
The Behavior of HEGY Tests for Quarterly Time
Series with Seasonal Mean Shifts∗

Artur C. B. da Silva Lopes †

Instituto Superior de Economia e Gestão (ISEG—UTL) and CEMAPRE

Antonio Montañés
Universidad de Zaragoza

Revised: October 4, 2004

Abstract
This paper studies the behavior of the HEGY statistics for quarterly data,

for seasonal autoregressive unit roots, when the analyzed time series is deter-
ministic seasonal stationary but exhibits a change in the seasonal pattern. As
a by-product, we analyze also the HEGY test for the nonseasonal unit root,
the data generation process being trend stationary too. Our results show that
when the break magnitudes are finite the HEGY test statistics are not asymp-
totically biased towards the non-rejection of the seasonal and nonseasonal unit
root hypotheses. However, the finite sample power properties may be substan-
cially affected, the behavior of the tests depending on the type of the break.
Hence, our results are also useful to understand and to predict this behavior
under several circumstances.
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1 Introduction

Since the seminal work of Perron (1989) a new research field emerged. Perron (1989)
showed that Dickey and Fuller (1979) (DF) test statistics can often lead to the non
rejection of the unit root hypothesis when the analyzed time series is stationary around
a segmented deterministic trend. Given this lack of power of DF tests for (trend)
stationary time series affected by breaks, new methods for inference have been recently
proposed. In this regard we can cite, inter alia, the papers by Banerjee et al. (1992),
Christiano (1992), Perron (1989, 1990, 1997), Perron and Vogelsang (1992), Vogelsang
and Perron (1998) and Zivot and Andrews (1992). When more than one break is
allowed, one can use the procedures proposed in Lumsdaine and Papell (1997) if the
variable exhibits a trend, or Clemente et al. (1998) for non-trending series.
A natural extension of conventional unit root testing is the analysis of autoregres-

sive unit roots at seasonal frequencies (for seasonally observed and unadjusted time
series). This topic was first analyzed by Hylleberg, Engle, Granger and Yoo (1990)
[HEGY] and subsequently the seasonal unit roots or seasonally integrated model has
become somewhat popular to model a changing seasonal pattern. Evidence about the
presence of unit roots at seasonal frequencies has been reported for some macroeco-
nomic time series [see, e.g., Osborn (1990), Hylleberg et al. (1993) and Canova and
Hansen (1995)].
However, alternative models are available to model unstable seasonal patterns. Be-

sides the periodic autoregressive (PAR) model [see, e.g., Franses (1996)], the seasonal
mean shifts model recently received considerable attention [e.g., Balcombe (1999),
Franses et al. (1997), Franses and Vogelsang (1998), Hassler and Rodrigues (2004),
Lopes (2001), Paap et al. (1997) and Smith and Otero (1997)]. In fact, we can
think of changing seasonal fluctuations arising from one or more structural breaks in
a deterministic seasonal stationary process. Such deterministic seasonal mean shifts
may emerge under several circumstances. For instance, one may think of a sudden
change in preferences (for holidays, for example) or in production and/or storing tech-
nologies, or in institutional arrangements of the economy (e.g., the school calendar).
Also, sometimes statistical agencies change the procedures used to measure economic
variables.
In recent papers by Franses and Vogelsang (1995, 1998) and Hassler and Rodrigues

(2004) new tests for seasonal unit roots which explicitly allow such deterministic mean
shifts are put forward. Following Perron (1990) and Ghysels (1994), Franses and Vo-
gelsang (1995) conjecture that HEGY statistics can be biased towards non-rejection of
seasonal unit roots when shifting deterministic seasonals are neglected in the testing
strategy. This conjecture is confirmed by the Monte Carlo results obtained by Bal-
combe (1999) and by Smith and Otero (1997). However, a detailed asymptotic analysis
is still missing. Such an analysis can be enlightening about the asymptotic behavior
of HEGY tests when deterministic seasonal mean shifts are neglected. Furthermore,
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it may also shed some light on the small sample power properties of the tests. This
paper aims to bridge this gap, addressing both issues. Moreover, though our main
interest centres on the seasonal unit root tests, as a by-product we also analyze the
asymptotic behavior of the HEGY test for the unit root at the zero (nonseasonal or
long-run) frequency, the data generation process (DGP) being trend stationary too.
The outline of the paper is as follows. The next section contains the asymptotic

analysis. First we obtain the general results and subsequently we consider some cases
of particular interest. Our results show that when the break parameters are finite only
one of the test statistics converges to zero, the divergence of the remaining statistics
allowing us to conclude that there is no asymptotic bias towards non-rejection of
the nonseasonal and seasonal unit root hypotheses. Although this result is not very
surprising, its importance derives from the similarity of HEGY and DF tests and the
claim in Perron (1989) that the latter are inconsistent against certain breaking trend
alternatives with finite breaks. However, according to the type of the break, some
or all test statistics may require larger sample sizes to maintain their power, and the
asymptotic analysis is insightful in this respect too. Section 3 presents the results of
some Monte Carlo simulation experiments which aim to ascertain the adherence of
these results to small samples. While Appendix A contains some illustrating proofs,
in Appendix B we present the critical values used for the simulation study.
The following conventions are used through the paper: a) T denotes the sample

size; b) the symbol ’→’ denotes convergence in probability and c) frequently, the
probability limits of the properly scaled test statistics will be referred simply as the
“asymptotic values” or “limit values” for those statistics.

2 Asymptotic Analysis

In this section we derive the probability limits for the seasonal and nonseasonal unit
root test statistics when the time series is trend and deterministic seasonal stationary
but exhibits a break in its seasonal pattern.

2.1 Assumptions

As the HEGY procedure depends on the frequency of the data, we confine the analysis
to the most popular case, i.e., the quarterly data case. Though our main interest
centres on the seasonal unit root tests, in order to study also the behavior of the test
for the nonseasonal unit root and following Smith and Otero (1997), we assume that
the time series is generated according to the model

yt =
4X

i=1

αiDit + β t+
4X

i=1

δiDit[It>τ ] + ut, t = −3,−2,−1, 0, 1, 2, ..., T, (1)
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where yt typically denotes a log transformed variable, Dit (i = 1, 2, 3, 4) represent the
usual seasonal dummy variables and [It>τ ] is an indicator function (taking the value 1
if t > τ and 0 otherwise). For the sake of simplicity, {ut} is assumed to be an iid(0, σ2u)
process. We assume that there is at most one shift in each season and denote the time
of the break as τ = λs T , 0 < λs < 1. Thus, while until time τ the seasonal cycle is
given by the αi parameters, after the break that same role is performed by the αi+ δi
quantities. To simplify the notation but without loss of generality we consider that τ
corresponds to a fourth quarter observation.
Contrarily to a postulate which is sometimes used in the literature on conventional

