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Abstract

We investigate confidence intervals and inference for the instrumental variables model with
weak instruments. Wald-based confidence intervals perform poorly in that the probability
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Rubin statistic always has the correct size, but LM and LR statistics have somewhat greater
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in the overidentified case. We show that the practice of “pre-testing” by looking at the
significance of the first-stage regression leads to extremely poor results when the instruments
are very weak.
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1. Introduction
Traditionally in instrumental variable estimation, confidence regions are calculated

and inferences are drawn based on the normal distribution with mean and variance taken

from the sample estimated values of the parameters suggested by asymptotic distribution

theory. Which is to say, a confidence region covers the parameter estimate plus or minus a

multiple of the “asymptotic standard error.” With a well identified system and enough

observations this is a valid approach in the sense of producing confidence regions that cover

the true value with the stated probability. Unfortunately, when instruments are weak and

there is strong endogeneity, this traditional approach produces confidence regions that are

highly misleading. Below, we construct examples in which traditional confidence regions

always exclude the true parameter, or equivalently, in which the size of the Wald test is 100

percent. Fortunately, we are able to show that alternative confidence regions based on the

Lagrange multiplier, likelihood ratio, and Anderson-Rubin statistics are well-behaved and

easy to compute.

Our principal findings for confidence regions and inference in the presence of weak

instruments and strong endogeneity are as follows:

1. Wald-based confidence regions perform poorly in the sense that they lead to the wrong

conclusion. The probability they reject the null is far greater than their nominal size.

They are too narrow and the probability that they cover the true parameter value is

much lower than the stated level.

2. The confidence region proposed by Anderson and Rubin (1949), which always has the

correct size, and confidence regions formed by inverting Lagrange multiplier (LM) and

likelihood ratio (LR) statistics are unbounded when the first stage regression is not

significant.  However, while the AR test is directly obtained only for the full set of

structural coefficients, the LM and LR statistics are defined for individual coefficients.

3. The practice of conducting an informal pre-test based on the significance of the first-

stage regression and then using the Wald statistic can be worse than not doing a pre-test.
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4. Confidence regions  based on inverting LR and LM statistics have greater power than the

AR confidence region under some circumstances, but the degrees of freedom must be

adjusted to correct the size in overidentified models.  In the good instrument case, the

AR confidence regions are wider than those based on LM, LR, or Wald.

5. Non-Wald confidence regions may be empty, cover open regions on the real line or cover

the entire real line. While unfamiliar, such confidence regions are appropriate in the

case of near non-identification.

6. The poor performance of Wald-based inference can be understood in part as arising

from the bias of the instrumental variable estimator, leading to an underestimate of

the variance of the structural parameter.

A series of recent papers has shown that inference based on instrumental variables (IV)

estimation and asymptotic standard errors is generally misleading in finite samples when the

instruments are weak.  In particular, the IV estimate is strongly biased in the same direction as

OLS and the estimated standard error is too small, the result being that the true null

hypothesis is rejected much too often.  Nelson and Startz (1990a, b), Maddala and Jeong (1992),

Hall, Rudebusch, and Wilcox (1994), Bound, Jaeger and Baker (1995), and Staiger and Stock

(1994) document these phenomena.  Since weak instruments abound in economic data sets, (see

Angrist and Krueger (1991, 1992), Fuhrer, Moore, and Schuh (1995), Hall (1988), McClellan,

McNeil, and Newhouse (1994) and Rotenberg (1984) for some examples) there is clearly the need

for procedures which produce test statistics that have the correct size in finite samples and so

can be used to construct confidence regions that are valid in the sense of having the stated

probability of covering the true value.

Perhaps surprisingly, until the recent work of Staiger and Stock (SS), the Anderson-

Rubin (1949) (AR) method for constructing valid confidence regions was apparently never used

in practice.  The AR test statistic is exactly F-distributed in finite samples (under normality)

and Anderson (1950) had proposed that it be used to construct a confidence region for the set of

structural coefficients.  SS discuss the AR confidence regions and show that they are of four

types: 1) a closed interval, 2) a disjoint region that consists of the values outside of a closed
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interval, 3) the entire real line, and 4) an empty set. Although SS do not discuss explicitly when

the AR confidence regions are of a particular type, they observe that the last case is often

associated with models that are misspecified; indeed the AR test is jointly a test of the value of

the coefficient of the endogenous variable and of the identifying restrictions.

