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Abstract
Accurate estimation of the dominant root of a stationary but persistent time series
are required to determine the speed at which economic time series, such as real
exchange rates or interest rates, adjust towards their mean values. In practice,
accuracy is hampered by downward small-sample bias. Recursive mean adjustment
has been found to be a useful bias reduction strategy in the regression context. In
this paper, we study recursive mean adjustment in dynamic panel data models.
When there exists cross-sectional heterogeneity in the dominant root, the recursive
mean adjusted SUR estimator is appropriate. When homogeneity restrictions can
be imposed, a pooled recursive mean adjusted GLS estimator with �xed e¤ects
is the desired estimator. Application of these techniques to a small panel of �ve
eurocurrency rates �nds that these interest rates are unit root nonstationary as
the bias-corrected autoregressive coe¢ cient exceeds 1.

Keywords: Small sample bias, Recursive mean adjustment, Panel Data, Cross-
Sectional Dependence, Interest rate dyanamics
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Introduction

Accurate estimation of the autocorrelation coe¢ cient of a stationary but persistent �rst-
order autoregressive time series yt = c + �yt�1 + ut; where ut

iid� (0; �2u); must take
account of the downward small-sample bias that induced by running the regression with
a constant. To see the source of this bias, think of running least squares without a
constant on observations that are deviations from the sample mean. Then for any
observation t, the regression error ut is correlated with current and future values of
yt; yt+1; : : : yT . These values are embedded in the sample mean which is now a component
of the explanatory variable.1 The use of panel data does not eliminate this small sample
bias. Nickell (1981), showed that the least squares dummy variable (LSDV) estimator
for the dynamic panel regression model with cross-sectionally independent observations
is more e¢ cient than OLS but retains some downward bias even as the number of cross-
sectional units goes to in�nity.
Recursive mean adjustment is a bias reduction technique that has been found to

be useful in the regression context [So and Shin (1999)]. The idea is to adjust the
observations not with the sample mean but with the recursive mean, (t� 1)�1

Pt�1
j=1 yj:

Because it does not contain future values of yt; one obtains an unbiased control for the
constant which orthogonal to the regression error.
In this paper, we study and apply recursive mean adjustment to dynamic models for

panel data. The �rst estimator that we propose is a recursive mean adjusted seemingly
unrelated regression estimator, which is appropriate if the autoregressive coe¢ cients
across the di¤erent time series in the panel are heterogeneous. In order to pool (impose
homogeneity across the cross-sectional units), the panel must pass a test of homogeneity
restrictions. However, such a test will su¤er from size distortion if it is based on a biased
estimator. The recursive mean adjusted seemingly unrelated regression estimator has
familiar asymptotic properties and achieves favorable reduction of small sample bias and
that the associated test of homogeneity restrictions is reasonably sized.
Assuming that homogeneity restrictions can be imposed, sharper results can be ob-

tained by estimating under these restrictions. Here, we propose a pooled recursive mean
adjusted generalized least squares estimator with �xed e¤ects. The asymptotic distribu-
tion theory for this estimator also works reasonably well in small samples and a notable
contribution of the paper is that this recursive mean adjusted generalized least squares
estimator can be directly applied estimate more general AR(p) models. This is notable
because alternative mean (median) unbiased estimators are generally unavailable in the
panel AR(p) case.
The methods we discuss have a wide range of applicability. The use of panel data

1Mariott and Pope (1954) and Kendall (1954) discuss and characterize the �rst-order approximaiton
of this bias. Several bias correction strategies have been suggested in the literature. These include
mean unbiased estimation, median unbiased estimation, and recursive mean adjustment strategies. See
Andrews (1993) for the exactly median unbiased estimator, Andrews and Chen (1994) for approximately
median unbiased estimation, and Phillips and Sul (2003a) for mean unbiased estimation.
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has become increasingly important in areas such as �nance and international macroeco-
nomics where the research focus is on estimating the speed of adjustment of price or
�nancial variables. In international economics, panel data has been used to estimate the
speed of adjustment towards purchasing power parity [Frankel and Rose (1996), Papell
(2004), Murray and Papell (2002) ] whereas in �nance research has emphasized the ad-
justment speed of interest rate dynamics [Chan et. al. (1992), Ball and Torus (1996),
Wu and Zhang (1996).]. Previous estimates that did not control for the downward bias
[Gibbons and Ramaswamy (1993), Perarson and Sun (1994)] found adjustment speeds
to be too fast to be consistent with the observed dynamics in bond yield data. When
we apply the methods to estimate the dynamics of a small panel of Eurocurrency in-
terest rates, we �nd that our bias adjusted estimates imply a zero speed of adjustment.
That is, short-term nominal interest rates are not mean reverting, but are unit-root
nonstationary.
The remainder of the paper is organized as follows. The next section develops the

recursive seemingly unrelated regression estimator which is appropriate under cross-
sectional heterogeneity and which provides a convenient framework for testing homo-
geneity restrictions. Section 2 develops the recursive mean adjusted generalized least
squares estimator for panel data with �xed e¤ects. Section 3 reports the results of
Monte Carlo experiments that compares performance across alternative estimators. In
Section 4, we apply the recursive mean adjusted generalized least squares to estimate
the dynamics of interest rates using a small panel of Eurocurrency rates, and Section 5
concludes.
Because we discuss several di¤erent estimators with cumbersome names, we use the

following labels: RLS�recursive mean adjusted least squares estimator; RSUR�recursive
mean adjusted seemingly unrelated regression estimator; RLSDV�recursive mean ad-
justed least squares dummy variable estimator; RGLS�recursive mean adjusted gener-
alized least squares estimator with �xed e¤ects; MLSDV�mean unbiased least squares
dummy variable estimator; MGLS�mean unbiased generalized least squares estimator
with �xed e¤ects. In addition, feasible multivariate estimators that employ parametric
(nonparametric) estimates of error covariance matrices are indicated accordingly. The
appendix contain the details of several arguments made in the text.

