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Abstract

Grocer is an econometric toolbox for Scilab, a free opensource matrix-oriented toolbox
similar to Matlab and Gauss. It contains more than 50 econometric different methods,
with many variants and extensions. Most standard econometric tools are available. Grocer
contains also two original econometric tools: a function allowing the ”automatic” estimation
of the ”true model” starting from a more general and bigger one, a method that provides
the most thorough expression of the so-called LSE econometric methodology; a function
calculating the contributions of exogenous variables to an endogenous one.
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1 Introduction

Grocer, available at http://dubois.ensae.net/grocer.html, is an econometric toolbox for Sci-
lab, a free opensource matrix-oriented software very similar to Matlab and Gauss and available
at http://scilabsoft.inria.fr. It is built both upon the translation of existing programs in Matlab
or Gauss and upon native programs. Grocer has some properties that can make it appealing
to an applied econometrician. First, it is free and opensource, and therefore portable and very
flexible. Second, it contains most standard econometric procedures. And third, it has a few
more or less common features that can make its use fruitful: it implements the so-called LSE
methodology as regards univariate econometric estimation; in particular Grocer implements the
more recent advances of this methodology, namely a pc-gets like program called automatic in
grocer; it contains a host of multivariate methods from standard ”old-fashioned” simultaneous
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equations methods to many up to date VAR methods, such as VARMA, Vector Error Correc-
tion Models, Bayesian Vector Autoregressions; it proposes a calculation of the contributions of
exogenous variables to an endogenous one for any dynamic equation.

The aim of this paper is to provide the reader with an insight into Grocer most interesting
features from an econometrician point of view. The interested reader can find a detailed de-
scription of all econometric functions available in Grocer in Dubois (2004a) and explanations
about their implementation in Dubois (2004b).

Part 2 of this paper presents Grocer basic features. Part 3 discusses how the LSE method-
ology has been implemented. Part 4 presents the multivariate methods. Part 5 explains the
contributions method. Part 6 presents quickly the other functions available in Grocer. Part 7
concludes.

2 Grocer basic features

Grocer is basically a toolbox for Scilab. So a few words about Scilab are necessary (the user
can find a sligthly more detailed description in Dubois (2004a) and a more detailed presentation
in Scilab (1993) for an old but still useful tutorial or on Scilab web site - the on-line help at
http://scilabsoft.inria.fr/product/man/html/eng/index.htm or ).

2.1 A few words about Scilab

Scilab, developed by INRIA in France, is a matrix-oriented software and it is therefore very
convenient for the programming of econometric functions. It looks much like Matlab: in fact,
Scilab contains a translator from Matlab, that works well, even if it is not perfect. Commands
can be run directly on the command window; they can also be gathered in scripts or in func-
tions. Scilab functions can be compiled, notably to be added to the Scilab distribution: Grocer
is in fact built upon more than 300 Scilab functions, that are compiled the first time the user
runs Scilab after Grocer has been installed (which is made very simply by unzipping the Grocer
distribution in the Scilab directory, see Dubois (2004a) for details).

As Gauss and Matlab, Scilab contains a robust numerical optimisation program, and there-
fore allows to implement any likelihood maximisation.

Scilab contains numerous data types: real and complex matrices, booleans, strings, lists,
functions, . . . It contains also a specific type, the typed list, which is at the basis of Grocer time
series type.

Once you have installed Scilab on your computer, and thereafter Grocer, then running the
software will lead the user to the following window:

___________________________________________
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scilab-3.0

Copyright (c) 1989-2004
Consortium Scilab (INRIA, ENPC)

___________________________________________

Startup execution:
loading initial environment
loading Grocer 1.0 / Copyright Eric Dubois et al. 2004

-->

Scilab commands are executed at the prompt -->. In what follows, every time an example
will be presented, all the necessary commands will be exposed as they are run in Scilab. The
results will be shown as they appear in Scilab window, with the font: verbatim. For example,
showing how to add the numbers 4 and 5 in Scilab should be done as follows:

-->4+5

And the result should be presented as follows:

ans =

9.

2.2 The time series type

Grocer can deal with matrices or vectors of data, but also with time series. Time series can
be created through the importation of an Excel database (by Grocer function impecx2bd that
can also be used to import vectors or matrices), by any operation on other time series or with
the Grocer command reshape, which transforms a vector into a time series. Any frequency
is allowed, but annual, quarterly and monthly time series have a specific, more user friendly
representation than other frequencies.

Standard operations (addition, subtraction, multiplication and division) and functions (log-
arithm, exponential, sin, cosin,...) can be performed on time series as if they were vectors. For
instance, ts1+ts2 denotes the addition of the 2 time series ts1 and ts2. NA (Non Available)
values are authorized and the 2 time series ts1 and ts2 need not cover the same period (but need
to have the same frequency): in that case the new time series is defined over the time period
common to both time series. It should be noted that the time period is an attribute of the
time series itself, not of the database where it possibly comes from: provided that they have the
same frequency, time series from different databases can be added, subtracted,... without any
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difficulty.

Time series allow the user to apply all econometric procedures to data with different lengths
without having to transform them manually. The user can choose the time period over which
to perform the estimation: this is done by setting the time bounds with the Grocer command
bounds. For instance setting the bounds from the 3rd month of 1990 to the 10th month of 2003
involves the following Grocer command: bounds(’1990m3’,’2003m10’). Bounds can also be
discontinuous, such as: bounds(’1990m3’,’1995m12’,’2003m10’). Lastly, the user can choose
not to provide her own time bounds: in that case, the econometric procedure will choose the
greatest possible time bounds starting from the first non NA values.