Little attention has been given in the econometrics literature to the possibility of

inverting the likelihood ratio (LR) or Lagrange multiplier (LM) statistics to obtain a confidence

region. In exception, Gallant(1987, pp. 107 ff.) suggests inverting the LR in the context of non-

linear regression.  The intuition is appealing: a flat likelihood will result in an appropriately

wide confidence region.  Dufour’s (1994) results provide theoretical support for the expectation

that approximate correct probability levels can be obtained in this way.  Indeed, we are able to

show that there is a close relationship between the AR statistic, whose distribution we know

exactly, and the LR statistic.

There has been considerable interest in the recent literature in diagnostics for knowing

when instruments are too weak for asymptotic theory to be valid.  Nelson and Startz (1990b)

suggested using the significance of the first stage regression, and Bound, Jaeger, and Baker

(1995) have reiterated this advice.  Shea (1993) has studied the multiple variable case.  Hall,

Rudebusch, and Wilcox (1994), however caution against choosing among instruments on the

basis of their first stage significance, finding that screening worsens small sample bias.  In

this paper we find that decision rule to be very misleading even if there is only one available

instrument and we are obliged to judge its relevance on the basis of the single sample at hand.

The structure of the paper is as follows:  Section 2 defines the Limited Information

Simultaneous Equation Model studied in this paper, its likelihood function, IV and ML

estimator.  Section 3 discusses how Wald, LM, and LR statistics can be inverted to obtain

confidence regions both within the maximum likelihood and instrumental variable

(generalized method of moments) frameworks and shows that empirical confidence regions

fall into one of four shapes. Section 4 gives examples of each type. Section 5 discusses results of

a Monte Carlo investigation of the actual coverage probabilities and relative power of

alternative confidence regions.  Section 6 investigates why the Wald statistic performs poorly.
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Section 7 recomputes confidence regions from the well-known Campbell-Mankiw (1989) paper

on permanent income consumption and finds the evidence shifted away from the permanent

income hypothesis. Section 8 concludes the paper.

2.  The Limited Information Simultaneous Equation Model and Its
Likelihood Function

The Limited Information Simultaneous Equation Model (LISEM) consists of a single

structural equation which can be thought of as being selected from a simultaneous system.  The

equation relates a dependent endogenous variable, y, to explanatory variables, x, some of

which are endogenous in the sense of being correlated with the disturbance in that equation,

either because there is feedback in the complete system, or because variables correlated with

the explanatory variable have been omitted. An accompanying “first stage regression”

equation then relates the explanatory variable to a vector of k exogenous variables, Z, called

instruments.  Finally, the disturbances in the two equations are joint normal and

contemporaneously correlated. Our specific results are limited to the case of a single

endogenous explanatory variable. For expository purposes, we study the case where no

additional exogenous explanatory variables appear in the structural equation. The model may

be written as:

y
T×1( )

= βx
1×1( ) T×1( )

+ u
T×1( ) (1)

x
T×1( )

= Zπ
T×k( ) k ×1( )

+ v
T×1( ) (2)

u i

v i

 
 
  

 
~ iid N

0

0

 
 
  

 
,

u
2σ uvσ
uvσ v

2σ
 
 
  

 
 

  
 

  = N 0,Σ( );  i = 1,..,T
(3)

While asymptotic distribution theory requires Z  and u to be asymptotically

uncorrelated, where necessary we make the slightly stronger assumption that Z  is fixed in

repeated samples and that u and v are drawn independently of Z .

The coefficient  in the structural equation (1) is the parameter of interest for

inference, while the k coefficients in the vector π in the first stage regression (2) are not of



-5-

direct interest.  The model is said to be just identified if k=1 and π≠0 and overidentified if k>1

and the number of nonzero elements of π is greater than one.

We now review the instrumental variable and maximum likelihood approaches to

estimating . Define 
  

= uv

u v

, 
    
Y

T × 2( )
= y x[ ],

    
PZ

T × T( )
= Z ′ Z Z( )− 1 ′ Z  for any full rank matrix Z, and

M Z = I − PZ .

The two stage least squares estimator (2SLS) for β is     
ˆ 

2 SLS = ′ x PZ x( ) −1

′ x PZ y .  This is also

called the instrumental variable (IV) and generalized method of moments (GMM) estimator.

