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     Abstract 
 

In the paper we extend Gregory and Hansen’s (1996) * * *,  and tADF Z Zα  cointegration tests to 
panel data, using the method proposed in Maddala and Wu (1999). We test the null hypothesis of no 
cointegration for all the units in the panel against the alternative hypothesis of cointegration, while 
allowing for a one-time regime shift of unknown timing for at least some regressions.  We derive 
the panel tests for the * * *,  and tADF Z Zα  tests , and compare these tests with Pedroni’s (1999) panel 

cointegration tests. We show that Gregory and Hansen’s (1996) * * *,  and tADF Z Zα  panel tests have 
higher power to reject null when there is a structural change in the cointegration vector. We apply 
the statistics to the analysis of the well known Feldstein-Horioka puzzle for a sample of sixteen 
OCDE countries. After we allow for a structural break in the cointegration regression, we find 
strong evidence of cointegration between saving and investment rates.   
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1. Introduction 

Recently a number of panel cointegration tests have been proposed and widely adopted in 

applied research. For example, panel cointegration analysis has been used to investigate purchasing 

power parity (Pedroni, 2004; Basher and Mohsin, 2004), the Feldstein-Horioka puzzle (Ho, 2002; 

Banerjee and Zangheri, 2003) and international R&D spillovers (Kao et al., 1999; Gutierrez and 

Gutierrez , 2003). The reasons are that panel cointegration tests, and also panel unit roots tests, have 

higher power than univariate tests, especially when the T dimension of the sample is small, - see 

Baltagi and Kao (2000) for an overview. 

The literature on testing for cointegration has essentially taken two directions. The first 

involves taking as null the hypothesis of no cointegration (Pedroni, 2004; Kao, 1999) or as null the 

hypothesis of cointegration, (McChoskey and Kao, 1998; Westerlund, 2005a). The second strategy, 

Maddala and Wu (1999), proposes using “meta-analysis” as suggested by Fisher (1932). This is 

based on combining the p-values of the test statistic for each cross sectional unit. Since the Fisher 

test is non-parametric, both cointegration tests which take as null the hypothesis of no cointegration, 

or as null the hypothesis of cointegration, can be used.   

As is well known from the literature on structural breaks, tests for cointegration in the 

presence of a break tend to under-reject the null of  no cointegration, see Gregory, Nason and Watt 

(1996). We show by a simple Monte Carlo simulation that panel cointegration tests suffer from the 

same problem. Thus, we concentrate on panel cointegration tests which allow for regime shifts.  

We enlarge the methodology proposed in Gregory and Hansen (1996), which basically 

consists in computing standard Augmented Dickey Fuller ADF , and Phillips and Ouliaris (1990) 

 and tZ Zα cointegration tests, allowing for a one-time structural break of unknown timing in either 

the intercept alone or the intercept and slope. Specifically, we test the null hypothesis of no 

cointegration for all cross sectional units against the alternative of time-variant cointegration vector 

for at least some units in the panels. The panel tests are derived using the method proposed in 

Maddala and Wu (1999), i.e. combining the p-values of the test statistics. First, we highlight that 

panel cointegration tests which do not take into account regime shifts suffer from low power for 

both small and large numbers of units in the panel. Second, we show that panel cointegration tests 

which allow for possible regime shift have good size and power both for small and large N and T 

when a break is included in the regression. 

Recently Westerlund (2005b) and Banerjee and Carrion-I-Silvestre (2004) proposed panel 

cointegration tests that allow for structural breaks. Specifically, Westerlund (2005b) proposed a 

panel LM cointegration test which extends  McCoesky and Kao’s (1998) panel test for the null 
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hypothesis of cointegration allowing for multiple structural breaks in both level and trend of 

cointegration regression. Unlike Westerlund (2005b),  we test the null hypothesis of no 

cointegration and we improve Westerlund’s approach  because we also allow for a slope shift in the 

cointegration regression. Banerjee and Carrion-I-Silvestre (2004) modify two of the seven Pedroni’s 

(1999) panel cointegration tests allowing for one structural break when testing the null hypothesis 

of no cointegration. The advantage of our tests is that, unlike Pedroni’s tests, they are available in 

all econometrics packages and that they do not require computing the mean and variance of  the 

tests as is the case in  Pedroni’s tests. The disadvantage is that the p-values have to be computed by 

Monte Carlo simulation.  