A few specific functions have been programmed to lag (function lagts), differentiate (func-
tion delts) time series, compute the growth rate (growthr) of a time series, aggregate monthly
time series to quarterly (m2q) or quarterly to annual (m2a), extrapolate a time series by the
value (overlay) or the growth rate (extrap) of another one...

3 The application of the LSE methodology: ordinary least squa-
res, specification tests and the pc-gets like function automatic

Grocer is oriented towards the implementation of the LSE methodology. Grocer contains
many specification tests (part 3.2) and implements the pc-gets methodology that represents the
most thorough expression of this methodology (part 3.3). Before that, a short presentation of
ols, the function performing ordinary least squares in Grocer, is required (part 3.1).

3.1 Ordinary least squares

There are several functions performing ordinary least squares in Grocer, that are more or less
user-friendly and complete. The most user-friendly and complete one is ols. As any high-level
Grocer econometric function, ols can be applied to various data types: matrices, vectors, time
series as well as strings. Two kinds of strings are allowed: first, the strings ’const’ or ’cte’1, that
avoid the user to create the constant vector or time series relevant to her problem2; second, the
name of an existing variable between quotes. The variable lm1 which is the log of the monetary
aggregate m1 can for instance be entered as such (e.g: lm1) or between quotes (’lm1’). In the
last case Grocer function is able to display the names of its inputs.

For instance estimating Hendry and Erisson (1991) equation (6) can be performed as follows.

1The string ’cte’, that is an abbreviation of the French world ’constante’, was first implemented; to maintain
compatibility with earlier versions of Grocer, used by some forerunners, both abbreviations are available in the
1.0 version.

2Some other usual variables, such as trends, could also be treated this way; this is left for further releases.
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First, load the corresponding database that is given with Grocer package, that contains the
time series lm1, ly, lp and rnet:

-->load(’SCI/macros/grocer/db/bdhenderic.dat’) ;

Then set the time bounds:

-->bounds(’1964q3’,’1989q2’)

And lastly perform the estimation:

-->rhe=ols(’delts(lm1-lp)’,’delts(lp)’,’delts(lagts(1,lm1-lp-ly))’,
’rnet’,’lagts(1,lm1-lp-ly)’,’const’);

The result is then:

ols estimation results for dependent variable: delts(lm1-lp)
estimation period: 1964q3-1989q2
number of observations: 100
number of variables: 5
R2 = 0.7616185 adjusted R2 = 0.7515814
Overall F test: F(4,95) = 75.880204 p-value = 0
standard error of the regression: 0.0131293
sum of squared residuals: 0.0163761
DW(0) =2.1774376
Belsley, Kuh, Welsch Condition index: 114

variable coeff t-statistic p value
delts(lp) -0.6870384 -5.4783422 3.509D-07
delts(lagts(1,lm1-lp-ly)) -0.1746071 -3.0101342 0.0033444
rnet -0.6296264 -10.46405 0
lagts(1,lm1-lp-ly) -0.0928556 -10.873398 0
const 0.0234367 5.818553 7.987D-08

*
* *

3.2 Specification tests

In the spirit of the LSE methodology Grocer can compute many specification tests. Available
specification tests include: the Lagrange multiplier autocorrelation test (Grocer function arlm);
the ARCH test (Grocer function archz); White heteroskedascity test (Grocer function white) as
well as a function allowing any heteroskedascity test of Breusch and Pagan type (Grocer func-
tion bpagan) ; in-sample and out-of-sample Chow stability tests (Grocer functions chowtest
and predfail) ; Brown, Durbin and Evans cusum backward and forward stability tests (Grocer
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function cusumb and cusumf); Ramsey RESET test of linearity (Grocer function reset); Jarque
and Bera and Doornik and Hansen normality tests (Grocer functions jbnorm and doornhans).
Grocer provides also a function performing Wald restriction tests (Grocer function waldf).

As an example, performing the Lagrange multiplier autocorrelation test on the equation
estimated above is done that way:

--> arlm(rhe,4);

Lagrange multiplier 1-4 autocorrelation test:
chi2(4)=7.1563181
(p -value = 0.1278545)

Lagrange multiplier 1-4 autocorrelation test:
F(4,91)=1.941783
(p -value = 0.1102067)

The reader can check that it is exactly the result presented by Hendry and Ericsson (1991)
themselves.

3.3 The function automatic

Grocer contains the most recent developments of the LSE methodology, that is a function
automatic that mimics Hendry and Krolzig package pc-gets 3. This package aims at replicating
automatically the approach followed by Hendry and his fellows when estimating a model. As
far as I know, Grocer is with pc-gets the only econometric package today to provide such a
program.

3.3.1 Theoretical background

Suppose that a researcher wants to recover a data generating process (DGP) starting from
a data set with some variables that are relevant and other not.

Let the DGP be:
E(yt/xt) = xt × b
where xt is a (1× p) vector of variables xt

1, . . . , x
t
k and b a (p× 1) vector of parameters.

The approach proposed by Hendry and Krozlig (2000), based upon Hoover and Perez (1999),
is the following one (see also the presentation in figure 1).

Let Z = {z1, . . . , zn} be a set of variables which are potentially relevant, with x1, . . . , xk

belonging to Z and let E(yt/zt) = zt × β be the corresponding postulated general model.

3Informations about pc-gets are available at http://www.doornik.com/pcgive/pcgets/index.html.
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Let α, η, ϕ, γ be 4 real numbers between 0 and 1: these are significance levels; usually, they
should be equal to 0.05 or 0.01 (except for η). Let Ψ be a real number greater than 1.