1 Recursive mean adjustment under heterogeneity

To �x ideas, we review recursive mean adjustment in the univariate regression context.
Subsection 1.2 extends the strategy to the dynamic panel regression under parameter
heterogeneity and introduces the RSUR estimator. The strategy is to use RLS to obtain
bias corrected residuals in estimation of the error-covariance matrix for RSUR. The
RSUR framework also provides a convenient test of homogeneity restrictions across
cross-sectional units.
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1.1 Recursive Mean Adjusted Least Squares (RLS)

Assume that the time series fytg is generated by the AR(1) process

yt = c+ �yt�1 + ut; (1)

where j�j � 1; ut
iid� (0; �2u), c = (1 � �)�; and E(yt) = �: Estimating (1) by OLS is

equivalent to running OLS without a constant on deviations from the sample mean, 
yt �

1

T

TX
j=1

yj

!
= �

 
yt�1 �

1

T

TX
j=1

yj

!
+

 
ut � (1� �)

1

T

TX
j=1

yj

!
: (2)

When 0 < � < 1; ut is positively correlated with current and future values (yt; yt+1; : : : yT ) ;
which themselves are contained in the sample mean and it is this correlation that causes
the downward bias in OLS.2

Instead of adjusting the observations with the full sample mean, the recursive mean
adjustment method adjusts each observation yt with the recursive sample mean,
�t�1 = (t� 1)�1

Pt�1
j=1 yj;�

yt � �t�1
�
= c+ �

�
yt�1 � �t�1

�
+
�
ut � (1� �)�t�1

�
:

Recursive mean adjustment controls for the presence of the constant since
E(1� �)�t�1 = c and the explanatory variable is orthogonal to ut as the recursive mean
now contains observations only up through date t � 1. Recursive mean adjustment in
the regression context has been studied by So and Shin (1999). We now extend this
strategy to an environment of systems of dynamic regression equations.

1.2 Recursive Mean Adjusted Seemingly Unrelated Regression
(RSUR)

Consider a system of dynamic regression equations indexed by i = 1; : : : N: Each time se-
ries in the system fyitg follows an AR(1) with autocorrelation coe¢ cient �i and unknown
constant ci;

yit = ci + �iyit�1 + uit; (3)

2The correlation between the regressor
�
yt�1 � 1

T

PT
j=1 yj

�
and the second part of the com-

posite error term �(1 � �) 1T
PT

j=1 yj is inconsequential for values of � near the borderline

of stationarity. To see this, note that E(1 � �)
�
1
T

PT
j=1 yj

��
yt�1 � �� 1

T

PT
j=1(yj � �)

�
=

(1��)
T

�
1 +

Pt�1
j=1 �

j +
PT�t+1

j=1 �j
�
� (1� �)V ar

�
1
T

PT
j=1 yj

�
= 1+���t��T�t+1

T � (1� �) 1T
�PT�1

j=0
T�j
T �j

�
: For t = 3, T = 30, � = 0:98; this expectation is 0.008.
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where j�ij � 1 and the regression errors, which may be cross sectionally correlated, are
generated by the single factor structure3

uit = �i�t + �it: (4)

The factor �t
iid� (0; 1) is a time t common shock that may have a di¤erential impact

(�i) across individuals. The idiosyncratic error f�itg has mean zero and is not cross-
sectionally or temporally correlated but may be heteroskedastic across individuals with
covariance matrix � = E(�1t; : : : �Nt)

0(�1t; : : : �Nt) =diag[�21; : : : �
2
N ]:

The RSUR estimator for the system of AR(1) equations with unknown constant is
constructed as follows.

Step 1 Estimate each equation i = 1; : : : N by RLS. Construct the recursive means of
the observations, �it =

1
t�1
Pt�1

s=1 yis; and estimate yit � �it = �i (yit�1 � �it) + eit
by OLS. Call the RLS estimator �RLS,i:

Step 2 Construct the RLS residuals ûit = yit ��RLS,iyit�1 � bci; (not beit) where bci =
1
T

PT
t=1

�
yit � �RLS,iyit�1

�
:4 Let ût = (û01t; � � � ; û0Nt)

0 and form the sample error
covariance matrix,

MT =
1

T

TX
t=1

ûtû
0
t: (5)

Let �= (�1; � � � �N)0 : Estimate �i and � by the iterative method of moments as
suggested by Phillips and Sul (2003a).�

�̂; �̂
�
= argmin

�;�

�
tr
�
(MT ��� ��0) (MT ��� ��0)

0�	
: (6)

Use the estimates to form a parametric estimate of the error covariance matrix,

V̂u = �̂+ �̂�̂
0
: (7)

Step 3 Let zit�1 = (yit�1 � �it) ;Zt�1 =diag[z1t; z2t; : : : zNt] ; Y t = (y1t � �1t; : : : ; yNt � �Nt)
0 ;

3The factor structure has been employed by Bai and Ng (2002), Moon and Perron (2003), and
Phillips and Sul (2003a). The single factor assumption is not restrictive as our results go through with
a multi-factor model.

4The RLS residual êit contains the recursive mean adjustment term �it: As a result, the asymptotic
variance êit is not same as that of uit. That is why one should use ûit rather than êit: Note that the
composite error term is eit = [ai � (1� �i)�it] + uit = � (1� �i) 1

t�1
Pt�1

s=1 xis + uit: For any �nite T ,
Ee0iteit 6= Eu0ituit but the di¤erence between the two becomes vanishingly small with increasing sample
size. We show in the appendix that E (e0iteit � u0ituit) = O

�
T�1 lnT

�
:
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and � = (�1; : : : �N)
0. Then the RSUR estimator is

�
RSUR

=

 
TX
t=1

Z0t�1V̂
�1
u Zt�1

!�1 TX
t=1

Z0t�1V̂
�1
u y

t

!
: (8)

Note that step 2 produces a parametric estimate of the covariance matrix. An alterna-
tive approach is to estimate the error covariance matrix Vu by nonparametric methods,
say by usingMT . If the parametric structure is known and can be properly modeled by
a factor structure, the parametric method is likely to be more e¢ cient in small samples.5

For �xed N; as T !1 RSUR is asymptotically normally distributed,
p
T
h
�
RSUR

� �
i

D�! N(0;
); where 
 = lim
T!1

�
1
T

PT
t=1 Z

0
t�1V

�1
u Zt�1

��1
; and the

Wald test provides a convenient test of homogeneity restrictions across equations. To
test the null hypothesis Ho : �1 = �2 = � � � = �N ; form the restriction matrix

R =

26664
1 �1 0 � � � � � � 0
0 1 �1 � � � � � � 0
...