In Section 2 we briefly review the panel cointegration tests analyzed in the paper. Section 3 

presents the Monte Carlo simulation study. In section 4 we use the test statistics to analyze the 

Feldstein-Horioka puzzle for a sample of sixteen OCDE countries. Finally, section 5 concludes.  

 

2. Panel cointegration tests with level and regime shift 

In this section we analyze the following system of cointegrated regressions 
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where 1iα  and 2iα are individual constant terms, 1iβ  and 2iβ  are slope parameters,   itu are stationary 

disturbance terms and finally, by construction, ity  and itx  are integrated processes of order one for 

all i .1 
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where ( )iB Ω  is a vector Brownian motion with asymptotic covariance Ω . We assume, as do many 

recently proposed panel cointegration tests, that the process itw  is independent across i , i.e. 

( )' 0it jsE w w =  for all i j≠  and for all , .t s  In other words, we assume that the error terms are not 

cross-correlated. When relaxed, it is simple to show that the panel cointegration tests depend on 

nuisance parameters associated with the cross-sectional correlation properties of the data. We return 

to this problem in the empirical section where we use the bootstrap approach to take into account 

possible cross-sectional dependence. 

                                                 
 
1 More regressors can be included in the equation (1). 
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The dummy variables c
tτϕ  and s

tτϕ  are useful to model structural change. When there is only 

one level shift in the cointegration relationship we have 
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where ( )0,1τ ∈ defines the unknown (relative) time of the shifting, [ ] denotes the integer part,  

and, in this case,  s
tτϕ   is the null vector. In the case of a regime shift  
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Gregory and Hansen (1996) propose extensions of the well known Augmented Dickey Fuller 

(ADF) and  Phillips and Ouliaris’s (1990) , tZ Zα  tests for a single regression under the standard null 

hypothesis of no cointegration, i.e. ( )1itu I∼  with c s
t tτ τϕ ϕ= = 0  in the regression,  against the 

alternative of cointegration with a level shift and/or a slope shift, i.e. ( )0itu I∼  and c s
t tτ τϕ ϕ= ≠ 0   

in the case of a regime shift. Their statistics are computed as the smallest values of ADF, and ,tZ Zα  

tests, across all values of Tτ ∈ , since small values constitute evidence against the null hypothesis. 

Asymptotic distributions for the test statistics are derived and presented in Gregory and Hansen 

(1996). 

We enlarge these tests to panel data using the procedure proposed in Maddala and Wu (1999). 

Let ip  be the asymptotic p-value of one of the three tests proposed in Gregory and Hansen (1996). 

We compute 
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where ( )Φ ⋅  is the standard normal cumulative distribution function. The test statistic Pλ  is a 

modification of Fisher’s (1932) inverse chi-square test. The Z test is usually called the inverse 

normal test. Finally, the L test statistic is a modification of a logit test. All the corrections have been 

made to generate a standard normal distribution as N → ∞ , (see Choi (2001) for further details). 

Assuming cross sectional independence, under the null hypothesis of no cointegration, i.e. all itu  

are I(1) in (1), with c s
t tτ τϕ ϕ= = 0 , all the tests (3) have a standard normal distribution as T → ∞  and 
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N → ∞ .  Under the alternative of cointegration for at least some i, i.e. some or all itu  are I(0) and 

c
tτϕ ≠ 0  in the case of a level shift, or c s

t tτ τϕ ϕ= ≠ 0  in the case of a regime shift, Pλ → ∞ , and 

,Z L →−∞ . 

We compute the p-values for each * * *, , tADF Z Z
α

 test proposed by Gregory and Hansen 

(1996) under the null hypothesis of no cointegration and using response surface methodology as in 

MacKinnon (1991, 1994). We generate { }, m
it it

y x  I  times at T=30,50,75,100,150,250 and calculate 

399 equally spaced percentiles of the * * *, , tADF Z Z
α

 distributions, using I=10,000. This step has 

been repeated 10 times giving a 60× 399 matrix of critical values ( ), ,C T p m  where p is the percent 

quantile and m is the number of regressors (excluding the constant) in (1) with m=1,..,5. We then 

estimate the following regression by using the GLS method  

 ( ) 1 2
0 1 2, , .C T p m T T errorψ ψ ψ− −= + + +  (4) 