The algorithm consists in the following potential 5 steps, the algorithm stopping when it has
found the final model:

First step: Estimation of the general model

i) The general model is estimated, which leads to a set of estimated coefficients. If all
variables are significant at the α level, then the general model is the final model.

ii) If at least one coefficient is non significant at the pre-specified α level, then perform k
significance tests. If these specification tests do not all pass the pre-specified level 4, then adjust
the significance level of the corresponding tests by a factor Ψ (the fact that at least one of the
specification test is rejected should lead the user to add other variables to the information set,
but this is clearly a task that the computer is not able to do, so the process goes on, but the
significance level is adjusted to avoid rejecting too many subsequent models, if not all).

Let then s∗ = [s∗1; . . . ; s
∗
k] be the corresponding vector of significance levels:

s∗i = η if the corresponding test has been successfully passed,
s∗i = η

Ψ if the corresponding test has not been successfully passed.

Second step: Elimination of globally insignificant variables (programmed in func-
tion auto_stage0)

i) Range all from the lowest absolute value of Student’s t to the greatest. Set (for initialisation
sake):

j = 1;F = 0 and s = s∗

ii) while F ≤ Ψ and s ≤ s∗ then:
estimate the model with the j least significant variables withdrawn; calculate the Fisher test, F,
of this model against the general model; calculate the vector s of p-values of the k specification
tests.

iii) call the second step model the last model that verifies F ≤ Ψ and s ≤ s∗

Third step: Multiple reduction paths (programmed in function auto_stage1)

For all insignificant coefficients at level α of the second step model:
i) Drop the corresponding variable from the list of exogenous variables and estimate the

corresponding model M1.
ii) Calculate the vector s of p-values of the k specification tests.
iii) if it exists si ≤ s∗i then:
stop the process for this variable, do not store the corresponding model and go to the following

insignificant variable of the second step model, if any.
else:

4In practice, parameter η can be differentiated with respect to the specification tests in that case, it is better
to interpret η as a vector; this is indeed the way η is treated in Grocer implementation
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a) in the estimation of M1, search an insignificant variable at level α, starting from the vari-
able with the lowest Student’s t to the one with the greatest Student’s t, until the corresponding
model verifies si ≥ s∗i for all i (that is a model which passes all specification tests).

b) if there is no such variable, then stop the process for this variable, store model M1 in the
list of third step models and do again all step 3 process with the following insignificant variable
of the third step model, if any.

c) if there is such a variable and if the corresponding model has already been encountered
on a preceding exploration in step 3, then stop the process for this variable and restart all step
3 process with the following insignificant variable of the second step model, if any.

d) if there is such a variable and if the corresponding model has not already been encountered
on a preceding exploration in step 3, then call M1 this new model and restart the process at
step 3 ii) a).

At the end of step 3, the list of third step models contains zero, one or a few models.

Fourth step: Encompassing

i) if the list of third step models is empty, then the final model is the general model.
ii) if the list of third step models contains only one model, then this model is the final model.
iii) if the list of third step models contains more than one model, then build the union of all

these models and tests, at significance level γ, all third step models against this union model.
a) if all third step models are rejected against the union model, then the union model is the

final model.
b) if only one third step models is not rejected against the union model, then this third step

model is the final model.

Fifth step: redoing the process with the union model

Fifth step occurs only when there are more than one third step model not rejected against
the union model.

In that case call the union model the new general model and restart the process with this
new general model at the beginning of third step.

If, at the end of the process, there are still more than one third step model not rejected
against the new union model, then select the final model on the basis of an information criterion.

*
* *

The exploration of several paths and the use of specifications tests cover against the risk of
eliminating a relevant variable, but only the more relevant paths are indeed explored. Hendry

8



and Krozlig Monte Carlo simulations show that this method leads indeed to very satisfactory
results: the average inclusion rate of a non relevant variable can be set at a low level, while
retaining significant power.

3.3.2 An example: Hendry and Ericsson (1991) revisited

To show the power of this method, we plug Hendry and Ericsson (1991) equation in a much
bigger set of potential explanatory variables : we add 2 to 4 lags of the variable ∆(lm1−ly−lp1)
(variables called here ’delts(lagts(2,lm1-lp-ly))’, ’delts(lagts(3,lm1-lp-ly))’, ’delts(lagts(4,lm1-lp-
ly))’), 0 to 4 lags of variable ∆(ly) (variables called here (’delts(ly)’ to ’delts(lagts(4,ly))’), 0 to
4 lags of the variable ∆(∆(lp)) and 1 to 4 lags of the variable ∆(rnet) (variables called here
’delts(rnet)’ to ’delts(lagts(4,rnet))’): this seems a sensible parametrisation of a set containing
0 to 4 lags of every exogenous variable (the log of GDP, ly, the inflation rate, ∆(lp), the interest
rate, rnet and lags of the log of m1, lm1).
Load the database again:

-->load(’SCI/macros/grocer/db/bdhenderic.dat’) ;

Set the same time bounds:

-->bounds(’1964q3’,’1989q2’)

And use the function automatic with until 4 lags of each regressor:

[r1]=automatic(’delts(lm1-lp)’,’lagts(lm1-lp-ly)’,...
’delts(lp)’,’rnet’,’delts(lagts(lm1-lp-ly))’,’delts(lagts(2,lm1-lp-ly,...
,’delts(lagts(3,lm1-lp-ly))’,’delts(lagts(4,lm1-lp-ly))’,...
’delts(ly)’,’delts(lagts(1,ly))’,’delts(lagts(2,ly))’,...
’delts(lagts(3,ly))’,’delts(lagts(4,ly))’,...
’delts(delts(lp))’,’delts(delts(lagts(1,lp)))’,’delts(delts(lagts(2,lp)))’,...
’delts(delts(lagts(3,lp)))’,’delts(delts(lagts(4,lp)))’,...
’delts(rnet)’,’delts(lagts(1,rnet))’,’delts(lagts(2,rnet))’,...
’delts(lagts(3,rnet))’,’delts(lagts(4,rnet))’,...
’cte’)