Under the GMM framework, the 2SLS estimator solves 
    
min J T ( ) = T −1 (y − x ′ ) PZ (y − x )/ ˆ 2 ,

where     ̂ 
2 = T − 1 (y − x ˆ 

2 SLS ′ ) (y − x ˆ 
2 SLS ). Under standard regularity conditions

    
T ˆ 

2SLS −( ) d →   N 0, u

2 ′ M ZZ( ) −1( ) , where 
    
M ZZ = plim

T →∞
T −1 ′ Z Z > 0 .

The maximum likelihood estimator for this model was first derived by Anderson and

Rubin (1949) and is referred to as the Limited Information Maximum Likelihood (LIML)

estimator.  The concentrated log likelihood function for β is given by (cf. Davidson and

MacKinnon 1993, p. 647)

    

c ( ) = −T ln 2( ) −
T

2
ln ( )( ) −

T

2
ln ′ Y M ZY

(4)

where

  

( ) =
y − x( )′ y − x( )

y − x( )′M Z
y − x( )

(5)

The LIML estimator of β is obtained by minimizing κ(β), a result first demonstrated by

Rubin(1948); see also Koopmans and Hood(1953).  Thus 
  

ˆ 
LIML = argmin   ( ) . Operationally,

    LIML
ˆ ( ) = ˆ  is the smallest eigenvalue of the matrix     ′ Y ZM Y( ) −1 / 2 ′ Y Y ′ Y ZM Y( )− 1/ 2  and 

    LIML
ˆ  is

given by the k-class estimator formula
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ˆ 

LIML = ′ x I − ˆ M Z( )x( )−1

′ x I − ˆ M Z( )y( ) . (6)

Notice that when ˆ κ = 1 , which is true in a just identified model, we have

    I − ˆ M Z = I − M Z = PZ  and thus     
ˆ 

LIML = ˆ 
2SLS = ′ x PZ x( ) −1

′ x PZ y . Under standard regularity

conditions 
    

T ˆ 
LIML −( ) d →   N 0, u

2 ′ M ZZ( )− 1( ) .  Thus, note that the asymptotic distribution

of 
    

T ˆ 
LIML −( ) is the same as the asymptotic distribution of 

    
T ˆ 

2SLS −( ).

3.  Construction of Confidence Sets by Inverting Test Statistics

We are interested in constructing confidence sets for the structural parameter β  in (1).

Given a test statistic ψ β0( )  for the testing the hypothesis H 0:β = β 0  at the  significance level,

the 1 −α( ) •100%  confidence set associated with this statistic is defined as

    
C ;1−( ) = 0 : 0( ) ≤ cv1 −{ }

where cv1−α  is the   1 −  quantile from the (asymptotically valid) distribution of the test

statistic ψ β0( ) ; i.e., ψC   contains all of the “acceptable” values of β0  at level α  for the null

hypothesis H 0:β = β 0  using the test statistic ψ β0( ) .  Confidence sets formed this way are said

to be determined by “inverting” the test statistic ψ β0( ) .

We are interested in confidence regions corresponding to seven test statistics: the Wald,

LM, and LR statistics based on maximum likelihood estimation, the three analogous statistics

based on the GMM framework, and the Anderson-Rubin statistic. Due to the simple form of the

hypothesis test there is considerable redundancy among the seven. In fact, there are only two

versions of the GMM based statistics and one of these is identical to the version of the MLE LM

test we employ. In the just-identified case, the MLE and GMM Wald statistics are the same.

Therefore, we need to consider four, or at most five, different ways to compute confidence

regions.

The Wald, LM (see Engle (1984)), and LR statistics are given respectively by
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Wald 0( ) =
ˆ − 0( )2

EAVAR ˆ ( ) (7)

    
LM 0( ) =

T −1g
0( )2

EAVAR
0( ) (8)

    
LR 0( ) = −2 c

0( )− c ˆ 
LIML( )[ ] (9)

where   
ˆ  denotes a consistent estimate of ,   EAVAR ( )denotes an estimate of the asymptotic

variance of 
LIML

ˆ β  evaluated at , and 
  
g ( ) =

d

d
c ( )  is the gradient of the concentrated log

likelihood for .  Under standard assumptions, the three statistics are asymptotically   
2 1( ).

