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Abstract

This paper provides necessary conditions for testing the local consis-

tency of three-level nested logit models with random utility maximization.

We find that for a model with two sub-nests per nest the conditions can

lead to a substantial increase in the range of acceptable dissimilarity pa-

rameters, irrespective of the number of alternatives per sub-nest.
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1 Introduction

The multinomial logit (MNL) model is the most widely used discrete choice

model due to its closed-form choice probabilities and consistency with random

utility maximization (RUM). However, the MNL model suffers from the restric-

tive independence from irrelevant alternatives (IIA) property which states that

the ratio of two choice probabilities is independent of the other alternatives in

the model. This implies that a change in an attribute of one alternative will

have the same proportional impact on the probability of each of the other al-

ternatives being chosen. The nested logit (NL) model relaxes the IIA property

by dividing the alternatives into subsets or nests, allowing the IIA assumption

to hold within each nest but not for alternatives in different nests. As opposed

to the more flexible Multinomial Probit and Mixed Logit models, the NL model

has closed-form choice probabilities which can be estimated without resorting

to simulation methods. Due to its simplicity and allowing for a variety of sub-

stitution patterns, the NL model remains the most common extension of the

MNL model in applied work.

Daly and Zachary (1979) and McFadden (1978a) have shown that the nested

logit model is consistent with RUM under the condition that the dissimilarity

parameters are constrained within the unit interval. In many practical appli-

cations, however, this condition has not been met. Börch-Supan (1990) argues

that the DZM condition is unnecessarily strong given that the NL model should

be viewed as a local approximation. Based on the work of Börch-Supan, Her-

riges and Kling (1996) derive necessary conditions for local consistency with
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utility maximization for two-level NL models.

The main contribution of the current paper is to extend the conditions of

Herriges and Kling to be applicable to three-level nested logit models1 . We

develop explicit formulae that can be applied to test the consistency of three-

level nested logit models with RUM. Since adding a level to the model implies

that there are two sets of conditions that need to be satisfied (as opposed to one

set in the two-level case) we pay particular attention to which combinations of

dissimilarity parameters are acceptable. We find that for some nesting structures

the conditions can lead to a substantial increase in the range of acceptable

dissimilarity parameters.

2 The three-level nested logit model

Following Börch-Supan (1990), we assume a sample of T consumers with the

choice of J discrete alternatives. The utility that individual t derives from

choosing alternative j is denoted by ujt. Utility is partitioned into a systematic

component , vjt, and a random component, εjt, such that:

ujt = vjt + εjt (1)

The systematic component, vjt, is a function of the attributes of alternative

j and the individual’s observable socio-demographic characteristics, while εjt

1Recent applications of the three-level nested logit model include Liaw and Frey (2003),
Gabriel and Painter (2003), Shaw and Ozog (1999) and Eymann and Ronning (1997).
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represents characteristics and attributes unknown to the researcher, measure-

ment error and/or heterogeneity of tastes in the sample. Since the unknown

variable, εjt, is treated as random by the researcher, this class of utility models

is called random utility models. The probability that individual t chooses alter-

native i rather than alternative j is the probability that the utility of choosing

i is higher than the utility of choosing j:

Pit = P (uit > ujt) = P (vit + εit > vjt + εjt) = P (εjt − εit < vit − vjt) (2)

Denoting the joint density function of the random terms by, εt, the probability

that alternative i is chosen is given by:

Pit =

Z
εt

I(εjt − εit < vit − vjt∀j 6= i)f(εt)dεt (3)

where I(·) is the indicator function, equalling 1 when the expression in paren-

thesis is true and 0 otherwise.