Grocer results are then:

__________________________________________________
| results of the automatic regression package |
__________________________________________________

final model

ending reason: only one model selected by stage 1
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Figure 1: estimation and reduction of the initial model
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ols estimation results for dependent variable: delts(lm1-lp)
estimation period: 1964q3-1989q2
number of observations: 100
number of variables: 9
R2 = 0.7941498 adjusted R2 =0.7760531
Overall F test: F(8,91) = 43.883636 p-value = 0
standard error of the regression: 0.0124659
sum of squared residuals: 0.0141413
DW(0) =2.1391056
Belsley, Kuh, Welsch Condition index: 166

variable coeff t-statistic p value
delts(delts(lagts(2,lp))) 0.3821030 2.4121215 0.0178669
delts(lagts(3,lm1-lp-ly)) -0.1884416 -2.8830509 0.0049142
delts(lagts(lm1-lp-ly)) -0.2149036 -3.6961388 0.0003737
delts(rnet) 0.3198695 2.680324 0.0087312
delts(lagts(3,ly)) -0.3393305 -3.0482243 0.0030136
delts(lp) -0.7653748 -6.2359835 1.386D-08
cte 0.0300893 6.9787739 4.690D-10
lagts(lm1-lp-ly) -0.1104120 -10.974 0
rnet -0.7746108 -10.886597 0

*
* *

tests results:
**************
test test value p-value
Chow pred. fail. (50%) 0.4727966 0.9939980
Chow pred. fail. (90%) 0.8364555 0.5951258
Doornik & Hansen 2.248449 0.3249043
AR(1-4) 0.6915387 0.5997762
hetero x_squared 1.1282701 0.3459758

*
* *

One can note that the program finds new significant variables besides the ones found by
Hendry and Ericsson (variables delts(delts(lagts(2,lp))), delts(lagts(3,lm1-lp-ly)), delts(delts(lagts(2,lp)))
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and delts(lagts(3,ly))), and that the standard error of the regression is lower, which proves the
usefulness of the program (whether these variables are economically meaningful is another ques-
tion, beyond the scope of this paper).

4 Multivariate methods

Grocer contains the old simultaneous equations estimation methods (Seemingly Unrelated
Regressions, two and three stages least squares) as well as the more recent VAR ones5. As
regards the VAR methodology, the following procedures are currently available: VAR estimation,
impulse response calculation, ecm estimation, bayesian VAR and its ecm form, VAR forecasting.
Lastly, Grocer contains a program performing ARMA and VARMA estimations.

4.1 ”Old-fashionned” simultaneous equation methods

Grocer Function sur is rather general: it can be applied to any system of equations, provided
it is linear in its coefficients. So, you can impose constraints to the coefficients in the system,
provided they remain linear.

Take as an example the sur estimation on Grunfeld’s investment data presented in Greene’s
(2003) textbook (in chapter 14):

eq1=’igm=a1*fgm+a2*cgm+a3’
eq2=’ich=a4*fch+a5*cch+a6’
eq3=’ige=a7*fge+a8*cge+a9’
eq4=’iwest=a10*fwest+a11*cwest+a12’
eq5=’iuss=a13*fuss+a14*cuss+a15’

Then the sur estimation is performed by Grocer instruction:

-->r=sur(eq1,eq2,eq3,eq4,eq5);

If you want to impose for instance the constraint that all constants are equal (for sure, a
meaningless constraint on economic grounds,. . . ), then you should write:

eq1=’igm=a1*fgm+a2*cgm+a3’

eq2=’ich=a4*fch+a5*cch+a3’

eq3=’ige=a6*fge+a7*cge+a3’

5These programs, as well as most univariate econometric methods, all multicollienarity tests and outlier diag-
nostics, the Kalman filter, some unit root and cointegration tests rest mainly on the translation and adaptation
of parts of LeSage Matlab toolbox -see LeSage (1999)
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eq4=’iwest=a8*fwest+a9*cwest+a3’

eq5=’iuss=a10*fuss+a11*cuss+a3’

r=sur(eq1,eq2,eq3,eq4,eq5)

Functions performing two stage (function twosls) and three stage (function threesls) least
squares have the same syntax. Note that the function twosls is here reserved to two stage
least squares in a system of equations: two stage least squares applied on a single equation is
performed through function iv. As with sur, the only compulsory arguments are the texts of
the equations of the system. In that case, the program determines what are the coefficients and
what are, in each equation, the endogenous variables. This imposes however constraints on the
way equations are written: as with sur, the coefficients must be named a1, a2, . . . , an without
any discontinuity; and the names of the endogenous variables must be exactly equal to the left
hand sides of the equations.

The command below illustrates the simplest way of performing a Two Stage Least Squares es-
timation (see Dubois(2004a) for the results of estimation). It is contained in function twosls_d,
which belongs to the library macros/grocer/multi in the library where the user has chosen to
install Scilab:

--> rt=twosls(’y1=a+b*x1’,’y2=d+e*(y1-x2)+f*x2’,’coef=a;b;d;e;f’)

4.2 VAR methods

Grocer provides several tools to perform VAR estimations:

• VAR estimation itself: function var (and its low level counterpart var1);

• Impulse response functions (function irf) calculated either with an asymptotic formula
or with a Monte-Carlo simulation;

• Bayesian VARs (function bvar), the user being able to impose her own prior;

• Error Correction estimation: ecm and a bayesian version, becm; in each case, the cointe-
gration relationships are estimated by a Johansen estimation (see section 6); the user can
either impose her own number of cointegration relationships or let the program determine
the number of cointegration relationships at a prespecified level (1%, 5% or 10%).