The analogous 2SLS or efficient GMM based statistics, which also have asymptotic

  
2 1( ) distributions (see Newey and West (1987)), are:

    
WaldGMM ( 0 ) =

ˆ 
2SLS − 0( )′ ′ x PZ x ˆ 

2 SLS − 0( )
ˆ 2

    
LMGMM 0( ) =

y − x
0( )′ P ˆ x 

y − x
0( )

ˆ 2

    
LRGMM 0( ) =

y − x 0( )′ PZ y − x 0( ) − y − xˆ 
2 SLS( ) ′

PZ y − x ˆ 
2 SLS( ) 

 
 

 

 
 

ˆ 2

where     ̂ 
2 p →   u

2 .

Several facts are worth noting. First, because of the quadratic nature of the GMM

minimization problem and the linearity of the restriction   = 0 , the three GMM statistics

are numerically identical so long as the same estimate is used for   ̂ 
2
. (See appendix,

Proposition 1 and also Newey and West (1987).) Second, when using

    
ˆ 2 = ˆ 

2SLS

2 = T − 1 y − x ⋅ ˆ 
2SLS( )′ y − x ⋅ ˆ 

2SLS( ) , the   WaldGMM  is simply the (square of) “asymptotic t,”
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which is the statistic used essentially always for inference in applied work. Further, the     LRGMM

is the statistic calculated in the Hansen (1982) framework as the “difference in the J-statistic.”

Third, use of 
    
ˆ 2 = 0

2 = −1T y − x 0( ) ′
y − x 0( ) instead of   ̂ 2 SLS

2  (  0

2  is the natural choice when

thinking of using   LMGMM ) is shown below to make a critical difference in inference.

Other than the choice of   ̂ 
2 , the GMM statistics are straightforward. In contrast,

evaluation of the MLE statistics requires a choice of EAVAR. A variety of specifications are

available. For the MLE-Wald statistic, one usually sees the k-class formula which is (7) with

    
ˆ = ˆ 

LIML , 
    
EAVAR = ˆ 

LIML

2 ⋅ ′ x I − ˆ ⋅ M Z( )x( )− 1

 and 
    
ˆ 

LIML

2 = T −1 y − x ⋅ ˆ 
LIML( )′ y − x ⋅ ˆ 

LIML( )  which we

refer to as k −classWald .

For the MLE-LM statistic, it is useful to base EAVAR on the information matrix (see

Bowden and Turkington (1984)).

    
EAVAR ( ) = −

d 2 c ( )
d 2

 

 
 

 

 
 

−1

= A( ) + B( )[ ]− 1

    

A( ) = T ⋅
′ x M

Z
x

y − x( )′M Z
y − x( )

−
′ x x

y − x( )′ y − x( )

 

 

 
 

 

 

 
 

B( ) = 2T ⋅
′ x y − x( )[ ]2

y − x( )′ y − x( ) 
  

 
  

2
−

′ x M
Z

y − x( )[ ] 2

y − x( )M Z

′ y − x( ) 
 

 
 

2

 

 

 
 
 
 

 

 

 
 
 
 

.

The LM statistic can then be written as

    

LM 0( ) = T − 1 T
′ x u

0

u
0

' u
0

−
′ x M

Z
u

0

u
0

' M
Z
u

0

 

 
 

 

 
 

 
 
 

 
 
 

'

A 0( ) + B 0( ){ } − 1

T
′ x u

0

u
0

' u
0

−
′ x M

Z
u

0

u
0

' M
Z
u

0

 

 
 

 

 
 

 
 
 

 
 
 

(10)

where     u 0 = y − x 0
.  The LM statistic as given in (10) is not easily written as a quadratic in   0 .

However, using the following approximation results:
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T
′ x 0u

0u ′
0u

−
′ x ZM 0u

0u ′
ZM 0u

 

 
 

 

 
 ≈

A

T
ˆ ′ x 0u

0u ′
0u
 and 

    
A 0( ) + B 0( ) ≈

A
0u ′

ˆ x P 0u

0u ′
0u

we obtain a simpler version of the LM statistic

    

LIMLLM =
y − x

0( )′ ˆ X P y − x
0( )

y − x
0( )′ y − x

0( ) T
(11)

where ˆ x = ZP x .  Here     LM LIML  is equal to T  times the uncentered     R
2  from the regression of

    y − x 0  on ˆ x .  We note that this approximation will make     LM LIML  identical to the corresponding

LM statistic in the GMM framework.