...
0 0 0 � � � 1 �1

37775 : (9)

Then under the null hypothesis,

W =
h
R�

RSUR

i0 �
Rb
R0

��1 h
R�

RSUR

i
� �2N�1

where b
 = �PT
t=1 Z

0
tV̂

�1
u Zt

��1
.

2 Recursive mean adjustment for pooled estimators

We now turn to the main focus of the paper �that of pooled estimation of the dominant
root under homogeneity restrictions.6 In this section, we assume that the observations

5If the assumptions of the factor structure are violated, it is possible that robust nonparametric
estimators will dominate the parametric approach. The alternative approaches involve an age-old
trade-o¤ to the researcher. The increased demands on long-run covariance parameter estimation of the
nonparametric methods may be viewed as the price of �exibility whereas the computational tractability
of the parametric method creates the possibility for speci�cation error.

6Pooling the cross-section with the time series achieves some bias reduction even for the unadjusted
LSDV estimator. Nickell (1981) and Phillips and Sul (2003b) studied the properties of the unadjusted
LSDV for the panel AR(1) model when the observations are cross-sectionally independent. Their
analyses showed that pooling results in more e¢ cient estimates of �; than OLS but does not eliminate
the downward bias for �nite T even when N ! 1: Because this bias remains when N ! 1 we refer
to it as N -asymptotic bias.
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are generated as in (3)-(4) above except that �i = �j = � for all i; j = 1; : : : N: That is,

yit = ai + �yit�1 + uit; (10)

where j�j � 1, and as before, uit = �i�t + �it; �t
iid� (0; 1);� = E[(�1t; : : : �Nt)

0(�1t; : : : �Nt)]
=diag[�21; : : : �

2
N ]:

Section 2.1 discusses estimation under parameter homogeneity with the RPLS estima-
tor. This is the recursive-mean adjusted analog to the LSDV method pooled estimation
with �xed e¤ects [Hsiao (2003)]. While this estimator is not e¢ cient, it provides reduced
bias residuals for estimation of error-covariance matrices needed in the construction of
the e¢ cient RGLS estimator which we present in subsection 2.2. For expositional clarity,
we �rst develop these estimators under the assumption that the time series follow AR(1)
processes. The extension to higher ordered p-th order autoregressions (AR(p)) is taken
up in subsection

2.1 Recursive Mean Adjusted Least-Squares Dummy Variable
(RLSDV)

RLSDV, introduced here, is the recursive mean adjusted version of the LSDV estimator
for regression in panel data with �xed e¤ects. Let �it = (t � 1)�1

Pt�1
s=1 yis be the

recursively constructed mean. Then the RLSDV estimator is

�RLSDV =

PN
i=1

PT
t=2 (yit�1 � �it) (yit � �it)PN
i=1

PT
t=2 (yit�1 � �it)

2
:

Analytic expressions for the bias, variance, and mean-square errors are cumbersome
and not especially illuminating, so they are relegated to the appendix. Here, we visu-
alize the properties of RLSDV for �xed T as N ! 1 (the N�asymptotic properties)
in Figure 1 which plots a family of RLSDV N�asymptotic bias functions. This is
plim
N!1

1
N
(�RLSDV � �) for alternative sample sizes T , over 0 < � < 1. It can be seen

that RLSDV slightly overcompensates for the downward bias and is left with a small
upward N�asymptotic bias. The resulting upward bias is generally not very sizable and
is vanishingly small as �! 1.

7



Figure 1: N�asymptotic bias of RLSDV for alternative sample sizes T and
economically relevant values of �

2.2 Pooled recursive mean adjusted GLS with �xed e¤ects
(RGLS)

RLSDV does not exploit the cross-sectional covariance structure of the observations in
estimation and an e¢ ciency improvement can therefore be achieved by making a mean
adjustment to a pooled GLS estimator Since RGLS requires an unbiased estimator of
the error-covariance matrix, we employ RLSDV residuals for this purpose. The feasible
RGLS estimator is obtained as follows.

Step 1 Estimate � by RLSDV as outlined in subsection 2.1.

Step 2 Construct the RLSDV residuals.

ûit = (yit � �RLSDVyit�1)�
1

T

TX
t=1

(yit � �RLSDVyit�1)

and use them to estimate the error-covariance matrix V̂u as described in step 2 of
RSUR. Let viju be the ij�th element of V̂�1

u :

Step 3 The RGLS estimator is

�
RGLS

=

PN
i=1

PN
j=1 v

ij
u

PT
t=1 (yit � �it) (yit�1 � �it)PN

i=1

PN
j=1 v

ij
u

PT
t=1 (yit�1 � �it)

2
:
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Characterizing RGLS is analytically cumbersome and provides little insight beyond
that discussed in connection with RLSDV. We defer further examination of the small
sample properties of RGLS to Section 3 where we compare its performance to alternative
estimators in a series of Monte Carlo experiments.

2.3 Extension to Higher-ordered Autoregressions

In the panel AR(p > 1) case, mean or median unbiased estimation procedures are
unavailable due to the di¢ culty in obtaining analytical formulae for small-sample bias of
panel data estimators. A very useful aspect of the recursive mean adjustment procedure
is that it can be directly applied to estimate panel AR(p) models. Here, we take an
heuristic approach to show how small-sample bias arises and how it can be reduced. We
�rst consider a simple strategy to reduce the bias of autoregressive coe¢ cients under
the assumption that the errors are cross-sectionally uncorrelated. We then proceed to
implement a GLS version of the estimator under cross section dependence.