In the three-level nested logit model the alternatives are grouped in N sub-

sets or nests, with L(n) sub-nests in nest n and J(l(n)) alternatives in sub-

nest l(n). The choice can be visualized as first choosing among the N nests,

then among the L(n) alternatives in the chosen nest n, and finally among the

J(l(n)) alternatives in the chosen sub-nest l(n). Assuming that the joint den-

sity function of the random terms is given by a particular type of generalized

extreme value (GEV) distribution (McFadden, 1978b), the probability of alter-

native i(k(m)) being chosen is given by (suppressing the individual subscript t
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for simplicity):

Pi = Pi|k(m)Pk|mPm (4)

where Pi|k(m) is the conditional probability of choosing alternative i given that

sub-nest k and nestm are chosen, Pk|m is the conditional probability of choosing

sub-nest k given that nest m is chosen and Pm is the marginal probability of

choosing nest m. The conditional and marginal probabilities are given by:

Pm =
exp(µmIVm)PN
n=1 exp(µnIVn)

(5)

Pk|m =
exp(

λk(m)

µm
IVk(m))PL(m)

l=1 exp(
λl(m)

µm
IVl(m))

(6)

Pi|k(m) =
exp( 1

λk(m)
vi(k(m)))PJ(k(m))

j=1 exp( 1
λk(m)

vj(k(m)))
(7)

IVm and IVk(m) are the inclusive values of nest m and sub-nest k(m) respec-

tively, where IVm is given by the log of the denominator in (6) and IVk(m) by

the log of the denominator in (7):

IVm = ln

L(m)X
l=1

exp(
λl(m)
µm

IVl(m)) (8)
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IVk(m) = ln

J(k(m))X
j=1

exp(
1

λk(m)
vj(k(m))) (9)

where the parameters µm and λk(m) are the dissimilarity (or inclusive value)

parameters for nest m and sub-nest k(m) respectively.

3 Conditions for consistency with RUM.

McFadden (1981) has shown that any set of choice probabilities that satisfy the

following compatibility conditions are consistent with RUM:

C.1 Pj(v) ≥ 0,
PJ
j=1 Pj(v) = 1, Pj(v) = Pj(v+α), ∀α ∈ R

where v ≡ (v1, ..., vJ), and

C.2 ∂Pj(v)/∂vi = ∂Pi(v)/∂vj

and finally,

C.3 Pj must have non-negative even and non-positive odd mixed partial

derivatives with respect to components of v other than vj .

In the case of the nested logit model only the final compatibility condition

is restrictive. McFadden (1978a) and Daly and Zachary (1979) show that for

C.3 to hold globally (for all v ∈ RJ) the dissimilarity parameters for the nests
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are restricted to lie within the unit interval:

µn ≤ 1, ∀n (10)

In addition the dissimilarity parameters for the sub-nests are restricted to be

lower than or equal to their respective nest’s dissimilarity parameter such that:

λl(n) ≤ µn, ∀l(n) (11)

Börch-Supan (1990) argues that the DZM conditions are unnecessarily strong

given that the NL model should be viewed as a local approximation. His theorem

1 shows that if condition C.3 is satisfied for all observed and projected values

of v ∈ A where A is a subset of RJ , the probabilities are locally consistent with

RUM. Intuitively, since economic theory restricts the region in which v is likely

to lie, a sufficient condition for utility maximization is that C.3 holds for the

values of v in this region. Furthermore, Börch-Supan’s theorem 3 shows that

for the NL model only derivatives of order less then the number of alternatives

within each sub-nest and sub-nests within each nest need to be evaluated for

C.3 to hold.

Building on Börch-Supan’s results, Herriges and Kling (1996) derive neces-

sary conditions for consistency with utility maximization for two-level NL mod-

els. In the case of the three-level NL model, Börch-Supan’s theorem 3 implies

that in addition to the conditions given by Herriges and Kling Pi, where i ∈ l(n),

must have non-negative even and non-positive odd mixed partial derivatives
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with respect to vj for all j ∈ l(n) 6= i(l(n)). Thus we can derive the following

theorem:

Theorem 1 For three-level nested logit models, the following conditions are

necessary for consistency with random utility maximization:

µn ≤
1

1− Pn , ∀n (12)