• lastly, the user can forecast any of these VAR with the function varf.

As an example, here is the result of the estimation of the bayesian error correction model
presented in LeSage (1999) (chapter 5 pp. 128-129).

First, load the database:

-->load(’SCI/macros/grocer/db/datajpl.dat’)
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Then perform the estimation:

-->results = becm(2,0.1,0.5,1,’endo=[illinos;indiana;kentucky;michigan;...
-->ohio;pennsyvlania;tennesse;westvirginia]’);

Johansen estimation results for variables:
illinos, indiana, kentucky, michigan, ohio, pennsyvlania, tennesse, westvirginia
time order: 0
# of lags: 2

NULL: Trace Statistic Crit 90% Crit 95% Crit 99%
r <= 0 214.38998 153.6341 159.529 171.0905
r <= 1 141.48161 120.3673 125.6185 135.9825
r <= 2 90.363179 91.109 95.7542 104.9637
r <= 3 61.554975 65.8202 69.8189 77.8202
r <= 4 37.103415 44.4929 47.8545 54.6815
r <= 5 21.069871 27.0669 29.7961 35.4628
r <= 6 10.605086 13.4294 15.4943 19.9349
r <= 7 3.1924592 2.7055 3.8415 6.6349

conclusions from the trace statistics:
at a 10% level, there are 8 cointegration relation(s)
at a 5% level, there are 2 cointegration relation(s)
at a 1% level, there are 2 cointegration relation(s)

NULL: Max Eigenvalues Statistic Crit 90% Crit 95% Crit 99%
l <= 0 72.908372 49.2855 52.3622 58.6634
l <= 1 51.118434 43.2947 46.2299 52.3069
l <= 2 28.808204 37.2786 40.0763 45.8662
l <= 3 24.45156 31.2379 33.8777 39.3693
l <= 4 16.033544 25.1236 27.5858 32.7172
l <= 5 10.464785 18.8928 21.1314 25.865
l <= 6 7.4126267 12.2971 14.2639 18.52
l <= 7 3.1924592 2.7055 3.8415 6.6349

conclusions from the maximal eigenvalues statistics:
at a 10% level, there are 8 cointegration relation(s)
at a 5% level, there are 2 cointegration relation(s)
at a 1% level, there are 1 cointegration relation(s)

*
* *
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*** cointegrating vectors from johansen estimation ***

variable vector # 1 vector # 2
illinos 0.0131635 -0.0099366
indiana -0.3050443 0.0399855
kentucky 0.0525625 -0.0273951
michigan -0.0417678 0.1871467
ohio 0.0176776 0.0199591
pennsyvlania -0.0526335 0.0250484
tennesse 0.0823386 -0.2737890
westvirginia 0.0201478 0.0216022

*
* *

becm estimation results for variables
del(illinos), del(indiana), del(kentucky), del(michigan), del(ohio),
del(pennsyvlania), del(tennesse) and del(westvirginia)

PRIOR hyperparameters
tightness = 0.1
decay = 1
symetric weights based on 0.5

estimation results for dependent variable del(illinos)
number of observations: 170
number of variables: 19
R2 = 0.3004672 adjusted R2 =0.2170792
standard error of the regression: 3.6390646
sum of squared residuals: 14.821402
DW(0) =2.0273897

variable coeff t de student p value
del(illinos)(-1) 0.1439182 1.3753802 0.1708340
del(indiana)(-1) 0.4953484 2.3979857 0.0175751
del(kentucky)(-1) 0.0380825 0.7010216 0.4842536
del(michigan)(-1) 0.0176187 0.2418778 0.8091681
del(ohio)(-1) -0.1991313 -1.8615471 0.0644036
del(pennsyvlania)(-1) 0.1826746 3.48336 0.0006305
del(tennesse)(-1) 0.1300340 0.6176380 0.5376453
del(westvirginia)(-1) -0.0349045 -1.4624539 0.1454740
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del(illinos)(-2) -0.0556921 -0.5565481 0.5785724
del(indiana)(-2) 0.0201131 0.0987109 0.9214848
del(kentucky)(-2) 0.0399308 0.7617436 0.4472748
del(michigan)(-2) 0.0290325 0.4069044 0.6845931
del(ohio)(-2) -0.0995948 -1.0386543 0.3004493
del(pennsyvlania)(-2) 0.0557372 1.0787899 0.2822187
del(tennesse)(-2) -0.0717670 -0.3583999 0.7204913
del(westvirginia)(-2) -0.0045788 -0.2121682 0.8322315
lag 1 of coint. vec. #1 0.1081266 0.3911411 0.6961856
lag 1 of coint. vec. #2 -0.2929133 -1.0600059 0.2906545
cte 3.4135785 0.9487682 0.3440932