Homogeneous coe¢ cients and cross-sectional independence. Let the observa-
tions in the panel AR(p) model be generated by

yit = �i +

pX
j=1

�jyit�j + uit

= �i + �yit�1 +

p�1X
j=1

�j+1�yit�j + uit: (11)

where � =
Pp

j=1 �j uit = �it and E(u2it) = �2i ; E(uitujt) = 0 if i 6= j (i.e., the observations

are cross-sectionally independent). Let zit =
�
�y0it�1; :::�y

0
it�p+1

�0
and �0 = (�2; : : : �p); :

where �j =
Pp

i=j+1 �i; j = 1; :::; p� 1: In recursive mean-adjusted form we have

(yit � �it) = � (yit�1 � �it) + zit�
0 + eit: (12)

where �it = (t � 1)�1
Pt�1

j=1 yjt; eit = �i � (1� �)�it + uit and E(eit) = 0: Estimating
�0 � (�; �0) by RLSDV as in the AR(1) case substantially reduces bias, resulting in a
small positive N�asymptotic bias for the estimator of �: However, the RLSDV does
not adequately address bias in estimating the individual �j coe¢ cients, which may
potentially be even more severe than the bias in unadjusted LSDV. The N�asymptotic
bias of the estimator for the �j coe¢ cients is characterized in the appendix. Because half-
life estimation in higher-ordered autoregressive systems must be conducted by impulse
response analyses, it is important to correct for bias in all of the coe¢ cients.
To reduce bias in estimation of the �j coe¢ cients, we run a second stage regression

by treating the RLSDV estimate as the true value of �: Let yyit � yit � �RLSDVyit�1 and
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run the regression
yyit = zit�

0 + ~uit (13)

by OLS. Call the resulting estimator �̂y: We show below that the residual bias in �̂
y
is

inconsequential.

Heterogeneous coe¢ cients and cross-sectional independence To extend this
bias reduction method to heterogeneous AR(p) coe¢ cients, we suggest the following
procedure.

Step 1 Regress (yit � �it) on zit without a constant. Denote the regression residuals by
v̂it: Also, regress (yit�1 � �it) on zit without a constant and denote these regression
residuals by v̂it�1: The �LSDV is obtained by running the pooled regression of v̂it
on v̂it�1 without a constant.

Step 2 Let yyit � yit � �LSDVyit�1: Regressing y
y
it on zit with a constant term for each

i gives the estimator �̂yi . Standard errors for �LSDV and �̂
y
i must be constructed

using uyit = ûit � 1
T

PT
t=1 ûit where buit = yit � �LSDVyit�1 � z0it�̂

y
i :

Heterogeneous coe¢ cients and cross-sectional dependence Under cross section
dependence we extend the above procedure to an SUR estimator as follows.

Step 1 Obtain uyit as described above. Estimate the covariance matrix V̂u as described
in steps 1-2 in subsection 1.2. Let viju be the ij�th element of V̂ �1

u :

Step 2 Let Zt�1 =diag
�
z1t; z2t; : : : zNt

�
; Y t = (y1t � �1t; : : : ; yNt � �Nt)

0 and Y t�1 =�
y1t�1 � �1t�1; : : : ; yNt�1 � �Nt�1

�0
; ŵt = Y t�

�PT
t=1 Z

0
t�1V̂

�1
u Zt�1

��1PT
t=1 Z

0
t�1V̂

�1
u Y t;

and ŵt�1 = Y t�1�
�PT

t=1 Z
0
t�1V̂

�1
u Zt�1

��1PT
t=1 Z

0
t�1V̂

�1
u Y t�1: Let � = (�1; : : : �N)

0,
then the RSUR estimator for � is

�RSUR =

 
TX
t=1

ŵ0
t�1V̂

�1
u ŵt�1

!�1 TX
t=1

ŵ0
t�1V̂

�1
u wt

Step 3 Let ~yyit = ~yit � �RSUR~yit�1; and ~Y
y
t =

�
~yy1t; :::~y

y
NT

�
. The RSUR estimator for �

is

�RSUR =

 
TX
t=1

Z0t�1V̂
�1
u Zt�1

!�1 TX
t=1

Z0t�1V̂
�1
u
~Y
y
t
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3 Monte Carlo Experiments

In this section, we examine the small sample performance of the alternative estimators.
Subsection 3.1 reports performance results for the RSUR estimator and subsection 3.2
reports results for pooled estimators. The observations are generated with a homoge-
neous autoregressive coe¢ cient and without a constant. The data generating process
is

yit = �yit�1 + uit

uit = �i�t + eit

E(uitujt) =

�
�i�j if i 6= j

�2i + �2i if i = j:

The parameters of the data generating process are set in line with estimates that are
typical in macroeconomic empirical studies. We consider combinations ofN 2 f5; 10; 20g
and T 2 f50; 100; 200g for � 2 f0:9; 0:95; 0:99g unless speci�ed otherwise. �i is randomly
generated on U[1,4] where U is the uniform distribution. The resulting cross sectional
correlations lie in the interval (0:5; 0:99). Each simulation experiment is based on 10,000
replications.

3.1 Small Sample Performance of RSUR

We �rst report results for nonparametric and parametric RSUR in which heterogenous
constants and autocorrelation coe¢ cients were allowed in estimation. To evaluate the
value-added of RSUR, we compare it against OLS as a benchmark estimator. The
bias and mean squared error for RSUR presented in Table 1 refers to the cross-sectional
average, N�1PN

i=1 �RSUR,i: From the table, it can be seen that RSUR achieves substantial
bias reduction over OLS but a small amount of downward bias. RSUR is relatively
insensitive to the number of cross-sectional units N . The performance of the parametric
RSUR is superior to nonparametric RSUR in that it exhibits less bias and has lower
mean squared error.
Table 2 reports the e¤ective size of the Wald test of the homogeneity restrictions on

the autocorrelation coe¢ cients. Again, parametric RSUR exhibits better performance.
While the test constructed using nonparametric RSUR becomes badly oversized for the
large systems (N = 20) ; the performance for parametric RSUR remains accurately sized.
Moreover, the e¤ective size of this test is not sensitive either to the size of the time-series
T or to the size of the cross-section N .

3.2 Small Sample Performance of Pooled Estimator

If the data pass the homogeneity test, estimation proceeds with a pooled estimator. We
now undertake an evaluation of the performance of our RGLS estimator. In the next
section, we compare performance of the recursive mean adjusted estimators to panel
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mean-unbiased estimators suggested by Phillips and Sul (2003a,b).7 The idea behind
mean-unbiased estimators to estimate � using a method with known bias, such as LSDV
and then to adjust the point estimate by this bias. Speci�cally we discuss mean adjusted
LSDV (MLSDV) and mean adjusted GLS (MGLS).8 Since these estimators are described
in detail in Phillips and Sul (2003 a, b), we provide only a cursory description here.
MSLDV proceeds as follows: Nickell (1981) derived the bias in LSDV,

plimN!1 (�LSDV) = m(�) (with the precise formula for the function m (�) given in
the appendix). Then the MLSDV estimator is obtained by inverting this function,
�MSLDV = m�1 (�LSDV) : For MGLS, we draw on Phillips and Sul (2003a) who show
that in an environment where the regression errors are cross-sectionally correlated and
follow a single factor structure, the N�asymptotic bias of the pooled GLS estimator
depends neither on the parameters �i nor on the unobserved factor �t. As a result of
this independence we can apply the same mean adjustment rule to get MGLS, namely
�MGLS = m�1 (�GLS) :
We compare its performance to the following alternative pooled estimators: LSDV,

MLSDV, nonparametric MGLS and parametric MGLS. The LSDV (and MLSDV) es-
timators include a set of time-speci�c dummy variables as a partial control for cross-
sectional dependence.