The critical values computed using (4) are pretty similar to those presented in Gregory and Hansen 

(1996), Table 1. 2 

 

3. The simulation study 

The data generating process used for the Monte Carlo study is based on the one proposed by 

Engle and Granger (1987), and used in Kao (1999) and Gutierrez (2003): 

, 1          ,it i i it it it i it ity x u u u vα β ρ −− − = = +   (5.1) 
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1 2 1,            i t i t i t i t it i ta y a x eππ π π −− = = +    (5.2) 

 

with [ ]1,3i Uα ∼  and [ ]1,3i Uβ = .  The 1000 initial observations are discarded to remove the effect 

of initial conditions. All random numbers are created by using GAUSS procedures. We consider all 

combinations of { }50, 100N ∈ , { }50, 100T ∈ . The parameters 1,  ,  ,  i aα θ σ  and 2a  are generated 

once, and then fixed, in all 1000 replications. In Table 1 we report the rejection frequencies of 

the * *,ADF Zα  test statistics.  The symbol C refers to a break in the intercept, and C/S indicates 

breaks in the intercept and slope. In the table we include two of Pedroni’s (1999) non parametric 

                                                 
 
2 The critical values are freely available upon request. 
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panel cointegration test statistics. These are labeled Panel t and Group t tests. 3 The Panel t test 

belongs to the set of Pedroni’s tests  that are  based on pooling along what is called within-

dimension, while the Group t test is based on pooling along the between-dimension. 

Table 1 about here 

Briefly, the * * and ADF Zα  test statistics generally show correct size. Note that while the Pλ  test 

statistic is moderately oversized both for small and large N and T,  Pedroni’s Panel t test is  strongly 

oversized. By contrast the Group t test statistic shows better properties. In terms of power, Pedroni’s 

tests have better power both for small and large T,N and  the test statistics * * and ADF Zα  which take 

into account a possible level or regime shift have lower power especially for low N and T. 

In table 2 and 3 we now investigate the power of tests to detect cointegration in the presence 

of a level shift with [ ] [ ]1 21,3 ,   4,8i iU Uα α∼ ∼  and a regime shift with 

[ ] [ ] [ ] [ ]1 2 1 21,3 ,   4,8  and 1,3 ,   4,6 .i i i iU U Uα α β β= =∼ ∼  The breaks occur at 

0.25,0.50, and 0.75τ = .  

Table 2 and 3 about here 

In brief, when a break in the intercept is included in the model we note first that the rejection 

frequencies of Pedroni’s tests fall and the power is strongly affected by the location of the break in 

the sample, especially for small values of N and T. The effect of a break in the intercept on the 

power of Pedroni’s (1999) test statistics is not severe for large values of N and T, and also when the 

break is located at the beginning of the period of analysis. The rejection frequencies for the tests 

that allow for possible shifts are always high, and are not affected by this problem. When a break is 

included in both the intercept and the slope the effects on the power of Pedroni’s (1999) test 

statistics are much more severe. The tests have practically no power. By contrast, the power of our 
* * and ADF Zα  panel test statistics is always high for any value of N, T and τ . We also investigate 

the power of tests for τ  when this randomly varies across the cross-section units two periods away 

from the breaks at 0.25,0.50, and 0.75τ = . The results, not reported here for reasons of brevity, are 

similar to those presented in table 2 and 3: the * *,ADF Zα  test statistics show higher power than 

Pedroni’s test statistics. 4  

                                                 
 
3 To save space, we do not report the test statistics for the *

tZ . These that are quite similar to the *ADF rejection 

frequencies, as well as the other five test statistics presented in Pedroni  (1999). Their values are available upon request.  
4 We also compute the average estimatedτ ’s, together with their standard errors. * *,ADF Zα  tests estimate the 
breakpoint accurately for 0.50τ =  and  0.75τ = . 
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As previously noted, all the tests assume that there is no cross-correlation among the errors, 

an assumption that is almost always violated in practice. When errors are cross-correlated the 

distribution of these test statistics is not longer valid, because they suffer from nuisance parameter 

problems. In addition, Banerjee et al. (2005) have shown that panel cointegration tests have 

significant size distortions when there is cointegration between the units of panel. A suggested 

method to overcome these problems is computing the bootstrap distribution of the test statistics. 