*
* *

[...] (results for the variables indiana, kentucky, michigan, ohio, pennsyvlania and tennesse
are here omitted for the sake of brevity; they are of course given by the function becm)

estimation results for dependent variable del(westvirginia)
number of observations: 170
number of variables: 19
R2 = 0.1970140 adjusted R2 =0.1012939
standard error of the regression: 17.478053
sum of squared residuals: 341.89747
DW(0) =2.0311438

variable coeff t de student p value
del(illinos)(-1) 0.1095202 0.2204470 0.8257891
del(indiana)(-1) 1.5753669 1.591901 0.1132757
del(kentucky)(-1) 0.3796700 1.4551827 0.1474736
del(michigan)(-1) 0.0409345 0.1170027 0.9069969
del(ohio)(-1) -0.7621534 -1.4819112 0.1402261
del(pennsyvlania)(-1) -0.5749257 -2.2692817 0.0245155
del(tennesse)(-1) -0.0356746 -0.0352836 0.9718952
del(westvirginia)(-1) -0.0166022 -0.1428371 0.8865890
del(illinos)(-2) 0.1730335 0.3750635 0.7080835
del(indiana)(-2) -1.3777092 -1.420519 0.1572990
del(kentucky)(-2) 0.1541704 0.6121892 0.5412353
del(michigan)(-2) 0.2511154 0.7332133 0.4644442
del(ohio)(-2) 0.3895893 0.8455066 0.3990235
del(pennsyvlania)(-2) -0.0116675 -0.0461857 0.9632167
del(tennesse)(-2) 0.6676482 0.6941234 0.4885578
del(westvirginia)(-2) -0.1099663 -1.0124952 0.3127487
lag 1 of coint. vec. #1 -2.2584975 -1.7072336 0.0896151
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lag 1 of coint. vec. #2 -2.3590674 -1.7774235 0.0772971
cte 8.0747728 0.4674689 0.6407666

*
* *

4.3 VARMA

Grocer also provides ARMA and VARMA: they are implemented by the same function
varma6. As an example, here is how one can estimate the model proposed by Jenkins and Alavi
(1981) to describe the relationship between the minks and the muskrats skins traded by the
Hudson’s Bay Company between 1948 and 1909.

First, load the (Matlab) data base:

--> mtlb_load(’SCI/macros/grocer/db/mink.dat’);

Then transform the data:

--> z2 = mink(:,2)-mean(mink(:,2));
--> z = [z1,z2(2:62)];

--> muskrat=z1
--> mink=z2(2:62)

One of the model estimated by Jenkins and Alavi takes the following form:(
1 + φ11,1(L) + φ21,1(L2) + φ31,1(L3) + φ41,1(L4) 0

0 1 + φ12,2(L) + φ21,1(L2)

) (
muskrat

mink

)
=(

1 + θ11,1(L) θ11,2(L)
θ12,1(L) 1 + θ12,2(L)

) (
ε1t

ε2t

)
Its estimation in Grocer involves the definition of the matrices phi1 to phi4, theta and

sigma. This is done by the following instructions, where the sign ’=’ in the matrices indicates
that the coefficients are constrained to the given value:

--> phi1 = [’0’,’=0’;’=0’,’0’];
--> phi2 = [’0’,’=0’;’=0’,’0’];
--> phi3 = [’0’,’=0’;’=0’,’=0’];
--> phi4 = [’0’,’=0’;’=0’,’=0’];
--> theta = [0,0;0,0];
--> sigma = [0,0;0,0];

6This function rests on a translation and adaptation of the Matlab package E4, developed by Terceiro et al.
(2000)
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--> result = varma([’muskrat’ ’mink’],[phi1,phi2,phi3,phi4],[],theta,[],sigma,1);

And here is the result given by Grocer:

*************** VARMA estimation Results for model: ***************
Y = e
with:

[ muskrat ]
- Y = [ mink ]
- V(e) = V

Log-likelihood: 9.0059411
Information criteria: AIC = 0.1309527, BIC = 0.5808111

Parameter Estimate Std. Dev. t-test
AR1(1,1) -0.6887091 0.1363550 -5.050854
AR1(2,2) -1.2679083 0.1098543 -11.541726
AR2(1,1) 0.5941061 0.1402932 4.2347476
AR2(2,2) 0.5592538 0.0921302 6.0702529
AR3(1,1) -0.0681945 0.1171420 -0.5821526
AR4(1,1) 0.2815736 0.0855952 3.2895965
MA1(1,1) -0.2965995 0.1606131 -1.8466709
MA1(2,1) 0.602702 0.0803646 7.4995981
MA1(1,2) -0.8641752 0.1387191 -6.2296768
MA1(2,2) -0.8351471 0.1529343 -5.4608236
V(1,1) 0.2492625 0.0225682 11.044879
V(2,1) 0.0424334 0.0147947 2.8681376
V(2,2) 0.2013021 0.0182819 11.011036

5 Contributions

Grocer proposes functions to calculate the contributions of the exogenous variables to an
endogenous one, that is the part of the current evolution of the endogenous variable that can be
explained by the evolutions of each variable, current and past. Part 5.1 exposes the theoretical
background and 5.2 presents an example.

5.1 Theoretical background

Assume that an endogenous variable yt is described by the following equation:
A(L)yt = B1(L)x1t + . . . + Bk(L)xkt + ut

With L the lag operator: Lyt = yt−1

Then one has:
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yt = B1(L)
A(L) x1t + . . . + B1(L)

A(L) x1t + 1
A(L)ut

and:
∆ (yt) = B1(L)

A(L) ∆ (x1t) + . . . + B1(L)
A(L) ∆ (x1t) + 1

A(L)∆ (ut)

This formulation shows how the variation of the endogenous variable can be explained by
the contribution of the exogenous variables (x1t, . . . , xkt) and of the residuals, with contribution
of variable j defined as:

B1(L)
A(L) xjt

The calculation of these contributions involves the infinite Moving Average decomposition
of an ARMA model. It can be performed by standard methods. For instance, if p and q are the
respective degrees of the polynoms A(L) and B1(L) and C(L) the corresponding infinite moving
average representation, then one can calculate the coefficients of C with the corresponding
algorithm:

C(0) = B1(0)
for i = 1 to q:
C(i) = B1(i)−

∑min(p,i−1)
j=1 A(j) ∗ C(i− j)

for i = q+1 to N:
C(i) = −

∑min(p,i−1)
j=1 A(j) ∗ C(i− j)

This algorithm has been written in Scilab: this is Grocer function mainf. Once the infinite
moving average representation has been calculated, Grocer function contrib allows the calcu-
lation of the contribution of the corresponding variable.

