389 Mean
Mean b2 .109 Mean
Mean b3 .298 Mean
Mean s(bl) .268 Mean
Mean S(bz) .248 Mean
Mean s(b3) .081 Mean
SD(b .264
( l) 6
SD(bz) .247
SD(b3) .079

b*

*
b2

s(bI)

s(b;)‘

s(b;)

SD(bi)
SD(b;)

SD(bg)

Conditional
(2} (3)
— .499
.463 -
.343 .293
- .079
.077 —
.075 .076
— .079
.079 —
.078 .078

(4)

.291

.208

.302

.272

.252

.082

.146

.131

.077

Pretest Estimator

Unconditional

(5)

.343

.154

.302

.185

.151

.079

.179

.164

.078

26