The bootstrap method allows to take into account  general forms of cross-sectional dependence. In 

the next section we will compute panel test statistics and their bootstrap distribution in order to 

analyze the Feldstein-Horioka puzzle.  

 

4. Empirical analysis: The Feldstein-Horioka Puzzle.  

As is well known, Feldstein and Horioka (1980) first documented the idea that international 

capital mobility can be inferred from the relationship between investment and the saving rates. The 

coefficient, labeled saving-retention coefficient, was interpreted as the proportion of the incremental 

saving that is invested domestically. They found a positive and not significantly different from one 

saving-retention coefficient. Thus the estimate suggested that an increase in domestic saving had a 

proportional long-term effect on domestic investment, or, to put it another way, there was little 

room for international capital mobility. Since then the finding of low international capital mobility 

and high correlation between investment and saving rates has been known as the Feldstein-Horioka 

puzzle. Coakley et al. (1996) suggest that a country’s intertemporal budget constraint implies 

current account stationarity, or else that its saving and investment rates should cointegrate. Many 

studies have analyzed the cointegration properties of the saving and investment rates using different 

countries, sample periods and test statistics. The results are mixed but it seems that the hypothesis 

of cointegration is generally rejected, especially when the saving-retention coefficient is not 

imposed  as being a unit. 

Although there are many reasons that might explain lack of cointegration between saving and 

investment rates, we think that more attention has to be paid to changes in the saving-retention 

coefficient over time. For example it has been questioned whether or not cointegration between 

investment and saving rates emerges only during the period of fixed exchange rate regimes, due to 

the presence of strong capital controls which link domestic investment projects to domestic saving 

conditions (see Alexakis and Apergis, 1994). During a period of a floating exchange rate 

cointegration seems to disappear, and the outcome is usually associated with a massive reduction in 

capital controls. Furthermore Banerjee and Zangheri (2003) show that for fourteen EU countries the 
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long-run relationship between saving and investment rates drops after the mid-80’s, when the 

external accounts were fully liberalized.  

As previously noted,  conventional tests for cointegration have low power, especially when 

the T dimension of the sample is small. Furthermore, in the presence of a break the tests tend to 

under-reject the null of no cointegration. Thus we expect that using our approach, which allows 

testing for cointegration between saving and investment rates with powerful panel cointegration 

techniques and at the same time permits for endogenous regime shift in the panel data, we will be 

able to overcome both shortcomings.  

The data set consists of a balanced panel which covers sixteen OCDE countries, Australia, 

Belgium, Canada, Denmark, Finland, France , Italy, Japan, Korea, the Netherlands, Norway, Spain, 

Sweden, Switzerland, the United Kingdom, and the USA. These were  observed quarterly during 

the period 1980-2004. Before testing for cointegration we examine whether the series are non-

stationary. We use various panel  unit root tests which do not take into account cross-sectional 

correlation of errors, such as the Im et al. (2003) tests, and take into account cross-sectional 

correlation of errors, such as the Moon and Perron (2004) and Choi (2001) tests. All the test 

statistics, not reported for brevity, do not reject the null hypothesis of non-stationarity. Moreover, 

when the Im et al. (2005) panel LM test is used, the previous results are robust to the introduction 

of a level shift in the process.  

Table 4 reports  the values of  the two previously analyzed Pedroni’s tests and the values of 

the * * *, ,tADF Z Zα  test statistics when only the intercept is allowed to change and when changes in 

both  the intercept and slope are permitted.  When computing the *ADF  test statistics the order of 

the autoregressive correction is chosen by using Ng and Perron’s (2001) criterion with lag max 

equal to five. The long run variances for the * * and tZ Zα  test statistics are computed using a Parzen 

window with 
1

2T  autocovariances. 

Table 4 about here 

Note that, as previously reported, all the test statistics might be influenced by possible cross-

sectional correlation among errors or, as highlighted in Banerjee and Zangheri (2003), by possible 

cointegration across the units in the panel. To control whether the errors are cross-sectional 

dependent, we compute a recent test proposed by Pesaran (2004) which has been proved to be valid 

for a variety of linear panel data models, including stationary and  unit root dynamic heterogeneous 

panels. The test consists of computing under the null hypothesis of cross-sectional independence the 

following statistic 
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where ˆ
ijρ  is the sample estimate of the pair-wise correlation of the OLS residuals. Pesaran (2004) 

shows that the test has a standard normal distribution. We compute (6) for the sample of OCDE 

countries, obtaining a value for the Pesaran’s test of -15.74. Thus we  reject the null hypothesis of 

cross-sectional independence of the errors.   