However the decomposition above is not exact for 2 reasons:

• the algorithm can only provide a finite number of terms;

• the data do not go back to minus infinite; at best they can only go back to the big-bang!

In practice, you can ignore the discrepancy or distribute it one way or another on all the
contributions. Grocer proposes a method, programmed in function balance_identity, that
distributes the discrepancy proportionally to the absolute value of each contribution.

The method can be rigorously applied only to linear models. It can however be extended
to any non-linear problem by a first order approximation. In Grocer, one such problem is
dealt, through function contrib_logq2gra. This function calculates the annual contributions
to the growth rate of an endogenous variable while the underlying equation is estimated on the
quarterly logarithm of the variable. The corresponding first order approximation is the following
one:

contribi,A =
4∑

k=2

wA−1,kcontribi,A−1,k +
4∑

k=1

wA,kcontribi,A,k
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wA−1,i =
∂

Y Ai
Y Ai−1

−1

∂yA−1,i
=

4∏
j=2

exp(yA−1,j)
4∑

k=1

i∏
j=1

exp(yA,j)

1+

4∑
k=1

k∏
j=1

exp(yA−1,j)

−

4∏
j=2

exp(yA−1,j)
4∑

k=1

i∏
j=1

exp(yA,j)
4∑

k=i

k∏
j=2

exp(yA−1,j)

1+

4∑
k=1

i∏
j=1

exp(yA−1,j)


2

wA,i =
∂

Y Ai
Y Ai−1

−1

∂yA,i
=

∏4
j=2 exp(yA−1,j)

∑4
k=i

∏k
j=1 exp(yA,j)

1+
∑4

k=1

∏k
j=1 exp(yA−1,j)

with:
yA,j = contribution of the logarithm of variable Y in quarter j of year A
Y A = level of variable A for year A
contribi,A,k = contribution of variable i in quarter k of year A
contribi,A = contribution of variable i in year A

5.2 An example

As an example, take again Hendry and Ericsson equation presented in section 3.1. This is a
dynamic equation which makes the contributions procedure especially fruitful.

One can for instance estimate the impulse function from a one-off increase of 1 of ly. This
can be done by the following instructions:

--> load(’SCI/macros/grocer/db/bdhenderic.dat’) ;bounds(’1964q3’,’1989q2’);

--> rhe=ols(’delts(lm1-lp)’,’delts(lp)’,’delts(lagts(1,lm1-lp-ly))’,’rnet’,...
--> ’lagts(1,lm1-lp-ly)’,’cte’,’noprint’);

--> coef=rhe(’beta’);

--> mainf([1+coef(2)+coef(4) -coef(2)],[0 -coef(2)-coef(4) coef(2)],10)

ans =

! 0. !
! 0.2674627 !
! 0.0213193 !
! 0.0623181 !
! 0.0493728 !
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! 0.0470486 !
! 0.0430857 !
! 0.0397769 !
! 0.0366611 !
! 0.0338010 !

A one-off increase of ly is shown to increase lm1 by 0 the first period (you can easily check
that it is in fact the case, since ly enters with a lag in the equation), 0.2674627 the second
period (this is minus the sum of the coefficients of the variable ’delts(lagts(1,lm1-lp-ly))’ and of
the variable ’lagts(1,lm1-lp-ly)’), and so on.7

ans =

! 0. !
! 0.2674627 !
! 0.0213193 !
! 0.0623181 !
! 0.0493728 !
! 0.0470486 !
! 0.0430857 !
! 0.0397769 !
! 0.0366611 !
! 0.0338010 !

If you want to calculate the contribution of the variable ly to the growth rate of lm1, then
it can be done as follows:

--> ly_mainf=mainf([1+coef(2)+coef(4) -coef(2)],[0 -coef(2)-coef(4) coef(2)],200);

-->ly_contrib=contrib(delts(ly),ly_mainf)

And the result is:

1964q3 0
1964q4 -0.0002158
1965q1 0.0061336
1965q2 -0.0029902
1965q3 0.0029388

7Once again we have performed the estimation of the equation (but it can be made once and the results saved
in a results ’typed list’, as done here in rhe); note also that by the option ’noprint’ in ols, we have chosen not to
print the estimation results; we have recovered the coefficients in the vector coef and asked to calculate only the
10 first coefficients of the impulse function.
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1965q4 0.0030687
1966q1 0.0040551
1966q2 0.0021385
1966q3 0.0023299
1966q4 0.0034330
1967q1 0.0016583
1967q2 0.0088530
1967q3 0.0024139
1967q4 0.0056231
1968q1 0.0029065
1968q2 0.0136596
1968q3 -0.0005435
1968q4 0.0113783
1969q1 0.0061560
1969q2 0.0021782
1969q3 0.0065130
1969q4 0.0061694

[...] (results for the dates 1970q1 to 1983q4 are here omitted for the sake of brevity; they are
of course given by the function contrib)

