
Maximum Probability/Entropy translating of
contiguous categorical observations into frequencies

M. Grendar, Jr. and M. Grendar

Institute of Mathematics and Computer Science of Mathematical Institute of Slovak Academy of
Sciences (SAS) and of Matej Bel University, Severná ulica 5, 974 00 Banská Bystrica, Slovakia &
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Abstract. Maximum Probability method is used to translate possibly contiguous and overlapping categorical
observations into frequencies.

1 PROBLEM FORMULATION

Consider the following (GK) problem (cf. [6]): As
a result of a survey, there are n observations of an
ordinal random variable which could take J different
values (categories) from a set X , {x1,x2, . . . ,xJ}.
Continguous grouping is allowed (i.e. respondents
can select a range of continguous categories). Given
the observations, it is desired to calculate a measure
which is based on frequency distribution (an entropy,
for instance).

Clearly, if solely sharp responses were observed,
the frequency-based measure would be directly com-
putable, since the observations straightforwardly
translate into frequencies. It is the presence of con-
tiguous responses, which makes the problem inter-
esting, since contiguous (and in this sense ’fuzzy’)
observations cannot be directly translated into fre-
quencies.

There are several ways how to tackle the GK prob-
lem. One way – which we persuade here - is to rec-
ognize, that it falls into a class of under-determined
inverse problems. The survey results define a feasi-
ble set of frequency vectors (types) from which it is
necessary to pick up ’the best one’, by some (prefer-
ably reasonable) selection scheme (criterion). Once
the ’best’ type is selected, the desired quantity (en-
tropy of the type, for instance) can be calculated.
Obviously, choice of the selection scheme needs a
justification.

2 EXAMPLE

Let n = 3, J = 4 and X = {1,2,3,4}. Let the following
responses were observed: [1−3], [2−4],4; i.e. the first
responded answer was a fuzzy one: ’any number 1, 2

or 3’; the second answer laid in range 2−4 and the
third one was sharp: 4.

The following are all possible sequences which con-
form with the observed responses: {1,2,4}, {1,3,4},
{1,4,4}, {2,2,4}, {2,3,4}, {2,4,4}, {3,2,4}, {3,3,4},
{3,4,4} and all their permutations (since the order in
which the responses were obtained is immaterial).

All types (i.e. frequency vectors) which could be
based on the listed sequences are in the Table 1 (un-
normalized1).

TABLE 1. Feasible set of types.

n1 n2 n3 n4

1 1 0 1
1 0 1 1
1 0 0 2
0 2 0 1
0 1 1 1
0 1 0 2
0 0 2 1
0 0 1 2

These types define a feasible set of types Hn from
which we would like to select one or more types by
some selection scheme.

1 Where it should cause no confusion, term type will be used
for absolute vector of frequencies as well as for the proper,
relative one.
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3 MAXIMUM PROBABILITY
SELECTION RULE

Maximum Probability (MaxProb, cf. [3], [4]) selec-
tion rule prescribes to choose from a feasible set of
types Πn just the type(s) ν̂n which can be drawn
from a (prior) generator q with the highest prob-
ability, i.e. ν̂n , argmaxνn∈Πn n!

∏J
i=1

qi
ni

ni! , where
νn , [n1,n2, . . . ,nJ]/n and ni is number of occur-
rences of i-th category in the random sample. The
’prior’ generator is either selected on the ground of
previous observations or is set to be uniform in the
case of ’ignorance’.

3.1 Example (cont’d)

Let the generator be uniform one, u (1/4 each cat-
egory). Probability that u will generate type [0 2 0 1]
is 0.0469. Any of other four permutations of the type
which are in the feasible set Hn can be of course gen-
erated with the same probability. Type [1 1 0 1] is
generated with a higher probability 0.0938. With the
same probability also types [1 0 1 1], [0 1 1 1] are
generated. Hence, the MaxProb selects three types:
[1 1 0 1]/3, [1 0 1 1]/3 and [0 1 1 1]/3.

3.2 Fuzzy categorical observations and
inequalities on frequencies

It is worth observing that the fuzzy categorical
observations can be equivalently expressed as in-
equalities on frequencies of the J categories; and vice
versa: inequalities on frequencies can be equivalently
stated as fuzzy categorical observations. This per-
mits to restate GK problem as Boltzmann-Jaynes
inverse problem (cf. [4]) with the feasible set defined
by inequality constraints on frequencies.

Example (cont’d) For instance, the observa-
tions [1−3], [2−4] and 4 imply the following lower
and upper bounds on frequencies of the categories:
ν1 ∈ [0,1/3], ν2 ∈ [0,2/3], ν3 ∈ [0,2/3] and ν4 ∈
[1/3,2/3]2. On the other hand, if the observations
were given to us in the form of the upper and lower
bounds on the frequencies, they could be uniquely
transformed into categorical observations: [1 − 3],
[2−4], 4.