 As previously reported, one approach to overcoming this problem is computing the bootstrap 

distribution of the test statistics. We use, as in Banerjee and Carron- i-Silvestre (2004), the sieve 

bootstrap method proposed by Chang, Park and Song (2004), with 5,000 bootstrap replications. 

Looking at the values of the test statistics many interesting results emerge. First it is easy to 

infer from the critical values of the Normal distribution that both Pedroni’s tests reject the null 

hypothesis of no cointegration when assuming cross-section independence, but that this conclusion 

is not robust in the presence of cross-section dependence, since the bootstrap critical values do not 

allow rejection of the null hypothesis of no cointegration.  

By contrast, the * * *, ,tADF Z Zα  test statistics strongly reject the null hypothesis of no 

cointegration both when only the intercept, and when the intercept and slope, are permitted to 

change. As is easy to infer from the bootstrapped critical values, now the null hypothesis is rejected 

by all the test statistics at the 5% level of significance. The only exceptions are in the case of a 

change in the intercept and slope, where the *
PADF

λ
, 

*
PZt

λ
and *

PZa
λ

 test statistics now allow 

rejecting the null at the 10% level of significance. Thus, by allowing the intercept and/or the slope 

to change we find strong evidence that investment and saving rates are cointegrated.  

 

5. Conclusions  

We have extended Gregory and Hansen’s (1996) cointegration tests to panel data using the 

method proposed in Maddala and Wu (1999). We tested the null hypothesis of no cointegration for 

all the units in the panel against the alternative hypothesis of cointegration while allowing for a one-

time regime shift of unknown timing.  We compared these tests with standard panel cointegration 

tests and with Pedroni’s (1999) cointegration tests. We show that Gregory and Hansen 

* * *, ,tADF Z Zα  panel tests have higher power to reject null when there is a break in the intercept 

and/or slope in the cointegrating vector. Thus if standard panel cointegration tests that do not take 

into account regime shift do not reject the null and * * *, , tADF Z Zα  panel tests do, this may imply that 

structural changes are important in the cointegrating vector for at least some units in the panel. We 

apply the statistics to the analysis of the well known Feldstein-Horioka puzzle for a sample of 
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sixteen OCDE countries. After we allow for a structural break in the cointegration regression, we 

are able to reject the null hypothesis of no cointegration between saving and investment rates.   
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Table 1. Testing for cointegration with no regime shifts : 

[ ] [ ]

( )

, 1

1 2 1

          , 1,3 ; 1,3

,            iid N .

;it i it i t i t i t it i

it
it i t it i t it it

it

i i iy x u u u v U U

v
a y a x e

e

α β ρ α β

π π π

−

−

− − = = +

− = = + ≡
 
  

0,I

∼ ∼
 

1.0iρ =  [ ]0.8,1i Uρ ∼  
 

T/N 
50 100 50 100 

50 0.082 0.076 0.358(0.283) 0.478(0.403) *
CP

ADF
λ

 
100 0.077 0.068 0.980(0.963) 1.000(1.000) 
50 0.050 0.050 0.326(0.324) 0.464(0.463) *

CZ
ADF  

100 0.057 0.052 0.985(0.981) 1.000(1.000) 
50 0.051 0.052 0.335(0.334) 0.486(0.485) *

CL
ADF  

100 0.064 0.059 0.982(0.973) 1.000(1.000) 
50 0.071 0.069 0.424(0.360) 0.571(0.515) *

CP
Z

λ
α  

100 0.082 0.069 0.993(0.991) 1.000(1.000) 
50 0.047 0.045 0.424(0.426) 0.604(0.627) *

CZ
Zα  

100 0.065 0.058 0.996(0.993) 1.000(1.000) 
50 0.050 0.045 0.431(0.419) 0.604(0.627) *

CL
Zα  

100 0.060 0.058 0.995(0.992) 1.000(1.000) 
50 0.070 0.062 0.289(0.250) 0.605(0.624) 

/
*
C SP

ADF
λ

 
100 0.075 0.065 0.958(0.933) 1.000(1.000) 
50 0.051 0.047 0.323(0.318) 0.410(0.374) 