1984q1 0.0050476
1984q2 0.0066269
1984q3 0.0045817
1984q4 0.0063316
1985q1 0.0083387
1985q2 0.0080658
1985q3 0.0060436
1985q4 0.0044149
1986q1 0.0066662
1986q2 0.0086946
1986q3 0.0078957
1986q4 0.0097245
1987q1 0.0080935
1987q2 0.0066234
1987q3 0.0117735
1987q4 0.0129108
1988q1 0.0096213
1988q2 0.0097046
1988q3 0.0117405
1988q4 0.0123862
1989q1 0.0100042
1989q2 0.0122195
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One should note that the contribution of the variable is calculated to be 0 in the first period:
this is because the variable ly has an impact on lm1 only after one period and because data
before 1963q1 are not available in the data base. This means that the first calculated contribu-
tions will be sometimes very far from what should be their -unknown- true value. Indeed the
discrepancy between lm1 and the sum of the contributions amounts to 0.0041 (around 0,4%) in
1964q1, but decreases quickly to less than 0.0001 (0.01 %) from 1975q3 on.

Lastly, from this equation, one can calculate the contributions of each variable to the an-
nual growth rate. This entails the transformation from contributions of quarterly variations of
logarithms into contributions in annual growth rates as explained in the previous section and is
done through the function contrib_logq2gra. This is done as follows:

--> m1=exp(lm1);
--> he_lp_list=list(’lp’,[1+coef(2)+coef(4) ; -coef(2)],[1+coef(1) ;...
--> -1-coef(1)-coef(2)-coef(4) ; coef(2) ]);
--> he_ly_list=list(’ly’,[1+coef(2)+coef(4) ; -coef(2)],...
--> [0 ; -coef(2)-coef(4) ; coef(2) ]);
--> he_rnet_list=list(’rnet’,[1+coef(2)+coef(4) ; -coef(2)],coef(3));
--> he_resid_list=list(’resid’,[1+coef(2)+coef(4) ; -coef(2)],1);
--> [listcont_unbal,listcont_bal]=contrib_logq2gra(’m1’,he_lp_list,he_ly_list,...
--> he_rnet_list,he_resid_list);

The contribution of, for instance ly, can be recovered that way:

-->listcont_bal(2)

With the following result:

ans =

1965a 0.0225424
1966a 0.0213406
1967a 0.0231886
1968a 0.0296916
1969a 0.0280491
1970a 0.0269894
1971a 0.0306605
1972a 0.0308545
1973a 0.0492482
1974a 0.0335330
1975a 0.0192224
1976a 0.0213143
1977a 0.0237160
1978a 0.0269834
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1979a 0.0286258
1980a 0.0214260
1981a 0.0015827
1982a 0.0112075
1983a 0.0181204
1984a 0.0251375
1985a 0.0294632
1986a 0.0312292
1987a 0.0396425
1988a 0.0468648

6 The list of other Grocer econometric tools

Besides the functions presented previously, Grocer contains some utilities (functions mim-
icking Gauss or Matlab ones, for the manipulation of strings and matrices, for the interface with
Excel,. . . ), not presented here and many standard functions, that are now listed.

6.1 Univariate econometric procedures

Besides ols, there are numerous functions applying econometric methods to a single equation
model: instrumental variables (function iv), least absolute deviations regression (function lad),
non linear least squares (function nls), logit (function logit), probit (function probit), tobit
(function tobit), Cochrane-Orcutt ols (function olsc) and maximum likelihood ols regression
for AR1 errors (function olsar1), ols with t-distributed errors (function olst), Hoerl-Kennard
Ridge Regression (function ridge), Huber, Ramsay, Andrew or Tukey robust regression us-
ing iteratively reweighted least-squares (function robust), Theil-Goldberger mixed estimation
(function theil).

A function performing estimation of a linear model with Garch(p,q) residuals is also available
(garch).

6.2 The Kalman filter

A function performing a Kalman filter estimation (function kalman) is available. An appli-
cation of the Kalman filter is also explicitly programmed, the time-varying parameters (function
tvp).

6.3 Multicollinearity tests and outlier diagnostic

Grocer provides Belsey, Kuh and Welsch (1980) standard multicollineraity tests, through the
function bkw. Outlier diagnostic tests (dfbeta, dffits, studentized residuals, hat-matrix diagonals)
are implemented by the function dfbeta.
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6.4 Unit roots and cointegration

Grocer provides four among the most popular unit root tests: the (augmented) Dickey-
Fuller test (function adf); the Phillips-Perron test (function phil_perr); the Schmidt-Phillips
test (function schmiphi) and the Kwiatkowski, Phillips, Schmidt, Shin stationarity test (func-
tion kpss).

Two cointegration tests are currently available: the corrected-Augmented Dickey Fuller test
(with its Phillips-Perron variant) and the Johansen cointegration test. They are performed by
the functions cadf and johansen.

6.5 Filters

Grocer provides three usual filters : the Hodrick-Prescott filter (hpfilter); the Baxter-King
one (bkfilter) and the more recent Christiano-Fitzgerald one (cffilter).

7 Conclusion

This paper has proposed an insight into Grocer functions. Once again the interested reader
can have a more precise view of Grocer with a look at the user manual, the on-line help embodied
in Grocer package and even better by using it!

Grocer is due to evolve regularly and some new features are already underway. A few
procedures existing in some commercial packages and some more rare but nevertheless useful
methods (notably in the bayesian field) remain to be implemented. The matrix-oriented nature
of Scilab will make it easy to stay at the forefront of the econometric science. And the great
similarity between Scilab and Matlab or Gauss will help as well.
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