The results, reported in Table 3, list the alternative estimators in inverse order of
their bias. RGLS is the least biased. Nonparametric MGLS is less biased than MLSDV
but the GLS estimator is more e¢ cient as expected while parametric MGLS achieves
additional e¢ ciency gains. RGLS is the preferred estimator as it generally dominates the
others in reducing bias and is most e¢ cient in a mean-square error sense. The exception
is for T = 200 where RGLS appears to slightly overcorrect the bias (e.g., for N = 20,
T = 200, � = 0:95, the bias is 0.00235).
A visual representation of the alternative estimator performance is given in Figure

2 which displays empirical distributions for each of the estimators of � = 0:98 with
N = 21; T = 51. Here again, it can be seen that the worst performer is pooled OLS
which is has large variance and is severely downward biased. Next, is LSDV, followed
by nonparametric MGLS, parametric MGLS and our preferred RGLS estimator.

7In the AR(p) model with exogenous regressors under cross section independence, IV/GMM estima-
tors in dynamic panel regressions can be employed to reduce bias but neither the asymptotic nor the
�nite sample properties of these estimators have been investigated under cross-sectional dependence.
See Ahn and Schmidt (1995) and Hahn and Kuersteiner (2001).

8In this paper we consider only mean-unbiased estimators since for moderately sized T samples, the
properties of median-unbiased and mean-unbiased estimators are quite similar.
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Figure 2: Empirical distributions of alternative pooled estimators. � = 0:98; N=21,
T=51.

Table 4 shows the results for the AR(2) case. The DGP is

yit = �yit�1 + eit

eit = �ieit�1 + uit

uit = �i�t + "it

where "it
iid� N(0; 1) and �i � U [�0:3;�0:2] if  = �0:3 and �i � U [0:3; 0:4] if  = 0:3.

As can be seen, RGLS is very e¢ cient in terms of relative mean square error. For small
T = 50 and large N = 50; RGLS retains a slight negative bias. As T increases and
N decreases, RGLS begins to overcompensate slightly as � moves down away from 1,
however, the overall amount of residual bias in RGLS is very small.

4 Estimating Short-Term Interest Rate Dynamics

This section uses RGLS to estimate dynamic models of short-term interest rates. Much
interest has centered on mean-reverting speci�cations suggested by Cox, Ingersoll, and
Ross (1985, hereafter CIR). Based on a single factor model of the term structure CIR

13



characterize the interest rate as the continuous time �rst-order autoregressive process

dr = �(� � r)dt+ �
p
rdZ; (14)

where � represents long-term mean of the interest rate to which r reverts at rate � and
dZ is a standard Wiener process.9 In practice the parameters in (14) are estimated
using a single time series of short-term interest rates which itself serves as a proxy for
the instantaneous interest rate. Models of the term structure of interest rates are often
evaluated on the basis of those estimates using available closed-form expressions for
default-free bond prices. As pointed out by Ball and Torous (1996), the downward bias
in these estimates produce implied adjustment speeds of the short term interest rate
that are too high to be consistent with the actual dynamics of bond price data.
To obtain reduced biased estimates of short-term interest dynamics, we follow Ball

and Torus in discretizing (14) as

rt+� = �+ �rt + ut; (15)

where � = �(1 � e���t), � = e��� and ut = ��t
p
� where �t is zero meaned with

variance proportional to rt:

4.1 Another Simulation Experiment

Before we employ the RGLS estimator on the data, we examine its performance in the
context of the simulation experiment considered by Ball and Torous (1996) which we
extend to the panel context. We consider two alternative cross section dimensions of
N = 5; 10 which are comparable. Pseudo observations for annualized interest rates
are generated from a �rst order discrete-time approximation to (14) assuming 360 time
steps per year. We consider weekly frequencies (� = 1=52) and monthly frequencies
(� = 1=12) for sampling the data. and data sets consisting of �ve years and ten years
of observations. Parameter values are set according to � = 1, and � � U [0:1; 0:9]: The
initial observation for interest rate is set at �, and � = 0:05 and 0:1, respectively.
Cross-sectional dependence is introduced by setting cov(dZi; dZj) = �ijdt where �ij �
U [�0:5; 0:5]. Each simulation run is carried out with 1,000 as in Ball and Torous (1996).

Table 4 reports the performance of LSDV and RGLS with associated biases (�̂� �)
in parentheses. There is only a tiny bit of residual bias in the RGLS estimator. Better
results are evidently obtained when observations are sampled weekly.

9Chan et. al. (1992) examined models of the form dr = (�+ �r) dt+ �rdZ: The speci�cation that
we estimate is a special case of Chan et. al�s. that is obtained with � = 1, � = �, � = �1 and  = 0:5.
This characterization guarantees that the interest rate is nonnegative.
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4.2 Five Weekly Eurocurrency Rates

We now apply RGLS to estimate the speed of adjustment in a data set of weekly eurocur-
rency rates.10 Eurocurrency rates are free market interest rates which are not directly
a¤ected by such domestic factors such as reserve requirements and foreign exchange con-
trols. We collected �ve weekly data sets of 325 weekly Eurodeposit rates for Australia,
Canada, Germany, Switzerland, and the U.S.�one data set for each day of the week.
The time span of the data extends from December 1, 1997 to February 20, 2004. These
data were originally collected by Harris bank which we downloaded from Datastream.
All rates are expressed in percent per annum
In our empirical speci�cation, we allow the interest rates to follow an AR(2). The

Table 5 reports the results for � estimated for each of the �ve data sets. We �rst
estimated the system by RSUR and conduct tests of homogeneity restrictions across the
�ve eurocurrency rates. None of the p-values for this test lie below 0.3 so proceed to
perform estimation under homogeneity restrictions. Panel estimation by LSDV yields
estimates that consistently lie below 1 whereas the RGLS estimates consistently lie
above 1. The bias corrected RGLS estimator suggests that short-term interest rates do
not mean revert and instead may be unit-root nonstationary. However, a 95% con�dence
interval includes values of � that lie below 1.It is also possible that short-term interest
rates are governed by stationary but nonlinear dynamics.