/
*
C SZ

ADF  
100 0.060 0.053 0.968(0.962) 1.000(1.000) 
50 0.055 0.045 0.321(0.312) 0.439(0.444) 

/
*
C SL

ADF  100 0.060 0.053 0.967(0.960) 1.000(1.000) 
50 0.060 0.062 0.341(0.300) 0.519(0.581) 

/
*

C SP
Z

λ
α  

100 0.077 0.068 0.980(0.968) 1.000(1.000) 
50 0.043 0.038 0.392(0.405) 0.519(0.544) 

/
*

C SZ
Zα  

100 0.065 0.052 0.992(0.984) 1.000(1.000) 
50 0.045 0.045 0.387(0.399) 0.474(0.451) 

/
*

C SL
Zα  

100 0.069 0.056 0.986(0.975) 1.000(1.000) 
50 0.104 0.147 0.999(0.998) 1.000(1.000) Panel t (non parametric) 100 0.095 0.100 1.000(1.000) 1.000(1.000) 
50 0.053 0.065 0.995(0.994) 1.000(1.000) Group t (non parametric) 100 0.037 0.029 1.000(1.000) 1.000(1.000) 

Rejection frequencies at the 5% level of significance using critical values computed following 
Mackinnon (1991,1994) for * *,ADF Zα  and the standard normal distribution for Pedroni’s (1999) tests 

statistics,  in 1000 replications. In parentheses are the size-adjusted rejection frequencies based on 
estimated critical values with 1iρ = . 
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Table 2. Level shift in the intercept  

[ ]
[ ] [ ] [ ]

( )

, 1

1 2 1

1

2

          ,   

,            iid N .

,  t T  
0.8,1 ;  1,3

, t > Tit it it it i t i t it

it

it i t it i t it it

it

it i

i i i i

it i

y x u u u v

v
a y a x e

e

U Uα β ρ ρ

π π π

α α τ
β

α α τ −

−

− − = = +

− = = + ≡

 = ≤
 

=  
 
  

0,I

∼ ∼  

[ ] [ ]1 21,3 ,   4,8i iU Uα α∼ ∼  

N=50 N=100 
τ  τ  

Test statistics T 

0.25 0.50 0.75 0.25 0.50 0.75 
50 0.869(0.815) 0.923(0.894) 0.885(0.855) 0.978(0.966) 0.992(0.989) 0.989(0.979) *

CP
ADF

λ
 

100 1.000(0.998) 0.999(0.999) 0.999(0.998) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 0.854(0.854) 0.925(0.924) 0.892(0.890) 0.971(0.971) 0.995(0.995) 0.988(0.987) *

CZ
ADF  

100 0.999(0.998) 0.999(0.999) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 0.849(0.849) 0.929(0.928) 0.898(0.898) 0.969(0.969) 0.994(0.994) 0.988(0.988) *

CL
ADF  

100 0.999(0.998) 1.000(0.998) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 0.940(0.925) 0.961(0.944) 0.938(0.916) 0.994(0.988) 0.997(0.996) 0.997(0.996) *

CP
Z

λ
α  

100 1.000(0.999) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 0.925(0.925) 0.961(0.962) 0.918(0.918) 0.990(0.991) 0.996(0.996) 0.992(0.992) *

CZ
Zα  

100 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 0.933(0.924) 0.962(0.959) 0.930(0.925) 0.992(0.994) 0.997(0.997) 0.993(0.993) *

CL
Zα  

100 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 0.924(0.817) 0.715(0.560) 0.715(0.535) 0.995(0.970) 0.898(0.753) 0.903(0.751) Panel t  

(nonparametric) 100 1.000(0.999) 1.000(0.999) 1.000(0.999) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 0.767(0.745) 0.477(0.448) 0.252(0.236) 0.942(0.924) 0.644(0.576) 0.316(0.264) Group t  

(nonparametric) 100 1.000(1.000) 0.998(0.999) 0.993(0.997) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
Rejection frequencies at the 5% level of significance using critical values computed following Mackinnon 
(1991,1994) for * *,ADF Zα  and the standard normal distribution for Pedroni’s (1999) tests statistics,  in 1000 
replications. In parentheses are the size-adjusted rejection frequencies based on estimated critical values with 

1iρ = . 
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Table 3. Regime shift in the intercept and slope  

[ ] [ ]
[ ] [ ] [ ]
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          ,   

,            iid N .