2 Alternatively, the bounds could be restated and reinter-
preted as observed ’fuzzy’ frequencies: ν1 = [0 − 1]/3, ν2 =
[0−2]/3, ν3 = [0−2]/3 and ν4 = [1−2]/3.

3.3 What happens when n gets large?

Imagine that there were n = 30 observations, such
that responses [1−3], [2−4] and 4 were observed 10

times each. Then there will be 1331 types which con-
form with the available observations. Among them,
any of the following three types is generated by u
with the highest probability (0.0035): [7 7 6 10]/30,
[7 6 7 10]/30, [6 7 7 10]/30. Stated in the form of
frequencies: [0.2333 0.2333 0.2000 0.3333], and the
other two.

If there were n = 60 observations, such that the
responses [1 − 3], [2 − 4] and 4 were observed 20

times each, then in the feasible set of types the most
probable types (in the sense of coming from uniform
generator) are the following three: [14 13 13 20]/60,
[13 14 13 20]/60 and [13 13 14 20]/60. Stated as
frequency vectors: [0.2333 0.2167 0.2167 0.3333] and
the other two.

There is a visible tendency in the MaxProb types
to equalize the first three frequencies, and hence to
collapse into a single type, as n grows.

TABLE 2. Convergence of MaxProb
types to I-projection.

n n̂1/n n̂2/n n̂3/n n̂4/n

3 0.3333 0.3333 0 0.3333
3 0.3333 0 0.3333 0.3333
3 0 0.3333 0.3333 0.3333
30 0.2333 0.2333 0.2000 0.3333
30 0.2333 0.2000 0.2333 0.3333
30 0.2000 0.2333 0.2333 0.3333
60 0.2333 0.2167 0.2167 0.3333
60 0.2167 0.2333 0.2167 0.3333
60 0.2167 0.2167 0.2333 0.3333

p̂ 0.2222 0.2222 0.2222 0.3333

3.4 Maximum Probability Theorem

Indeed, Maximum Probability Theorem (MPT)
states (see [3], [4]) that MaxProb type(s) converges
to I-projection(s) of q on Π3.

As it was noted above, the categorical observa-
tions can be translated into frequencies. They define
feasible set of pmf’s: H , {p : 0 5 p1 5 1/3, 0 5 p2 5
2/3, 0 5 p3 5 2/3, 1/3 5 p4 5 2/3}. I-projection of u
on H is unique: p̂ = [0.2222 0.2222 0.2222 0.3333].

3 Recall that I-projection p̂ of a probability mass function

(pmf) q on a feasible set of pmf’s Π is defined as p̂ ,
arg infp∈Π

∑
X pi log pi

qi
. Thus, I-projection is such a pmf

in Π which has highest value of relative entropy H(p,q) ,
−

∑
X pi log pi

qi
.



Table 2 illustrates the convergence of MaxProb types
to the I-projection.

Note, that the triplicity of MaxProb types is spe-
cific to samples of size n = k ·3, k = 1,2, . . . . For in-
stance, if samples of size of integer multiples of 10
were considered, then there would be unique Max-
Prob type for fixed n, — and the MaxProb type
would be of course converging to the I-projection.

4 SUMMARY AND DISCUSSION

GK problem falls into category of under-determined
inverse problems. At the same time it is an inher-
ently probabilistic problem. Maximum Probability
(MaxProb) method was used here to ’regularize’ the
problem; or in other words to select a frequency vec-
tor (type) from the feasible set of types Hn, which
is defined by contiguous categorical observations. It
was noted, that the contiguous ’fuzzy’ categorical
observations can be equivalently expressed as lower
and upper bounds on frequencies. Thus, the bounds
on frequencies are alternative way of defining the
feasible set of types. From the feasible set, MaxProb
type(s) was/were selected. If n, the number of ob-
servations gets large, the task of MaxProb-type(s)
selection becomes burdensome. Maximum Probabil-
ity Theorem (MPT) comes in rescue, since it states
that for n sufficiently large, MaxProb-type(s) be-
comes just the I-projection(s) on the corresponding
feasible set of pmf’s H.

Naturally, one might ask why just MaxProb, and
not some other way of ’regularization’. Answer to
this question is provided by Maximum Probability
Theorem and Conditioned Weak Law of Large Num-
bers (see [7], [2], [1])4. The first one states that Max-
Prob type(s) converges to I-projection(s)5. The sec-
ond one claims that the I-projection is asymptot-
ically conditionally only-possible probability distri-
bution. So, any other selection scheme is from this
point of view doomed to lead asymptotically into
selecting a distribution which q generates with zero
conditional probability.
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