5 Conclusion

In this paper, we extend the idea of recursive mean adjustment as a bias reduction strat-
egy in estimating the dominant root in dynamic systems and for panel regressions. The
method is straightforward to implement and has familiar asymptotic properties. Because
mean and median unbiased estimators are generally unavailable for higher ordered panel
autoregression models, the recursive mean adjustment procedure �lls an important gap
in the literature. Monte Carlo experiments show that it is an e¢ cient and e¤ective bias
reduction strategy in small samples.
We applied RGLS to estimate the speed of adjustment in a small panel of short-term

interest rates. The bias-adjusted estimates suggest that there may be no reversion to
the mean.
10Factor models of the term structure are concerned with mean reversion in real interest rates but

due to the very short sampling intervals, our examination focuses on the nominal interest rate.
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Table 1: Monte Carlo Performance of RSUR

Bias � T Relative MSEa/

N T � OLS RSURb/ RSURc/ RSURb/ RSURc/

0.900 -4.350 -1.343 -1.248 0.216 0.204
5 50 0.950 -4.880 -1.692 -1.604 0.200 0.189

0.990 -5.234 -1.686 -1.620 0.168 0.160
0.900 -4.071 -0.780 -0.729 0.214 0.210

5 100 0.950 -4.608 -1.317 -1.261 0.191 0.185
0.990 -5.322 -1.678 -1.635 0.158 0.154
0.900 -3.987 -0.204 -0.182 0.228 0.227

5 200 0.950 -4.417 -0.793 -0.764 0.192 0.190
0.990 -5.350 -1.644 -1.617 0.157 0.154
0.900 -4.414 -1.501 -1.225 0.205 0.167

10 50 0.950 -4.909 -1.830 -1.579 0.195 0.161
0.990 -5.251 -1.787 -1.607 0.165 0.140
0.900 -4.186 -0.879 -0.717 0.176 0.161

10 100 0.950 -4.688 -1.422 -1.238 0.167 0.149
0.990 -5.388 -1.729 -1.603 0.144 0.131
0.900 -3.965 -0.198 -0.123 0.182 0.177

10 200 0.950 -4.373 -0.796 -0.698 0.156 0.150
0.990 -5.323 -1.645 -1.557 0.138 0.131
0.900 -4.387 -1.617 -1.212 0.254 0.168

20 50 0.950 -4.913 -1.891 -1.564 0.228 0.161
0.990 -5.245 -1.791 -1.594 0.183 0.141
0.900 -4.144 -1.016 -0.702 0.202 0.163

20 100 0.950 -4.653 -1.584 -1.231 0.194 0.153
0.990 -5.339 -1.838 -1.622 0.163 0.136
0.900 -4.002 -0.305 -0.155 0.190 0.177

20 200 0.950 -4.401 -0.927 -0.725 0.168 0.152
0.990 -5.307 -1.747 -1.574 0.152 0.135

Notes: a/MSE of RSUR relative to MSE of OLS. b/Nonparametric RSUR. c/Parametric RSUR.
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Table 2: Monte Carlo Performance of Test for Homogeneity

RSURa/ RSURb/

N T � 10% 5% 1% 10% 5% 1%
0.900 0.193 0.118 0.040 0.161 0.092 0.027

5 50 0.950 0.196 0.120 0.040 0.166 0.097 0.028
0.990 0.176 0.107 0.033 0.150 0.088 0.024
0.900 0.150 0.087 0.025 0.140 0.079 0.020

5 100 0.950 0.165 0.097 0.028 0.154 0.087 0.022
0.990 0.154 0.088 0.024 0.144 0.080 0.020
0.900 0.123 0.066 0.017 0.116 0.062 0.015

5 200 0.950 0.133 0.074 0.018 0.127 0.069 0.016
0.990 0.156 0.085 0.020 0.149 0.081 0.020
0.900 0.354 0.253 0.114 0.194 0.118 0.035

10 50 0.950 0.354 0.253 0.117 0.204 0.123 0.038
0.990 0.303 0.209 0.090 0.180 0.106 0.030
0.900 0.229 0.140 0.048 0.156 0.089 0.022

10 100 0.950 0.254 0.160 0.055 0.182 0.105 0.029
0.990 0.238 0.148 0.048 0.179 0.102 0.027
0.900 0.158 0.089 0.021 0.124 0.067 0.014

10 200 0.950 0.180 0.104 0.028 0.149 0.082 0.019
0.990 0.204 0.122 0.040 0.178 0.103 0.029
0.900 0.780 0.703 0.540 0.235 0.144 0.045

20 50 0.950 0.746 0.669 0.511 0.249 0.151 0.048
0.990 0.631 0.550 0.398 0.219 0.131 0.040
0.900 0.453 0.344 0.170 0.175 0.102 0.027

20 100 0.950 0.495 0.380 0.202 0.216 0.128 0.040
0.990 0.443 0.330 0.164 0.217 0.128 0.037
0.900 0.263 0.171 0.060 0.149 0.079 0.019

20 200 0.950 0.299 0.201 0.076 0.177 0.099 0.029
0.990 0.334 0.226 0.088 0.216 0.130 0.041

Notes: a/Nonparametric RSUR. b/Parametric RSUR.
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Table 3: Monte Carlo Performance of Pooled Estimators

Bias � T Relative MSE
N T � A B C D E B/A C/A D/A E/A

0.90 -3.975 -0.960 -0.813 -0.715 -0.283 0.280 0.172 0.161 0.116
5 50 0.95 -4.456 -1.274 -1.081 -0.973 -0.618 0.246 0.163 0.150 0.093