Finally, consider the statistic proposed by Anderson and Rubin (1949) and Anderson

(1950).  Rewrite (1) by adding and subtracting     x 0  from both sides and substituting in for x using

equation (2) to give

    y* = Z + u * (12)

where     y* = y − x 0 ,   = − 0( ) , and     u* = v − 0( ) + u .  Then the hypothesis H 0:β = β 0  in (1)

corresponds to the hypothesis 0
∗H : ψ = 0  in (12).  The latter hypothesis can be tested with the

standard F-statistic

    

AR = F = 0 = R
∗RSS − UR

∗RSS( ) k

UR
∗RSS T − k( )

=
y − x

0( )′ ZP y − x
0( ) k

y − x
0( ) ′

ZM y − x
0( ) T − k( )

If indeed (ui vi) is distributed iid N(0,Σ), and the model is correct in the sense that the

identifying restrictions that exclude Z from the structural equation are true, then the AR

statistic is distributed exactly as     F k, T −k( ) .1

Creating confidence regions by “inverting” the corresponding test statistics means to

solve for the range of values for   0  for which the test statistic is less than the appropriate

                                                                        
1 Given the linear structure of (12), the AR statistic is a monotone transformation of the LR statistic for

testing the hypothesis     0

∗

H : = 0 .  SS show that     AR → 2

k( )/k  under fairly general assumptions about
the disturbances.
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critical value. The results are most easily seen graphically. Figure 2 shows the value of the test

statistics for a particular Monte Carlo run for a just identified model with a fairly weak

instrument.2 For a given statistic, the corresponding confidence region is that region in which

the statistic is below the horizontal critical value line. For the u-shaped Wald statistic, this

region is always a closed set. For the other statistics, three additional patterns are possible.

These can be seen varying the confidence level in Figure 2; that is, by raising or lowering the

horizontal critical value line. It is easy to see that at a very high confidence level the test

statistics are everywhere below the critical value so that the confidence region includes the

entire real line. In contrast to the familiar Wald-based confidence regions, at high confidence

levels no values of the parameters can be ruled out. Consider next what happens at a somewhat

lower confidence level. The horizontal line will “cut-off” the peak of the test statistic. The

confidence region will consist of the area from the left cut-point to negative infinity and from

the right cut point to positive infinity. Finally, the AR statistic in overidentified models at low

confidence levels can lead to an empty confidence region.

Fortunately, for each statistic we can give simple closed form solutions for the cut-

points. For the Wald statistics, both MLE and GMM, we have the completely familiar closed

intervals

    
ˆ ± z /2( ) •EAVAR ˆ ( )

1

2 ,

where z(α/2) is the α/2 quantile of the N(0,1) distribution.

The confidence sets for β  formed by inverting the LM, LR, and AR statistics are each

determined by solutions to an inequality of the form

    a 0

2 + b 0 + c ≤ 0 (13)

where values of a, b, and c depend on the data and the critical value for the particular test. The

cut-points are the roots of the quadratic equation

                                                                        
2 The figure is drawn for data generated with     = 1, = 0.1  u

2 = v
2 = 1,  = .99,  T = 100,  Z ~ N (0,1) .
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0,i =

−b ± d

2a
; i = 1,2 (14)

where d = b2-4ac denotes the discriminant of the quadratic. We now give the formulas for the

quadratic coefficients for the respective statistics and then characterize the shape of the

confidence region in terms of the solution to the quadratic.

Finding the confidence set CLM(β;1−α) requires finding all values of β0  satisfying the

condition

    

y − x 0( ) ′
ˆ X P y − x 0( )

y − x
0( ) ′

y − x
0( )

≤ 1 −
2 1( )
T

≡ LM

which can be rearranged as a quadratic of the form of (13). Defining the 2x2 matrix

    
QLM = ′ Y 1 − LM[ ]I − I − Pˆ x ( )[ ]( )Y  then a =  Q22, b = -2•Q12, and c = Q11.3, where   Qij  is the     i, j( )th

element of Q. Note that a is closely related to the significance of the first stage, a topic to which

we return below.