unit root testing (see, e.g. Perron (1989, p. 1372)), in this paper we confine our
attention to the case where the δi parameters are finite. Given the presence of the
deterministic trend in the DGP, this assumption implies that, in spite of the (seasonal)
shift, the relative importance of the seasonal variation decreases as T grows 1, the
behavior of the series being asymptotically dominated by the trend. However, this is
a feature which is necessarily contained in the assumed DGP, whether there is a break
in the seasonal pattern or not.
In other words, as in Perron (op. cit.), we could have considered the δi as a linear

function of τ , e.g., δi = γiτ(i = 1, 2, 3, 4), in which case they would tend to infinity
with T . We consider that this would not be a reasonable assumption for two essential
reasons. First, as we wish to study the behavior of the tests when only some of the
seasonal intercepts change, that assumption would imply the values of the series for
those seasons to diverge from the remaining (i. e., from those corresponding to δi = 0)
as the sample size grows, a quite unrealistic situation. Second and more generally,
such an assumption would be reasonable only in the case when the pre-break DGP
would be given by

yt =
4X

i=1

αiDit +
4X

i=1

βit+ ut,

a model which allows increasing (deterministic) seasonal variation, which is rarely
considered in empirical work 2, and for which the most popular HEGY regression
equation (see below) is not adequate (as it does not provide similar test statistics; see
Smith and Taylor (1998)). As one of our main purposes is the study of the implications
of a break in the seasonal pattern only, the amplitude of the seasonal variation being
kept constant through time in each sub-period, we consider more appropriate that the
δi do not vary with T . Clearly, this assumption amounts to a serious limitation in
what concerns testing for the nonseasonal unit root only. However, it is rarely the

1But, given the break, it obviously may alter for the detrended series.
2However, see Franses (1998, pp. 115-7) for an example on a previously logarithmized series. This

diverging seasonal trends model may be seen also as the alternative hypothesis in the HEGY tests
performed in the example provided by Smith and Taylor (1998), but in this case the logarithmic
transformation was not used on the original time series.
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case that empirical research for seasonally observed time series relies exclusively on
the HEGY procedure for such a purpose. In that case, if there is some suspicion of a
break, the procedures mentioned in the second paragraph of section 1 should be given
priority 3.

2.2 The HEGY procedure: a brief review

Given the characteristics of the variable which is the centre of the study – containing
deterministic trend and seasonality – but neglecting the seasonal shifts, the HEGY
statistics for testing for autoregressive unit roots are obtained from the OLS estimation
of the equation

y4t =
4X

i=1

µiDit+γ t+π1 y1,t−1+π2 y2,t−1+π3 y3,t−2+π4 y3,t−1+�t, t = 1, 2, ..., T (2)

where y1t = (1 + L+ L2 + L3)yt, y2t = (−1 + L− L2 + L3)yt, y3t = (−1 + L2)yt and
y4t = ∆4yt = yt − yt−4, L denoting the usual lag operator, and where {�t} is assumed
to be a white noise process. Since model (1) incorporates the (deterministic) seasonal
mean shifts, it is contained neither in the null nor in the alternative hypotheses for
which the HEGY statistics have been designed. HEGY showed that when π1 = 0 the
series contains the (nonseasonal or zero frequency) root 1, when π2 = 0 the (semi-
annual) root −1 is present, the presence of the (annual) roots ±i (i = √−1) implying
π3 = π4 = 0 (the stationary alternatives being π1 < 0, π2 < 0 and π3 < 0 and/or
π4 6= 0).
Thus, inference on the presence of seasonal unit roots may be carried out through

the t-ratios associated to the last three πi coefficients: tπ2 , tπ3 and tπ4 . On the other
hand, evidence on the presence (absence) of a nonseasonal unit root is given by tπ1.
However, the analysis of stochastic seasonal non-stationarity becomes simpler if, in-
stead of testing three separate hypotheses, we test some joint null hypotheses. To
that end, one can use the F -statistics F34, which tests H0 : π3 = π4 = 0, and F234,
associated to H0 : π2 = π3 = π4 = 0. Finally, one can also test whether all the πi
parameters are zero [i.e., whether the ∆4 = (1− L4) filter is appropriate] using F1234.
The first statistic allows testing for the presence of the two complex conjugate roots
and, following the argumentation presented in HEGY, it is usually preferred to testing
each of the separate single null hypothesis [see also Burridge and Taylor (2001) for an
additional argument]. The F234 and F1234 statistics were proposed by Ghysels et al.
(1994). The limiting null distributions of the t and F statistics have been derived by

3As mentioned in Franses (1996, p. 73), the HEGY procedure may lack power when testing for
the conventional unit root. On the other hand, regarding those procedures, and as in the no-break
case, we may conjecture that, for seasonally observed time series, the adequate regression equations
must contain sufficient lag augmentation; see Ghysels et al. (1993).
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HEGY and Ghysels et al. (1994) 4, where some finite sample critical values are also
presented.

2.3 General results

To study the asymptotic behavior of the previous set of statistics when the DGP is
given by equation (1), we begin by noting that an asymptotically equivalent way to
obtain them is based on the OLS estimation of the regression

zht = π1z1t + π2z2t + π3z3t + π4z4t + ζt, t = 1, 2, ..., T (3)

where zht, z1t, z2t, z3t and z4t are the residuals of the projections of y4t, y1,t−1, y2,t−1,
y3,t−2, y3,t−1 over the space defined by {D1t, D2t, D3t, D4t, t}, respectively. That is,
the zlt variables (l = h, 1, 2, 3, 4) denote the detrended and seasonally demeaned trans-
formed series of equation (2). Then, first we define some sample moments and evaluate
their probability limits. These are reported in the following lemma.