0.99 -4.745 -1.552 -1.248 -1.162 -0.605 0.203 0.137 0.124 0.069
0.90 -3.710 -0.814 -0.601 -0.546 0.188 0.310 0.177 0.171 0.144

5 100 0.95 -4.188 -1.022 -0.791 -0.729 -0.297 0.268 0.157 0.151 0.105
0.99 -4.826 -1.508 -1.174 -1.121 -0.680 0.208 0.131 0.125 0.069
0.90 -3.679 -0.828 -0.496 -0.469 0.692 0.347 0.186 0.183 0.177

5 200 0.95 -4.048 -0.952 -0.616 -0.583 0.168 0.295 0.161 0.158 0.130
0.99 -4.859 -1.423 -1.049 -1.012 -0.670 0.223 0.132 0.128 0.076
0.90 -3.975 -0.743 -0.852 -0.529 -0.109 0.189 0.124 0.081 0.056

10 50 0.95 -4.412 -0.991 -1.101 -0.747 -0.433 0.164 0.130 0.081 0.045
0.99 -4.679 -1.199 -1.102 -0.805 -0.409 0.125 0.109 0.066 0.032
0.90 -3.769 -0.664 -0.567 -0.382 0.348 0.221 0.105 0.087 0.075

10 100 0.95 -4.198 -0.819 -0.748 -0.535 -0.114 0.185 0.097 0.077 0.051
0.99 -4.815 -1.241 -1.022 -0.822 -0.492 0.136 0.087 0.067 0.033
0.90 -3.604 -0.641 -0.369 -0.276 0.882 0.259 0.100 0.094 0.101

10 200 0.95 -3.938 -0.723 -0.466 -0.360 0.382 0.212 0.086 0.079 0.069
0.99 -4.764 -1.157 -0.884 -0.761 -0.468 0.151 0.078 0.069 0.037
0.90 -3.861 -0.667 -1.052 -0.414 0.009 0.174 0.180 0.047 0.031

20 50 0.95 -4.323 -0.914 -1.276 -0.627 -0.317 0.146 0.186 0.048 0.024
0.99 -4.566 -1.091 -1.100 -0.594 -0.287 0.107 0.144 0.039 0.017
0.90 -3.648 -0.589 -0.665 -0.276 0.455 0.198 0.096 0.047 0.045

20 100 0.95 -4.065 -0.732 -0.856 -0.418 -0.001 0.164 0.094 0.042 0.027
0.99 -4.648 -1.110 -1.032 -0.657 -0.383 0.117 0.091 0.042 0.018
0.90 -3.555 -0.590 -0.407 -0.203 0.954 0.235 0.066 0.051 0.065

20 200 0.95 -3.869 -0.663 -0.500 -0.268 0.470 0.190 0.059 0.043 0.041
0.99 -4.629 -1.054 -0.886 -0.635 -0.366 0.131 0.062 0.041 0.020

(A): LSDV; (B): MLSDV; (C): Nonparametric MGLS; (D) Parametric MGLS; (E): Parametric RGLS.
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Table 4: Finite Sample Performance of RGLS for AR(2) case
�̂ �̂

Bias � T MSE Ratio Bias � T MSE Ratio
T N �  A B C B/A C/A D E F E/D F/D

0.90 0.3 -2.487 0.386 1.107 0.902 0.260 147.921 0.721 1.110 0.021 0.008
-0.3 -4.401 0.251 1.526 0.827 0.240 -114.999 -0.479 0.509 0.035 0.014

0.92 0.3 -2.461 0.290 1.006 0.877 0.254 153.343 0.725 1.102 0.019 0.008
-0.3 -4.449 0.044 1.332 0.791 0.228 -116.994 -0.570 0.426 0.034 0.013

500 5 0.95 0.3 -2.433 0.070 0.780 0.814 0.234 161.475 0.705 1.067 0.017 0.007
-0.3 -4.562 -0.405 0.899 0.707 0.197 -119.986 -0.769 0.239 0.032 0.013

0.98 0.3 -2.474 -0.373 0.326 0.656 0.176 169.606 0.633 0.980 0.015 0.006
-0.3 -4.912 -1.243 0.048 0.541 0.134 -122.978 -1.121 -0.119 0.031 0.012

1.00 0.3 -2.895 -0.826 -0.263 0.275 0.064 175.028 2.482 2.721 0.015 0.006
-0.3 -5.569 -1.594 -0.508 0.275 0.064 -124.972 -0.736 0.136 0.030 0.012

0.90 0.3 -2.609 -0.038 0.963 0.832 0.120 72.558 0.512 0.941 0.044 0.011
-0.3 -4.682 -0.540 1.207 0.730 0.100 -59.232 -0.788 0.354 0.068 0.016

0.92 0.3 -2.610 -0.152 0.845 0.795 0.113 75.179 0.500 0.917 0.041 0.010
-0.3 -4.781 -0.768 0.993 0.687 0.090 -60.253 -0.890 0.259 0.066 0.016

250 10 0.95 0.3 -2.635 -0.392 0.594 0.712 0.094 79.110 0.467 0.863 0.036 0.009
-0.3 -5.016 -1.236 0.538 0.599 0.069 -61.785 -1.094 0.062 0.062 0.015

0.98 0.3 -2.801 -0.834 0.127 0.551 0.056 83.041 0.437 0.799 0.033 0.008
-0.3 -5.595 -1.966 -0.244 0.464 0.043 -63.317 -1.347 -0.231 0.059 0.014

1.00 0.3 -3.095 -0.959 -0.127 0.305 0.024 85.661 2.293 2.534 0.031 0.008
-0.3 -5.873 -1.831 -0.240 0.304 0.024 -64.339 -0.812 0.207 0.057 0.014
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Table 4: Continued�
�̂ �̂

Bias � T MSE Ratio Bias � T MSE Ratio
T N �  A B C B/A C/A D E F E/D F/D

0.90 0.3 -2.703 -0.527 0.592 0.680 0.049 29.680 0.340 0.796 0.104 0.022
-0.3 -4.970 -1.366 0.549 0.573 0.031 -22.882 -1.164 0.059 0.183 0.036

0.92 0.3 -2.725 -0.634 0.466 0.637 0.041 30.771 0.351 0.783 0.096 0.021
-0.3 -5.127 -1.568 0.337 0.537 0.025 -23.279 -1.236 -0.025 0.178 0.035