,  t T ;  ,  t T  
0.8,1

, t > T ;  ,  t > Tit it it it it it i t
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it i t i
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it i t i
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a y a x e

e

Uα β ρ ρ

π π π

α α τ β β τ

α α τ β β τ −

−

− − = = +

− = = + ≡

 = ≤ = ≤
 

= =  
 
  

0,I

∼

 
[ ] [ ]1 2 1 21,3 ,   4,8 ;  [1,3],  [4,6].i i i iU U U Uα α β β∼ ∼ ∼ ∼  

N=50 N=100 
τ  τ  

Test statistics T 

0.25 0.50 0.75 0.25 0.50 0.75 
50 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 

/
*
C SP

ADF
λ

 
100 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 

/
*
C SZ

ADF  
100 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 

/
*
C SL

ADF  
100 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 

/
*

C SP
Z

λ
α  

100 1.000(0.999) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 

/
*

C SZ
Zα  

100 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 

/
*

C SL
Zα  

100 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 1.000(1.000) 
50 0.021(0.007) 0.002(0.000) 0.000(0.000) 0.057(0.007) 0.000(0.000) 0.000(0.000) Panel t  

(nonparametric) 100 0.156(0.066) 0.002(0.001) 0.000(0.000) 0.370(0.152) 0.001(0.000) 0.000(0.000) 
50 0.096(0.075) 0.000(0.000) 0.000(0.000) 0.141(0.101) 0.000(0.000) 0.000(0.000) Group t 

(nonparametric) 100 0.255(0.301) 0.000(0.001) 0.000(0.000) 0.468(0.612) 0.000(0.000) 0.000(0.000) 
Rejection frequencies at the 5% level of significance using critical values computed following Mackinnon 
(1991,1994) for * *,ADF Zα  and the standard normal distribution for Pedroni’s (1999) tests statistics,  in 1000 
replications. In parentheses are the size-adjusted rejection frequencies based on estimated critical values with 

1iρ = . 
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Table 4. Panel cointegration statistics with regime shift,  16 OCDE countries 1980.1 – 2004.4 (a) 

Bootstrap distribution (b)   Model Tests 
     1% 2.5% 5% 10% 

Pedroni (1999,2004) tests      
Panel t  (nonparametric) -5.333(0.00) -7.180   -6.807   -6.422    -5.877 
Group t (nonparametric) -5.270(0.00) -8.630    -8.101    -7.654    -7.166 
Change in the intercept  

     *
PADF

λ
 7.583(0.00) 4.697 4.008 3.349 2.596 

      *
ZADF  -4.225(0.00) -0.754 -0.167 0.316 0.890 

     *
LADF  -4.997(0.00) -1.230 -0.460 0.084 0.815 

      *
PZt

λ
 9.916(0.00) 10.771 9.734 9.091 8.302 

      *
ZZt  -4.971(0.00) -4.310 -3.705 -3.281 -2.781 

      *
LZt  -6.427(0.00) -5.794 -5.060 -4.472 -3.902 

      *
PZa

λ
 10.241(0.00) 10.942 10.030 9.264 8.362 

     *
ZZa  -4.524(0.00) -3.814 -3.249 -2.815 -2.270 

     *
LZa  -6.256(0.00) -5.322 -4.578 -4.030 -3.349 

Change in the intercept and slope  

     *
PADF

λ
 4.349(0.00) 6.506 5.724 5.022 4.242 

      *
ZADF  -2.808(0.00) -1.783 -1.277 -0.761 -0.193 

     *
LADF  -3.117(0.00) -2.518 -1.879 -1.193 -0.480 

      *
PZt

λ
 9.832(0.00) 11.483 10.834 10.182 9.393 

      *
ZZt  -4.374(0.00) -4.689 -4.270 -3.911 -3.422 

      *
LZt  -5.492(0.00) -6.268 -5.723 -5.295 -4.663 

      *
PZa

λ
 10.101(0.00) 12.327 11.296 10.546 9.748 

     *
ZZa  -4.464(0.00) -4.635 -4.077 -3.617 -3.058 

     *
LZa  -5.947(0.00) -6.283 -5.653 -5.051 -4.338 

(a) in parenthesis asymptotic p-values; (b) The bootstrap is based on  5,000 replications.  
 
 
 