Lemma 1 Assume that yt is generated by model (1), where {ut} is a sequence of
iid (0, σ2u) innovations, δi < ∞, i = 1, 2, 3, 4 and τ = λsT (0 < λs < 1). De-
note with zht, z1t, z2t, z3t and z4t, respectively, the residuals of the projections of
y4t, y1,t−1, y2,t−1, y3,t−2 and y3,t−1 over the space spanned by {D1t, D2t,D3t,D4t, t}.
Then, as T →∞:

a) T−1
TP
t=1

zi t zht → −σ2u, i = 1, 2, 3,

b) T−1
TP
t=1

z4 t zht → 0,

c) T−1
TP
t=1

zi t zj t → 0, ∀ i 6= j, i, j = 1, 2, 3, 4,

d) T−1
TP
t=1

z2ht → 2 σ2u,

e) T−1
TP
t=1

z21 t → e2,

f) T−1
TP
t=1

z22 t → f2,

g) T−1
TP
t=1

z23 t → g2,

4See also Engle et al. (1993), Smith and Taylor (1998) and Ghysels et al. (2001).
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h) T−1
TP
t=1

z24 t → h2,

where

e2 = (1 − 3B1) B1
Ã

4X
i=1

δi

!2
+ 4σ2u, (4)

f2 = B1

Ã
4X

i=1

(−1 )i δi
!2

+ 4σ2u (5)

and

g2 = h2 = [B1

Ã
4X

i=1

δ2i − 2
2X

i=1

δi δi+2

!
+ 4σ2u]/ 2, (6)

with B1 = (1− λs)λs.

Proof: see Appendix A.
Based on these results, the required probability limits are provided in the following

theorem.

Theorem 1 Assume that yt is generated by model (1), where {ut} is a sequence of
iid (0, σ2u) innovations, δi <∞, i = 1, 2, 3, 4 and τ = λsT (0 < λs < 1). Then, when
model (2) is estimated using OLS, as T →∞:

a) T−1/2 tπ1 → −
q

f2 g2 σ2u
M

,

b) T−1/2 tπ2 → −
q

e2 g2 σ2u
M

,

c) T−1/2 tπ3 → −
q

e2 f2 σ2u
M

,

d) tπ4 → 0 ,

e) T−1 F34 → e2 f2 σ2u
2M

,

f) T−1 F234 → e2(f2+g2)σ2u
3M

,

g) T−1 F1234 → [e2(f2+g2)+ f2 g2]σ2u
4M

,

where e2, f2 and g2 are given in (4), (5) and (6), respectively, and

M = 2 e2 f2 g2 − [e2(f2 + g2) + f2 g2]σ
2
u.
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Proof: see Appendix A.

Notice that due to the asymptotic orthogonality of the stochastic regressors in equa-
tion (2), the results obey the conditions F34−(1/2)

P4
i=3 t

2
πi
→ 0, F234−(1/3)

P4
i=2 t

2
πi
→

0, and F1234 − (1/4)
P4

i=1 t
2
πi
→ 0. Hence, this context of asymptotic independence

implies that the divergence of only one of the t-ratios is sufficient to assure that a F -
statistic whose joint null includes the single hypothesis which is being tested by that
t-ratio also diverges. Second, these results may be used to establish the probability
limits of the (scaled) test statistics when there is no structural change and the most
popular HEGY regression is run on a time series whose DGP is given by equation (1)
(with δi = 0, i = 1, 2, 3, 4).
However, the most striking implications that can be drawn from this theorem refer

to the consequences of neglecting the seasonal mean shifts. The most important one is
that only tπ4 goes to zero (the true value of π4), that is, this is the only statistic whose
asymptotic behavior is misleading. The remaining test statistics diverge: the t-ratios
diverge towards −∞ at rate T 1/2 and the F -statistics towards +∞ at a faster rate
(T ). As evidence on the presence of the complex roots requires also the additional
non-rejection of the single null H0 : π3 = 0 or the non-rejection of the joint null
H0 : π3 = π4 = 0, the exception for tπ4 is irrelevant. Therefore, asymptotically the
HEGY tests are not adversely affected by the presence of neglected finite seasonal
mean shifts.
Nevertheless, as the limit values depend on the magnitudes of the break parameters,

the possibility that large values for these parameters are liable to push the test statistics
towards zero in finite samples cannot be discarded. This discussion is motivated by
the results of Perron (1989) and Montañés and Reyes (1999), where the behavior of
DF tests under the presence of changes in a trend stationary process is considered.
When the break affects only the intercept of the trend function the test statistics
diverge. However, Montañés and Reyes note that the presence of the break parameter
in the denominator of such limit values makes the statistics approach zero when that
parameter grows. Thus, in spite of the inherent divergence of DF statistics, in small
samples the probability of rejecting the (false) unit root null hypothesis may become
very low when a large break occurs. Likewise, we may conjecture that a similar kind
of effect can adversely affect the performance of HEGY tests.

2.4 Some particular cases

Following the previous line of discussion, we now try to ascertain the importance of
the magnitudes of the break parameters. However, as the complexity of the previous
expressions handicaps this kind of analysis, we will subsequently study some particular
cases. Besides containing special relevance, these cases allow us to simplify the analysis.
Obviously, other cases may also be analyzed using Theorem 1.
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The results for the particular cases considered are presented in the following corol-
laries. Their proofs are direct, simply imposing the assumed parameter restrictions
on the expressions of the previous theorem. Let us begin by the one where there is a
break that affects the four seasonal intercepts exactly the same way, which amounts
to a simple change in the intercept of the trend function, commonly referred to as a
level shift (e.g. a crash).

Corollary 1 Assume that δ1 = δ2 = δ3 = δ4 = δ in model (1). Then, the asymptotic
values of the HEGY test statistics are the following:

a) T−1/2 tπ1 → −
q

σ2u
20 ( 1− 3B1) B1 δ2+4σ2u ;

b) T−1/2 tπ2 → −
q

4 ( 1− 3B1) B1 δ2+σ2u
20 ( 1− 3B1) B1 δ2+4σ2u ;

c) T−1/2 tπ3 → −
q

4 ( 1− 3B1) B1 δ2+σ2u
10 ( 1− 3B1) B1 δ2+2σ2u ;

d) T−1 F34 → 4 ( 1− 3B1) B1 δ2+σ2u
4 [5 ( 1− 3B1) B1 δ2+ σ2u]

;

e) T−1 F234 → 4 ( 1− 3B1) B1 δ2+σ2u
4 [5 ( 1− 3B1) B1 δ2+ σ2u]

;

f) T−1 F1234 → 3 ( 1− 3B1) B1 δ2+σ2u
4 [5 ( 1− 3B1) B1 δ2+ σ2u]

.

Strictly speaking, the case of this first corollary is not one of a changing seasonal
pattern, as the seasonal variation remains constant but, instead, one of a level shift
only [as in case A of Perron (1989)]. That is, the seasonal cycle simply moves to a
different level. Therefore, the result that the asymptotic value for tπ1 is the only one
that can be substantially reduced by the size of the break is not unexpected. Hence,
a serious loss of power for testing the presence of the nonseasonal unit root can be
expected in small samples. That is, although tπ1 is not asymptotically biased towards
non-rejection, in finite samples there is a tension between two opposite forces: the bias
may indeed be large, according to the magnitude of the break and the sample size.
As the seasonal cycle for the adequately detrended time series is unaltered, the

remaining test statistics are much less influenced by the break magnitude. In fact, as
this parameter appears in both terms of the fractions raised to the same power, no
significant changes for the power performance are expected even in small samples.