Turning now to the LR statistic, using the concentrated likelihood function (4), the

hypothesis H 0:β = β 0  is accepted if

    

T • ln
y − x

0( )′ ZM y − x
0( )

y − x
0( )′ y − x

0( )

 

 

 
 

 

 

 
 − T • ln ˆ ( ) ≤ 1−

2 1( )

which can be rewritten as

    

y − x
0( ) ′

y − x
0( )

y − x
0( ) ′

ZM y − x
0( )

≤ exp 1−
2

T

 
 
 

 
 
 

• ˆ ≡ LR

                                                                        
3 The formula given here is for the LISEM model (1)-(3). If additional exogenous regressors are present,

then y, x, and Z in the definition of Q should be replaced with the residuals from regressing the y, x, or Z
on the exogenous regressors. Modify the formulas for the LR and AR below in the same way.
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This inequality can also be expressed in the form of (13).  The corresponding matrix Q is

given by   LRQ = ′ Y I − LR • ZM[ ]Y .

Finally, the AR confidence set consists of all values of 0β  that satisfy the inequality

    

(y − x
0
)'(y − x

0
)

(y − x
0
)' M

Z
(y − x

0
)

≤ 1+ F1 − (k ,T − k )
k

T − k
≡ AR

where     F1− (k,T − k ) denotes the (1-α) quantile of the F distribution.  Note that this condition is

very similar to that given for the LR statistic.  As with the LM and LR statistics, the AR

confidence set is determined by solving the inequality (13) with the corresponding matrix Q

given by   QAR = ′ Y I − AR • ZM[ ]Y .

Each of the LM, LR, and AR statistics is a ratio of two quadratic forms. Such functions

have the characteristic shape that was seen in Figure 2. Recall that when the critical value line

is everywhere above the function, the confidence region is the entire real line. When the critical

value is lower such that part of the real line is excluded, a disjoint confidence region results.

When the critical value line lies below the asymptote of the statistic, then the confidence region

is the familiar closed interval. Finally, in cases where the function does not touch zero and lies

above the low critical value, an empty confidence region results. Whether the confidence region

is bounded, empty, external, or covers the real line is determined by the signs of a and d as

follows.

If a>0, then the inequality may be rewritten as β0
2 + (b/a)•β0  + (c/a) ≤ 0 which is convex

from below.  If the inequality is satisfied at all, it will be for a bounded interval.  If also d>0

then the solutions to the quadratic equation are real and there is a bounded interval with end

points corresponding to the two solutions, say     LOW , HIGH( ), within which the inequality is

satisfied.  Alternatively, if a>0 but d<0, the roots are complex so there is no value of β0  which

satisfies the inequality and thus the confidence set is empty.

It is straightforward to show that LM and LR confidence sets cannot be empty because at

  0 = ˆ  the statistics equal zero. When   0 = ˆ , the AR statistic tests the significance by
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regressing the residuals on the instruments. In the just identified case the statistic is zero so

the AR confidence set cannot be empty. The AR confidence set will be empty in overidentified

models when the overidentifying restrictions are rejected.4

Next consider a<0.  The quadratic inequality may then be rewritten as β0
2 + (b/a)•β0  +

(c/a) ≥ 0 which is again convex from below.  If d>0 there are again real solutions to (13), but now

it is values of β0  outside the interval     LOW , HIGH( ) which satisfy the inequality (because the sign

of the inequality is reversed relative to the previous case) so the confidence set is the

disconnected region     −∞, LOW[ ] ∪ HIGH ,∞[ ] . Finally, if d<0 then there is, again, no real solution

to the quadratic equation, but this means that the inequality is satisfied for all values of β0 .

The preceding discussion demonstrates that the confidence sets for  constructed by

inverting the LM, LR, or AR test statistics can be unbounded.  Indeed, Dufour (1994) shows that

any valid (1-α)•100% confidence set for β must be unbounded with probability 1-α for nearly

nonidentified models.  We can show that the AR statistic has this property — and we know, of

course, that the nominal size of the AR statistic is the exact size, since the AR is just a statistic

from an auxiliary regression. The LM and LR statistics do not satisfy the Dufour requirement

in the overidentified case, but versions with a degrees of freedom modification do, as shown

below.

Unbounded confidence sets occur when the coefficient a in (13) is less than zero.

Consequently, the probability of an unbounded confidence set is P{a<0}.  Following from that

are relationships linking the unboundedness of LM, LR, and AR confidence sets with the usual

goodness-of-fit statistics from the first stage regression. (Note that for each of the three

statistics, a is a weighted difference between the actual and residual first-stage sum of squares.)