µn ≤
4

3(1− Pn) + [(1 + 7Pn)(1− Pn)]1/2
, ∀n ∈ G3 ≡ {n|L(n) ≥ 3} (13)

λl(n) ≤ 1

(1− Pl|n)/µn + (1− Pn)Pl|n
, ∀l(n) (14)

λl(n) ≤ 4

3/µn + 3Pl|n − 3(1/µn + Pn)Pl|n + F 1/2
, ∀l(n) ∈ S3 ≡ {l(n)|J(l(n)) ≥ 3}

(15)

where,

F = (1+7Pn)(1−Pn)P 2l|n+(1+7Pl|n)(1−Pl|n)/µ2n−6/µn(1−Pn)(1−Pl|n)Pl|n

The proof follows from differentiation of equation (4) and is available from

the authors upon request. Equations (12) and (13) correspond to the conditions

in Herriges and Kling, while (14) and (15)2 are implied by the first and second

2We have verified that F > 0 for all µn ≤ 1/(1− Pn).
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order mixed derivatives of Pi with respect to vj for j ∈ l(n) 6= i(l(n)).

The conditions in theorem 1 can be used to test ex post the local consistency

of three-level NL models with RUM. Alternatively they can be used as a guide

for specifying Bayesian priors for the dissimilarity parameters (see Lahiri and

Gao, 2002). The conditions are necessary and sufficient for a model with three

alternatives per sub-nest and three sub-nests per nest. For a model with two

alternatives per sub-nest and two sub-nests per nest (12) and (14) are necessary

and sufficient. The conditions are not sufficient when there are more than

three alternatives per sub-nest, but in practical applications testing the first and

second-order conditions may be considered satisfactory (see Kling and Herriges,

1995 for a discussion).

It can be seen that substituting Pn = 0 into (14) or (15) and Pn = Pl|n = 0

into (16) or (17) yields the DZM conditions. For Pn > 0 the upper limit for

µn exceeds unity as shown by Börch-Supan and Herriges and Kling. Also, for

values of Pl|n higher than 0, λl(n) is no longer restricted to be lower than or

equal to µn. In other words the range of acceptable combinations of µn and

λl(n) can be expanded beyond the bounds imposed by equations (12) and (13).

The rest of our paper is devoted to investigating to what extent the conditions

in theorem 1 expand the acceptable combinations of µn and λl(n) given values

for Pn and Pl|n and different nesting structures.

Figure 1 plots the upper bounds on λl(n) as a function of µn given different

values for the probabilities. Lines 1 and 2 represent the first and second order

restrictions on λl(n) respectively (eqs. 14 and 15), while 3 and 4 represent the
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first and second order restrictions on µn (eqs. 12 and 13). The area enclosed

by lines 1/2 and 3/4 represent acceptable combinations of λl(n) and µn given

different nesting structures. These can be compared to the shaded area, which

gives the acceptable combinations of λl(n) and µn given that the DZM conditions

are imposed. As shown by Herriges and Kling, the upper bound on µn decreases

markedly when the number of sub-nests per nest grow. Also, the upper bound

on µn increases in Pn. Increasing the number of alternatives in each sub-nest,

however, does not lead to a substantial decrease in the acceptable values for

λl(n) when Pl|n is low. Even for higher values of Pl|n the range of acceptable

combinations of the dissimilarity parameters is considerably greater than in the

DZM case given that the number of sub-nest per nest is not higher than two

and Pn is high.

[Insert figure 1 near here]

4 Concluding remarks

We have developed conditions that can be used to test the local consistency of

three-level nested logit models with random utility maximization. We find that

irrespective of the number of alternatives per sub-nest the conditions can lead

to a substantial increase in the range of acceptable dissimilarity parameters for

a model with only two sub-nests per nest. Since this model structure is not

uncommon in the literature the result is of relevance to practitioners who find

that the estimated dissimilarity parameters fall outside the unit range.
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Figure 1. Upper bounds on )(nlλ  as a function of nµ  for different probability values. 
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