The second of the particular cases is that where the break affects only one of the
seasons. As in the previous case, a change in the level of the series results. However,
there is now an additional effect: the seasonal pattern also changes.
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Corollary 2 Assume that δi = δ for a particular i, δj = 0 (i 6= j, i, j = 1, 2, 3, 4) in
model (1). Then, the asymptotic values of the HEGY statistics are the following:

a) T−1/2 tπ1 → −
r

(B1 δ2+4σ2u) σ2u
2B21 ( 1− 3B1) δ4+3B1 ( 4− 5B1) δ2 σ2u+16σ4u

;

b) T−1/2 tπ2 → −
r

[ ( 1− 3B1)B1 δ2+4σ2u] σ2u
2B21 ( 1− 3B1) δ4+3B1 ( 4− 5B1) δ2 σ2u+16σ4u

;

c) T−1/2 tπ3 → −
r

2 [ ( 1− 3B1)B1 δ2+4σ2u] σ2u
2B21 ( 1− 3B1) δ4+3B1 ( 4− 5B1) δ2 σ2u+16σ4u

;

d) T−1 F34 → [ ( 1− 3B1 )B1 δ2+4σ2u] σ2u
2B21 ( 1− 3B1) δ4+3B1 ( 4− 5B1) δ2 σ2u+16σ4u

;

e) T−1 F234 → [ ( 1− 3B1 )B1 δ2+4σ2u] σ2u
2B21 ( 1− 3B1) δ4+3B1 ( 4− 5B1) δ2 σ2u+16σ4u

;

f) T−1 F1234 → [ ( 4− 9B1 )B1 δ2+16σ2u] σ2u
4 [2B21 ( 1− 3B1) δ4+3B1 ( 4− 5B1) δ2 σ2u+16σ4u]

.

Contrarily to the previous case, now it can be observed that, as in all the limit
expressions the break parameter appears in the denominator raised to a higher power
than in the numerator, all of them will tend to approach zero as the break magnitude
grows. Hence, in small samples one should expect a deterioration of the power per-
formance for all the HEGY statistics. That is, these results allow us to understand
the Monte Carlo outcomes reported in Smith and Otero (1997). They are useful to
explain why a serious loss of power can be expected whenever the break affects only
one of the quarters and the magnitude of the break is large. Furthermore, they are
also useful to understand the reason why the larger the available sample size is the
larger the break magnitude must be for observing a certain loss in power.

The third case under consideration is the one where there is a change in the seasonal
pattern but not in the level of the variable, i.e., the sum of all seasonal mean shifts
is zero. This is the most interesting case for the seasonal fluctuations analyst. In
practical terms, this is probably the most important case too, as seasonal unit root
tests are often performed over time series observed for a rather limited number of
years, the level of the series remaining about the same. Given this importance, we
split the study for this case by imposing two different sets of restrictions; in both
cases, only two of the seasons are affected, i.e., there is a crash in one of the seasons
that is balanced by a boom in another. The first assumes that the break affects two
consecutive quarters in a year, e.g., “spring becoming summer”. The second considers
that there is an intermediate observation between the two affected quarters.
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Corollary 3 Assume that δi = −δi+1 = δ for a particular i (i = 1, 2, 3) and δj = 0

(j 6= i, j 6= i + 1, j = 1, 2, 3, 4) in model (1). Then, the asymptotic values of the
HEGY statistics are the following:

a) T−1/2 tπ1 → −
r
(B1 δ2+ σ2u) (B1 δ2+2 σ2u)
7B21 δ4+16B1 δ

2 σ2u+8σ
4
u
;

b) T−1/2 tπ2 → −
r

(B1 δ2+2 σ2u)σ2u
7B21 δ4+16B1 δ

2 σ2u+8σ
4
u
;

c) T−1/2 tπ3 → −
r

4(B1 δ2+σ2u)σ2u
7B21 δ4+16B1 δ

2 σ2u+8σ
4
u
;

d) T−1 F34 → 2(B1 δ2+σ2u)σ2u
7B21 δ4+16B1 δ

2 σ2u+8σ
4
u
;

e) T−1 F234 → (5 B1 δ2+6σ2u)σ2u
3 [7B21 δ4+16B1 δ

2 σ2u+8σ
4
u]
;

f) T−1 F1234 → B21 δ4+8B1 δ
2 σ2u+8σ

4
u

4 [7B21 δ4+16B1 δ
2 σ2u+8σ

4
u]
.

An expected result now clearly emerges: only the behavior of the statistics designed
to detect the presence of the seasonal unit roots is now adversely affected by the size of
the break. Furthermore, it is also easy to observe that this magnitude is liable to exert
a relatively larger influence on the asymptotic value of tπ2 than in the one of tπ3 . That
is, neglecting the help that may be provided by the rejection ofH0 : π4 = 0–on which
one cannot rely even asymptotically using tπ4 –, in small samples one can expect to
find misleading evidence on the presence of a unit root at the bi-annual frequency more
often than at the annual frequencies. This effect can be understood intuitively, as this
case is the closest to that of a big shock affecting a certain observation and changing
the cyclical movements of the series with a periodicity of two, which is precisely the
effect one has in mind when the model (1 + L)yt = �t (where the root −1 is present)
is considered [Engle et al. (1993, p. 277)].
Clearly, the asymptotic value of tπ1 depends on δ too. However, since this param-

eter now appears in both terms of the fraction raised to the same power, no drastic
power decreases are predicted.

Finally, the following corollary analyzes the case where the structural change affects
two quarters one period apart.

Corollary 4 Assume that δi = −δi+2 = δ for a particular i (i = 1, 2) and δj = 0

(j 6= i, j 6= i + 2, j = 1, 2, 3, 4) in model (1). Then, the asymptotic values of the
HEGY statistics are the following:
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a) T−1/2 tπ1 → −
q

B1 δ2+ σ2u
6B1 δ

2+4σ2u
;

b) T−1/2 tπ2 → −
q

B1 δ2+σ2u
6B1 δ

2+4σ2u
;

c) T−1/2 tπ3 → −
q

σ2u
3B1 δ

2 +2σ2u
;

d) T−1 F34 → σ2u
6B1 δ2+4σ2u

;

e) T−1 F234 → B1 δ2+3σ2u
6 (3B1 δ2+2σ2u)

;

f) T−1 F1234 → B1 δ
2 +2σ2u

4 ( 3B1 δ2+2σ4u )
.