100 25 0.95 0.3 -2.808 -0.848 0.214 0.557 0.027 32.406 0.395 0.772 0.086 0.019
-0.3 -5.463 -1.923 -0.062 0.473 0.018 -23.875 -1.333 -0.162 0.169 0.034

0.98 0.3 -3.054 -1.139 -0.164 0.442 0.017 34.041 0.671 0.931 0.078 0.017
-0.3 -5.944 -2.217 -0.455 0.388 0.016 -24.471 -1.285 -0.188 0.161 0.032

1.00 0.3 -3.035 -0.942 -0.053 0.310 0.010 35.132 2.386 2.576 0.078 0.021
-0.3 -5.781 -1.823 -0.087 0.310 0.010 -24.868 -0.782 0.278 0.154 0.031

0.90 0.3 -2.805 -0.769 0.270 0.575 0.019 14.944 0.374 0.786 0.213 0.051
-0.3 -5.158 -1.669 0.056 0.485 0.012 -11.313 -1.138 -0.126 0.392 0.083

0.92 0.3 -2.852 -0.866 0.146 0.537 0.015 15.496 0.421 0.808 0.198 0.047
-0.3 -5.339 -1.825 -0.111 0.457 0.011 -11.510 -1.171 -0.169 0.380 0.081

50 50 0.95 0.3 -2.979 -1.036 -0.076 0.473 0.011 16.323 0.569 0.908 0.179 0.043
-0.3 -5.647 -2.036 -0.339 0.410 0.011 -11.805 -1.173 -0.188 0.362 0.078

0.98 0.3 -3.171 -1.159 -0.253 0.386 0.012 17.151 1.080 1.369 0.166 0.043
-0.3 -5.845 -2.044 -0.347 0.351 0.009 -12.100 -0.996 -0.023 0.342 0.074

1.00 0.3 -2.987 -0.876 -0.005 0.306 0.006 17.703 2.384 2.676 0.171 0.057
-0.3 -5.614 -1.695 0.004 0.303 0.006 -12.297 -0.640 0.315 0.326 0.073

(A) LSDV for �; (B) RLSDV estimator for �; (C) RGLS estimator for �; (D) LSDV for �i;
(E) RLSDV estimator for �i; (F) RGLS estimator for �i
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Table 5: Simulation Results for Short-Term Interest
Rate Dynamics � = 1, � = 0:05 .Bias (�̂� �) in parentheses.

Time Span N=5 N=10
LSDV PRGLS LSDV PRGLS

60 months 0.8676 0.9185 0.8739 0.9260
(0.59) (-0.02) (0.51) (-0.11)

120 months 0.8974 0.9239 0.8990 0.9259
(0.23) (-0.09) (0.21) (-0.11)

260 weeks 0.9692 0.9809 0.9699 0.9819
(0.60) (-0.01) (0.56) (-0.05)

520 weeks 0.9756 0.9818 0.9759 0.9822
(0.27) (-0.05) (0.25) (-0.07)

Table 6: Estimates for the Dynamics of Eurocurrency Rates

Mon Tue Wed Thr Fri
Homogeneity Test p-value (0.5008) (0.4983) (0.3373) (0.3515) (0.4250)

LSDV � 0.9895 0.9930 0.9958 0.9958 0.9892
RGLS � 1.0002 1.0014 1.0023 1.0025 1.0004

[�5%] [0.9928] [0.9940] [0.9958] [0.9936] [0.9933]

Notes: 5% denotes the lower end of 95% con�dence inteval of RGLS estimates.
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Appendix
N-asymptotic bias of LSDV

Nickell (1981) shows that the bias in the LSDV estimator for the AR(1) model with �xed
e¤ects is

plim
N!1

(�LSDV) � m(�) = ��
�
1 + �

T � 1

��
1� 1

T

1� �T
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N-Asymptotic bias, variance, and mean-square error of RLSDV

Here, we derive the bias, variance, and mean-square errors that underlies Figure 1. Before
proceeding, we require some preliminary results. First, we adopt

Assumption A1: (Regularity conditions on the error term) The "it have zero mean, �nite
2 + 2� moments for some � > 0; are independent over i and t with E("2it) = �2i for all t;
and lim

N!1
1
N

PN
i=1 �

2
i = �2:

We also make use of
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:

Proofs to lemmas 1 and 2 are straightforward and are omitted.

Lemma 3 (Asymptotic Equivalence) T�1
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0
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Proof. Let Ai = diag (�i) ; then we have
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By Lemma 1, the maximum order of
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t=2

�
1
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�
E
hPt�1
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�PT
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: Also,

since
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= lnT +Rn where Rn is a residual, we have
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It follows that eit and uit have the same asymptotic variance.

The N�asymptotic bias, variance and mean squared error formulae for RLSDV and LSDV
are given in,

Claim 1 (N�Asymptotic Properties of RLSDV). Let the observations be generated by (10);
and
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Then the N�asymptotic bias of the RLSDV estimator is

plim
N!1

1

N
(�RLSDV � �) =

�
C

D

�
> 0

Proof. The data generating process has the observationally equivalent latent model structure,

qit = ci + xit;

xit = �xit�1 + uit:

For this latent structure, RPLS is de�ned as

�RLSDV = �+

�
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DNT
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fC1;NT + C2;NT g
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where
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To evaluate the probability limit, plim
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Finally we have the N�asymptotic bias of RLSDV,
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N�Asymptotic bias in panel AR(p) case

In section 2.3, we claimed that the RPLS bias may be more severe than the LSDV bias for the
�j ; j = 2; : : : p coe¢ cients. The biases are
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Residual bias in second stage � estimates for panel AR(p)

In section 2.3, it was claimed that the residual bias of the estimator �̂y is inconsequential. To
�x the idea, we take AR(2) as an example and rewrite (13) as

yit � �RLSDVyit�1 = �i + � (yit�1 � yit�2) + uyit (17)
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where uyit = uit�(�RLSDV � �) yit�1:Using the fact that (yit�1 � �)�(yit�2 � �) = (yit�1 � yit�2)
where � is unconditional mean of yit; the bias of the pooled estimator �̂

y
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As N !1; the asymptotic bias is given by
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The above logic goes through for general AR(p), hence we can say that
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it follows that the residual bias in �̂
y
is inconsequential.

29