These relationships can be summarized in the following:

(a)  CAR(β;1−α) is unbounded if     F = 0 < F1− k ,T − k( )

                                                                        
4 Note that the AR statistic evaluated at   

ˆ is essentially the J -statistic for testing over-identifying
restrictions and that the J -statistic is minimized at   

ˆ .
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(b)  CLR(β;1−α) is unbounded if Fπ=0 < 

    

T − k

k
exp 1−

2 1( )
T

 
 
 

 
 
 
ˆ −1

 

 
 

 

 
 

(c)  CLM(β;1−α) is unbounded if     T ⋅ RUC

2 < 1 −
2 1( )

where Fπ=0 is the F statistic for testing π=0 in (2) and RUC
2

 is the uncentered (no intercept) R2

from (2).  See appendix (proposition 2) for proofs.

Thus the AR confidence set, CAR(β;1−α), has the very interesting property that it is

unbounded whenever the F statistic for testing π=0 in (2) is insignificant at level α.  If (ui, vi ) are

i.i.d. N(0, Σ) then the probability that CAR(β;1−α) is unbounded when π = 0 is given by

P{    F = 0 < F1− k ,T − k( )} = 1−α.  Hence, the AR confidence set satisfies Dufour’s condition for a

valid confidence set in an unidentified model.

The condition for CLR(β;1-α) to be unbounded can be simplified when T  is large relative

to k  and the overidentifying restrictions are valid.  In this case, ˆ κ  ≈ 1 and 
    
exp T − 1 ⋅ 1 −

2 1( ){ }  ≈ 1 +

    T
−1 ⋅ 1 −

2 1( )  so that (b) above becomes Fπ=0 <     k
−1 ⋅ 1 −

2 1( ) .  Notice that this condition is similar to

the condition in (a) above for the AR confidence set since, for large T ,     F1 −a k,T − k( )  ≈

    k
−1 ⋅ 1 −

2 k( ).  However, the condition for the LR confidence set uses   1−
2 1( ) whereas the condition

for the AR set uses     1−
2 k( ) .  Since      1−

2 k( )  >   1−
2 1( ) it follows that when π=0, P{CLR( ;  1 − ) is

unbounded} = P{Fπ=0 <     k
−1 ⋅ 1 −

2 1( ) } < P{Fπ=0 <     k
−1 ⋅ 1 −

2 k( )} = P{CAR( ;  1 − ) is unbounded} =

  1 − .  Hence, in the unidentified case, CLR( ;  1 − ) is unbounded with probability less than

  1 −  and so is not a valid confidence set according to the results of Dufour.

A similar result holds for the LM confidence set.  The statistic     T ⋅ RUC

2  is the Lagrange

multiplier statistic for testing Ho: π=0 in (2), and under this null     T ⋅ RUC

2 ~
A

1 −
2 k( ) .  Hence, when

π=0, P{CLM(β;1−α) is unbounded} = P{    T ⋅ RUC

2  <   1−
2 1( )} < P{    T ⋅ RUC

2  <     1−
2 k( ) } =   1 − , implying

that CLM(β;1−α) is not a valid confidence set according to Dufour’s result.
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The above remarks regarding CLR(β;1−α) and CLM(β;1−α) suggest that in the very weak

instrument case the LR and LM statistics for testing Ho:β=βο are not asymptotically distributed

as   
2 1( ) and that a better approximation to limiting distributions is given by     

2 k( ) , which the

results of Dufour suggest as a bounding distribution for the statistics. (Dufour suggests a bound

for the LR statistic based on a transformation of the distribution of the Wilks Λ statistic. Wang

and Zivot (1996) show that the     
2 k( )  bound is tighter.) To see why, if the critical value from

    
2 k( )  is used to compute CLR(β;1−α) and CLM(β;1−α) then (for large T  relative to k ) P{CLR(β;1−α)

is unbounded} = P{Fπ=0 <    k
−1 ⋅ 1 −

2 k( )} = P{CLM(β;1−α) is unbounded} = P{T ⋅ RUC
2

 <     1−
2 k( ) } = 1-α,

whenever π=0, and therefore CLR(β;1−α) and CLM(β;1−α) are valid confidence sets.

Thus, the statistical significance of goodness-of-fit statistics from the first stage

regression, Fπ=0 and     T ⋅ RUC

2 , has implications for the construction of valid confidence sets

obtained by inverting the LR and LM statistics.  If Fπ=0 <     F1 −a k,T − k( ) , or Fπ=0 <    k
−1 ⋅ 1 −

2 k( ),

then the LR statistic should be inverted using critical values from     
2 k( )  instead of   

2 1( ).