For the same reason of the previous case, the power behavior of the test for the
nonseasonal unit root should depend much less on δ than in the first two cases. How-
ever, the most remarkable result is that tπ2 now asymptotically behaves as tπ1 : in spite
of the change in the seasonal pattern, its limit value is not much influenced by the
size of the break. This is in sharp contrast with the asymptotic values for tπ3 and F34,
both approaching zero as δ grows. In other words, the seasonal unit root test statistics
no longer exhibit an homogeneous behavior in δ for all the frequencies: although all
of them (besides tπ4) diverge when T grows, in small samples and when δ is large, one
can now expect to find frequent misleading evidence for the presence of the annual
roots, but a similar deficiency should not occur when testing for the semi-annual unit
root.
Nevertheless, this discrepancy cannot be considered as unexpected. Actually, the

effect of a break affecting only the seasonal pattern and changing the seasonal means
for two quarters one period apart is similar to that of a big shock affecting only the
seasonal (cyclical) fluctuations of the series with a periodicity of four, which is precisely
the kind of effect that the model (1+L2)yt = �t (where the annual frequency roots ±i
are present) allows to capture. Clearly, under the conditions of the previous corollary
the annual seasonal cycle was also indirectly disturbed, which is the reason why the
behavior of all the seasonal unit root tests became strongly affected by the size of the
break. As is easy to understand, under the assumptions stated in Corollary 4 there
is no such (reverse) indirect effect, the annual cycle being the only one that is really
affected by the structural change. Finally, a feature that this case shares with the
previous one is that, ceteris paribus, all the absolute limit values are minimized when
λs = 0.5.

3 Small Sample Results

In this section we present the results of some simple Monte Carlo experiments, carried
out to ascertain to what extent the asymptotic results are useful to explain and to

12



predict the behavior of the HEGY statistics in small samples. To keep the volume
of tables inside reasonable limits, we report only a selection of the simulation results,
though briefly mentioning some unreported ones. Additionally, unless stated explicitly
otherwise, the power estimates: a) refer to 5% level tests (whose critical values are
reported in Appendix B); b) consider ut ∼ iidN(0, 1), that is, though the results show
that the asymptotic values depend also on σ2u, to simplify the analysis this parameter
will be taken as fixed; c) are based on 10, 000 replications using TSP 4.3; d) refer to
the case when λs = 0.5, i. e., the break occurs in the middle of the sample; e) consider
a pre-break deterministic seasonal pattern given by −α1 = α2 = −α3 = α4 = 1 and
a deterministic trend parameter β = 1; notice, however, that the results are invariant
to the values of these parameters. Since the F34 statistic provides a simpler and more
powerful procedure for testing the restrictions implied by the presence of the complex
roots, the behavior of tπ3 and tπ4 will not be analyzed; further, these are rarely used
in empirical work.
The DGP for the experiments is given by equation (1), its particularizations being

provided by the cases studied in the corollaries. We set the values for the single
break parameter at δ = 0 (no-break), 1, 3 and 5 5. Given that σu = 1, a unity
break parameter represents a small break, which is hardly detectable through graphical
means. The case δ = 3 is used to represent a moderately large break, one that may
be detected through the plot of the detrended series. Finally, δ = 5 represents a large
break, which may be discernible even in the plot of the original (non-detrended) series.
Previous to the presentation of the power analysis, we have also considered an

additional Monte Carlo study to verify the usefulness of the asymptotic results to
predict the values of the statistics in small samples. Towards that end we have
adopted the same parameter constellation but a wider range of sample sizes, T =

24, 32, 48, 64, 96, 120, 200, 400, 600, 800. Using 5, 000 replications, the mean values of
the scaled test statistics were compared with their asymptotic values. Figures 1 and
2 show these deviations for two of the worst case scenarios: those of t1 and t2 for the
cases of corollaries 1 and 2, respectively.

Figures 1 and 2 about here

The emerging picture is quite clear: the asymptotic results provide a very good
approximation to the behavior in small samples. The case depicted in figure 2 seems
remarkable: for example, even when δ = 3 and T = 96 only the deviation is a mere

5To confirm the symetrical behavior of the tests as a function of δ we considered also negative break
magnitudes. Although we will not formally report the corresponding results, these being available
from the authors on request, it must be mentioned that, as a general result, the prediction of a
symmetrical behavior in δ is quite accurate in small samples. The same can be said about relaxing
the assumption that τ corresponds to a fourth quarter observation.
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For comparison purposes, the power estimates for the no-break case, i.e., δ1 = δ2 =

δ3 = δ4 = δ = 0, are presented in Table 1, the remarkable power properties of the
seasonal unit root tests for sample sizes as small as T = 48 clearly emerging. However,
it should be noted that we are considering a very simple DGP, one that, besides the
trend, contains only purely deterministic seasonality, i.e., a DGP whose only purpose
is to act as a standard against which the power losses resulting from the structural
change will be judged.

Table 1 about here

3.1 The case of a level shift

The results of Table 2 reflect the asymptotic behavior reported in Corollary 1, in the
sense that only tπ1 is clearly affected by the break. In particular, the performance
of tπ1 depends on the combination of the values of δ and T : on the one hand, the
larger the break magnitude, the smaller the power of this statistic; on the other hand,
the larger the sample size, the more powerful tπ1 is. Further, while tπ1 is virtually
powerless for the case of a big break even for samples as large as T = 160, when
δ = 5 but T = 400 the estimated power attains 0.930. Contrasting with this behavior,
the minor changes implied by the break on the limit values of the seasonal unit root
test statistics manifest in small samples through negligible changes in the rejection
frequencies.

Table 2 about here

The outcomes of table 2 do not represent, however, the worst case scenario for
the performance of the HEGY tests, particularly in what concerns tπ1 . Actually, as is
easily observed in the results of Corollary 1, the minimum absolute asymptotic values
are not attained when λs = 0.5. For tπ1 this occurs for λs ≈ 0.2 and 0.8, and this
behavior holds for small samples too, as some additional simulations show 7. Quite
on the contrary, for all the other test statistics such a displacement of the time of the
break produces only marginal power reductions (and only when T = 48).
Finally, based on the results we obtained for the cases when λs = 0.25 and

λs = 0.75, the power estimates for small samples do not fully reflect the predicted
symmetrical behavior in λs (around 0.5) but do not strongly contradict it either.

6Further, as expected, the approximation performs even better for the cases of the almost unaf-
fected statistics.

7For instance when δ = 3 and λs = 0.25, the nonseasonal unit root hypothesis will be rejected
only in about 0.7%, 3.6% and 29.3% of the occasions for samples sized as T = 48, 96 and 160,
respectively. Furthermore, for large breaks, this effect still remains highly significant for samples as
large as T = 400: when δ = 5 the power estimates are 0.930 and 0.286 when λs = 0.5 and λs = 0.25,
respectively.
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3.2 A change in the level and in the seasonal pattern

This case is simply illustrated with the situation considered in Corollary 2, where only
one of the seasonal means changes. As can be seen readily from those results, the
asymptotic values for tπ2 and tπ3 are more adversely affected than the one for tπ1

8

– this effect becoming clearer as δ grows – but, for a given break, they are not as
much affected as this last one in the previous case. Moreover, for a given δ, the limit
value for tπ1 is not so influenced as in the previous case. All these effects are easily
understandable: now the seasonal pattern also changes, thereby affecting the behavior
of the seasonal unit root tests, and the effect of a shift in only one of the quarters on
the level of the series is now weaker. Obviously, this is also reflected in the probability
limits of the scaled F -statistics, now lower than in the precedent case (for the same δ).
All these features can be observed in small samples too, as the comparison between
the results in table 3 and those of tables 1 and 2 documents.

Table 3 about here

However, while for the tests where at least one seasonal unit root is involved the
absolute asymptotic values are minimized when λs = 0.5, for tπ1, and as in the previous
case, the same is not generally true. This is reflected in small samples too. For instance,
for a large break (δ = 5) located at λs = 0.25 and for T = 96, the power losses for the
tπ2 and F34 statistics are not so dramatic as those reported in table 3 as the power
estimates are 0.595 and 0.907, respectively. For this same example, the loss in power
incurred when testing only the presence of the root 1 is significantly higher than the
one which is reported in table 3 (0.559). However, some unreported simulations show
that the effect of a break location differing from λs = 0.5 on the behavior of this test
is now much less noticeable than in the previous case.
Finally, additional simulations carried out for the cases when λs = 0.25 and 0.75

show that the symmetrical asymptotic behavior in λs is now a relatively poor approx-
imation for small samples, particularly when the break is large (and even for samples
as large as T = 160). However, the performance of the HEGY tests is mixed, the
only possible conclusion being that the test for the nonseasonal unit root seems less
severely affected when the break occurs in the second half of the sample.

3.3 A change in the seasonal pattern only

The results presented in table 4 confirm the main predictions for small samples based
on Corollary 3 9: a) the seasonal unit root tests, and particularly the test of the semi-
annual root, are now those which are clearly affected by the size of the break ; b) this

8For instance, concerning tπ2 and tπ1 , the limit value for the second will be lower than the one for
the first whenever −3B2

1δ
2 < 0, i.e., whenever there is a break.

9In general, the Monte Carlo results for the case δ1 = −δ4 = δ and δ2 = δ3 = 0 are very close to
those presented in table 4. Significant discrepancies are found only when T = 48.
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magnitude also plays a role in the behavior of tπ1 , but it is now much less important
than in the previous cases, the power recovery being almost completed for samples
with size T = 96 even for a large break (δ = 5).

Table 4 about here

Moreover, we can also observe that the case of a break affecting two consecutive
quarters is that one where the power reduction incurred by F234 and F1234 is the
most serious (see also table 5). Unreported additional results also show that while
the prediction of the power function for all tests being minimized when λs = 0.5 is
observed in small samples, that of a symmetrical behavior in λs is not, particularly
for large values of δ. For this case, when the break is moderate or large (δ = 3, 5),
the power loss experienced by the statistics involving seasonal unit roots is generally
higher when the shift occurs in the second half of the sample.
A behavior similar to this may be observed for F34, F234 and F1234 when the break

affects two quarters one period apart (see table 5). However, once again this is the only
exception concerning the accuracy of the predictions based on the results of Corollary
4. In particular: a) the performance of tπ1 and tπ2 is now seen to be very close to
the no-break case, their power exhibiting a significant decrease only when T = 48; b)
contrasting with this, the small sample power performance of F34 strongly depends
on δ, the growth of this magnitude requiring larger samples that allow the test to
recover its power. Also, as expected, the performance of F234 and F1234 is now less
severely affected than in the previous case. Finally, unreported results for the cases
when λs = 0.25 and 0.75 also seem to confirm that the misleading evidence produced
by all the tests, and particularly when using the F34 statistic, is more likely to occur
when λs = 0.5.

Table 5 about here

3.4 Relaxing two assumptions

Additional simulation experiments 10 allow us to state that two important assump-
tions concerning DGP (1) can be relaxed without affecting qualitatively our results.
These weaker and more empirically relevant conditions refer to: a) allowing that the
innovations process, {ut}, is serially correlated according to some stationary and in-
vertible ARMA model; b) relaxing the trend stationarity assumption. In both cases
the simulation results are similar to those presented, i.e., the statistics for the seasonal
unit root tests still diverge for a finite break and the different types of breaks produce
the effects previously observed. Further, this also holds for the non-seasonal unit root
test when only a) is assumed.

10Though we do not present the results, they are available from the authors on request.
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To accomplish a), i.e., to introduce some dynamics in (1), besides the deterministic
component we have considered an autoregressive (stationary) polynomial in L for yt,
allowing for non-zero roots at all the frequencies 11. In other words, we extended
(1) to α(L)yt = mt + �t, where mt denotes the deterministic elements which are
present in (1), �t ∼ nid(0, 1) and, for instance, α(L) = (1 − 0.5L)2(1 + 0.5L)2(1 +
0.52L2). In this particular case, to prevent the tests from being contaminated by
residual autocorrelation, the auxiliary regression (2) was augmented with the first two
lags of y4t. Concerning b), instead of (1) we assumed the DGP as being given by
∆yt =

P4
i=1 αiDit +

P4
i=1 δiDit[It>τ ] + ut, thereby introducing a stochastic trend at

the long-run frequency.

4 Conclusions

The most important conclusion that can be drawn from this paper is that when the
seasonal shifts are finite there is not an asymptotic bias towards the (incorrect) non-
rejection of seasonal unit root hypotheses when the HEGY procedure is used on a
seasonal deterministic time series affected by a structural break. Given that our data
generating mechanism is contained neither in the null nor in the alternative hypotheses
for which the tests have been designed, this property of the HEGY statistics seems
remarkable.
To gain some insight into the small sample behavior of the tests, we further par-

ticularized the asymptotic analysis for four basic cases which we consider as specially
relevant in empirical research. This proved to be very useful, the different specifica-
tions of the break producing rather distinctive features in the limit expressions. As the
Monte Carlo experiments confirmed, the asymptotic analysis proved useful in several
distinct respects:

a) to understand and to predict the power performance of the HEGY tests in small
samples, in many different break cases;

b) to obtain the asymptotic values of the HEGY statistics for data generated by
model (1) even when there is no break;

c) to explain clearly the power performance of the HEGY tests reported in the
previous literature and to provide an explanation for new cases too;

d) to clarify the effects of the different types of breaks on the power performance
of the various test statistics;

11However, it should be mentioned that in this case the asymptotic orthogonality conditions ob-
served for (1) no longer hold, further complicating the calculations of the probability limits.
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e) to provide a very good approximation to the numeric values of the statistics in
samples of moderate size.

Besides this confirmation evidence, the Monte Carlo simulations showed the useful-
ness of the asymptotic analysis for predicting the small sample behavior of the HEGY
tests in other respects too, the only exception being the non symmetrical behavior of
the power functions in λs for most of the cases. Moreover, the importance of those
results for understanding and predicting empirical evidence on seasonal unit roots is
strengthened by the fact that, though they were derived for a trend stationary process
with independent innovations, they are still valid when both these assumptions are
relaxed.

A Appendix A: Proofs

A.1 Lemma 1

As the presentation of the full proof of this lemma would be rather tedious, we consider
more appropriate to provide only detailed proofs of some of the reported probability
limits. The remaining limit values can be derived following similar arguments and are
available on request.
Consider again equation (3):

zht = π1z1t + π2z2t + π3z3t + π4z4t + ζt, (A.1)

where zht, z1t, z2t, z3t and z4t are, respectively, the residuals of the projections of y4t,
y1,t−1, y2,t−1, y3,t−2, y3,t−1 over the space defined by {D1t,D2t,D3t, D4t, t}. Then, this
implies, for example, that the vector containing the observations of zht can be defined
as

zh = h− Wbh (A.2)

where h denotes the vector containing the observations of y4t, W is a (T × 5) matrix
containing the observations of the seasonal dummies (Dit, i = 1, 2, 3, 4) and of the
deterministic trend term, and the vector of OLS estimates, bh, is given by

bh = (W 0W )−1W 0h. (A.3)

Notice that the matrix W 0W can be written as

W 0W =


T
4

0 0 0 T2−2T
8

0 T
4

0 0 T2

8

0 0 T
4

0 T2+2T
8

0 0 0 T
4

T2+4T
8

T 2−2T
8

T 2

8
T 2+2T
8

T 2+4T
8

T (T+1) (2T+1)
6

 . (A.4)
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On the other hand, considering that
PT

t=1Ditht = βT + o(T ), i = 1, 2, 3, 4, andPT
t=1 tht = 2βT

2 +
¡
2β + λs

P4
i=1 δi

¢
T + op(T ), it is not difficult to show that

diag(T−1, T−1, T−1, T−1, T−2)W 0h =


T−1

P
D1tht

T−1
P

D2tht
T−1

P
D3tht

T−1
P

D4tht
T−2

P
t ht

→


β

β

β

β

2β

 (A.5)

Thus, using (A.4) and (A.5) in (A.3), we can obtain the probability limit for bh:

bh → (4β, 4β, 4β, 4β, 0)0. (A.6)

Then, the asymptotic convergence of
P

z2ht can be easily evaluated simply consid-
ering that X

z2ht = z0hzh = (h−Wbh)
0(h−Wbh) = h0h− h0Wbh, (A.7)

and taking into account that

h0h =
X

h2t = 16β
2T + 2

X
u2t + op (T ) . (A.8)

Using (A.5), (A.6) and (A.8) in (A.7), it is straightforward to show that

T−1
TX
t=1

z2ht → 2 σ2u, (A.9)

as is reported in d) of Lemma 1.
To prove the remaining results reported in Lemma 1, it is now necessary to establish

the asymptotic behavior of the sample moments of the zi variables. To evaluate them,
let us begin by denoting y1,t−1, y2,t−1, y3,t−2, y3,t−1 simply as x1t, x2t, x3t and x4t,
respectively (and notice also that when we drop the time subscript we are referring to
the corresponding vector of observations). Then, we can define zi as

zi = xi − Wbxi , i = 1, 2, 3, 4, (A.10)

where bxi = (W
0W )−1W 0xi (i = 1, 2, 3, 4).

Some calculations allow us to show that

bx1 → (a1, a1, a1, a1, 4β1)
0, (A.11)

bx2 → (a21, a22, a23, a24, 0)
0, (A.12)

bx3 → (c10, c20, c11, c21, 0)
0, (A.13)

bx4 → (c20, c11, c21, c11, 0)
0, (A.14)
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where:

a1 =
4X

i=1

αi +
¡
1− 4λs + 3λ2s

¢ 4X
i=1

δi − 10β, (A.15)

a2j = (−1)j+1
"

4X
i=1

(−1)i+1αi + (1− λs)
4X

i=1

(−1)i+1δi
#
− 2β, j = 1, 2, 3, 4, (A.16)

cij = (−1)j [αi − αi+2 + (1− λs) (δi − δi+2)]− 2β. (A.17)

For example, to obtain (A.12), we should consider that

diag(T−1, T−1, T−1, T−1, T−2)W 0x2 =


T−1

P
D1tx2t

T−1
P

D2tx2t
T−1

P
D3tx2t

T−1
P

D4tx2t
T−2

P
t x2t



→



−2β−P4
i=1(−1)i[αi+(1−λs) δi]

4
−2β+P4

i=1(−1)i[αi+(1−λs) δi]
4

−2β−P4
i=1(−1)i[αi+(1−λs) δi]

4
−2β+P4

i=1(−1)i[αi+(1−λs) δi]
4

−β

 . (A.18)

Combining this result with (A.4) the probability limit for bx2 that is reported in
(A.12) can be obtained.
Now, to determine for example the probability limit of the cross sample moment

between z2 and zh, we begin by defining the magnitudeX
z2t zht = z0hz2 = (h−Wbh)

0(x2 −Wbx2) = h0x2 − h0Wbx2 (A.19)

Thus, taking into account thatX
x2tht = h0x2 = −8β2T −

X
u2t + op (T ) (A.20)

and using (A.20), (A.5) and (A.12) in (A.19), it can easily be shown that

T−1
X

z2t zht = −σ2u. (A.21)

Using a similar technique, it is also possible to prove the result reported in f).
However, the calculations are now even more cumbersome and tedious.
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A.2 Theorem 1

Let us define the OLS vector of estimators of (4) as π̂0 = [π̂1 π̂2 π̂3 π̂4] = (Z 0Z)−1Z 0zh,
where Z = {z1t, z2t, z3t, z4t}. Using the results of Lemma 1, the convergence in proba-
bility of the OLS estimator is given by

π̂ =
¡
T−1 ZZ

¢−1 ¡
T−1 Z 0zh

¢ → [Diag (e2, f2, g2, h2)]
−1


−σ2u
−σ2u
−σ2u
0

 .
Thus, this is a case of asymptotically orthogonal regressors and the calculation of the
probability limits for these estimators is very easy:

π̂1 → −σ2u/e2,

π̂2 → −σ2u/f2,

π̂3 → −σ2u/g2,

π̂4 → 0.

Similarly, the probability limit for the estimator of the variance of the innovations is
given by

σ̂2u →
2 e2 f2 g2 − [e2 (f2 + g2) + f2 g2] σ

2
u

e2 f2 g2
σ2u.

Using all these results (including those above for the elements of the (Z 0Z)−1 matrix),
it is straightforward to derive the asymptotic values for the t-ratios.
On the other hand, to derive the probability limits for the (pseudo) F -statistics,

we should additionally take into account that, for instance, the statistic for testing
the joint null hypothesis H0 : π2 = π3 = π4 = 0 can be defined as F234 = (SSR234 −
SSR)/3 σ̂2, where SSR is the sum of the squared residuals of equation (4) and SSR234
is the sum of the squared residuals of the regression

z4t = π1z1t + ηt.

Moreover, the limit value for this variable is given by

T−1 SSR234 → σ2u (2 e2 − σ2u)/e2.

Similarly, the statistic for testing H0 : π3 = π4 = 0 can be expressed as F34 =
(SSR34−SSR)/2 σ̂2, where SSR34 is the sum of the squared residuals of the regression

z4t = π1z1t + π2z2t + εt,
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whose probability limit is given by

T−1 SSR34 → 2 e2 f2 − ( e2 + f2) σ
2
u

e2 f2
σ2u.

Finally, the statistic for testing H0 : π1 = π2 = π3 = π4 = 0 can be written as
F1234 = π̂0Z 0zh/4σ̂2. Then, some tedious algebra allows us to show that

T−1 π̂0 Z 0 z0h →
e2 (f2 + g2) + f2 g2

e2 f2 g2
σ2u.

B Appendix B: Critical values

In the following table we present the 5% critical values used for the Monte Carlo
simulations when the auxiliary test regression is (2), using a DGP given by ∆4yt =

�t, �t ∼ iidN(0, 1), and based on 40 000 replications.

Table B about here
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Table 1. Rejection frequencies of the HEGY tests when there is no break
(δ1 = δ2 = δ3 = δ4 = δ = 0 )

T 48 96 160

tπ1 0.685 0.997 1.000
tπ2 0.869 1.000 1.000
F34 0.976 1.000 1.000
F234 0.992 1.000 1.000
F1234 0.991 1.000 1.000

Table 2. Rejection frequencies of the HEGY tests for the case
of a level shift (δ1 = δ2 = δ3 = δ4 = δ = 1, 3, 5)

δ 1 3 5

T 48 96 160 48 96 160 48 96 160

tπ1 0.505 0.963 1.000 0.054 0.206 0.693 0.002 0.002 0.015
tπ2 0.855 1.000 1.000 0.853 1.000 1.000 0.888 1.000 1.000
F34 0.976 1.000 1.000 0.989 1.000 1.000 0.999 1.000 1.000
F234 0.991 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000
F1234 0.985 1.000 1.000 0.984 1.000 1.000 0.999 1.000 1.000

Table 3. Rejection frequencies of the HEGY tests for the case of a change in the level and
in the seasonal pattern (δ1 = δ = 1, 3, 5; δ2 = δ3 = δ4 = 0)

δ 1 3 5

T 48 96 160 48 96 160 48 96 160

tπ1 0.635 0.995 1.000 0.360 0.932 1.000 0.158 0.696 0.993
tπ2 0.810 0.999 1.000 0.335 0.912 1.000 0.032 0.286 0.896
F34 0.950 1.000 1.000 0.528 0.993 1.000 0.065 0.595 0.995
F234 0.976 1.000 1.000 0.624 0.999 1.000 0.079 0.749 1.000
F1234 0.977 1.000 1.000 0.682 1.000 1.000 0.153 0.917 1.000
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Table 4. Rejection frequencies of the HEGY tests for the case of a change in the seasonal
pattern only, the break affecting two consecutive quarters

(δ1 = −δ2 = δ = 1, 3, 5; δ3 = δ4 = 0)

δ 1 3 5

T 48 96 160 48 96 160 48 96 160

tπ1 0.595 0.993 1.000 0.363 0.967 1.000 0.409 0.969 1.000
tπ2 0.646 0.992 1.000 0.008 0.111 0.687 0.000 0.000 0.000
F34 0.905 1.000 1.000 0.152 0.854 1.000 0.001 0.041 0.626
F234 0.935 1.000 1.000 0.103 0.842 1.000 0.000 0.014 0.516
F1234 0.947 1.000 1.000 0.313 0.989 1.000 0.093 0.803 1.000

Table 5. Rejection frequencies of the HEGY tests for the case of a change in the seasonal
pattern only, the break affecting two quarters one period apart

(δ1 = −δ3 = δ = 1, 3, 5; δ2 = δ4 = 0)

δ 1 3 5

T 48 96 160 48 96 160 48 96 160

tπ1 0.605 0.995 1.000 0.457 0.980 1.000 0.521 0.987 1.000
tπ2 0.827 1.000 1.000 0.752 1.000 1.000 0.815 1.000 1.000
F34 0.841 0.999 1.000 0.022 0.374 0.979 0.000 0.000 0.018
F234 0.944 1.000 1.000 0.403 0.993 1.000 0.208 0.940 1.000
F1234 0.951 1.000 1.000 0.589 1.000 1.000 0.477 0.998 1.000

Table B. 5% critical values for the HEGY tests

T 48 96 160 400
tπ1 −3.35 −3.38 −3.40 −3.39
tπ2 −2.79 −2.82 −2.84 −2.84
F34 6.55 6.61 6.58 6.58
F234 6.13 6.02 5.94 5.87
F1234 6.72 6.47 6.34 6.20
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Figure 1: Deviations between the averaged scaled t1 statistics and its asymp-
totic value for the case of corollary 1, as a function of δ (= 1, 3, 5) and T (=
24, 32, 48, 64, 96, 120, 160, 200, 400, 800), based on 5, 000 replications.
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Figure 2: Deviations between the averaged scaled t2 statistics and its asymp-
totic value for the case of corollary 2, as a function of δ (= 1, 2, 3) and T (=
24, 32, 48, 64, 96, 120, 200, 400, 600, 800), based on 5, 000 replications.
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