Similarly, if     T ⋅ RUC

2 < 1 −
2 k( )  then the LM statistic should be inverted using     

2 k( )  instead of

  
2 1( ) critical values. We call the test statistics which switch degrees of freedom based on the

first stage statistic LMsw and LRsw.

In light of the above results, it appears that the asymptotic distributions of the ML and

GMM test statistics for     H 0 :  = 0
 in the weak instrument case are poorly approximated by

the   
2 1( ) distribution.  The local-to-zero framework of SS provides a convenient way to obtain

analytical results in the weak instrument case.  In this framework, the coefficients π in (2) are

modeled as being in a     T
−1 / 2  neighborhood of zero.  This device keeps the statistic Fπ=0 roughly

constant as the sample size increases. Wang and Zivot (1996) (hereafter, WZ) derive the

asymptotic distributions of the Wald, LM, and LR statistics using SS’s local-to-zero

framework.  WZ show that in overidentified models these distributions do not converge to a

  
2 1( ) random variable but rather to random variables that depend on the nuisance parameters

     and k  and the noncentrality parameter of the asymptotic distribution of Fπ=0.  In addition,
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WZ show that the asymptotic distributions of LM and LR are bounded by the     
2 k( )  distribution,

whereas the asymptotic distribution of the Wald statistic is not.  Further, in just identified

models, WZ show that the LM and LR statistics converge in distribution to the same   
2 1( )

random variable and the AR converges to a   
2 1( ) that is independent of the LM and LR.

The linkage between the first-stage fit and the sampling distribution of both

instrumental estimators and test statistics has led many practitioners to an informal pre-test

rule: if the first-stage is “significant” proceed with instrumental variable estimation and

Wald-based inference. The logic is that if the first-stage is significant, then it is very unlikely

that the model is unidentified. Nelson and Startz (1990b) advise that checking for the first-

stage     TR 2 > 2  is a useful diagnosis. Later, Bound, Jaeger, and Baker (1995) advocate checking

for first-stage significance with a standard F-test. These pre-test rules fail for two reasons.

First, there is a flaw in logic in assuming that because a model is identified, asymptotic

distribution theory gives a good guide to small sample distributions. Distributions from a data

generating process with π very small, but not equal to zero, look pretty much like distributions

when π does equal zero. It happens to be true that as the first-stage F rises the asymptotic

distribution becomes a good approximation to the true distribution. However, an α

significance level in the first-stage does not imply accuracy of structural inference at the α

significance level - a much higher level is needed at the first-stage. Second, in a weakly

identified DGP, a significant first-stage generally signals a spuriously good fit between the

endogenous variable and instrument and this is precisely the case when instrumental variable

estimation is worst. It is this phenomenon which led Hall, Rudebusch and Wilcox (1994) to

recommend against screening potential instruments.

To illustrate, we ran 10,000 Monte Carlo trials with the parameters given above and

with both an unidentified,   = 0 , and a weakly identified,   = 0.1, model. In Table 1 we report

empirical sizes for a nominal five percent Wald test both with and without a five percent first-

stage pretest.

Note two facts from the table. First, in the unidentified model the result of pretesting is

to draw no conclusion approximately 95 percent of the time and to be always wrong when one
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does draw a conclusion. Second, in the weakly identified model, using the pretest still leaves

one wrong 87 percent of the time!5

4. Examples of Confidence Sets for 

To illustrate the typical shapes of confidence sets for instruments of various quality we

generated data from (1)-(3) with     =1, u

2 = v

2 = 1, = .99,T = 100, Z ~ N 0, I k( )  for just identified

(k=1) and nominally overidentified (k=4) models. For the just identified model, we set π=1 (good

instrument case), π=0.1 (weak instrument case) and π=0 (unidentified case).  For the

overidentified model, we set π=(1,0,0,0) ’ (good instrument case), π=(0.1,0,0,0)’ (weak instrument

case) and π=(0,0,0,0) ’ (unidentified case).  For each set of generated data we computed the OLS,

2SLS and LIML estimates of β, the reduced form estimate of π, the reduced form RUC
2

 and Fπ=0

statistics and the confidence sets CWald(β;0.95), CLR(β;0.95), CLM(β;0.95) and CAR(β;0.95).

These statistics are summarized in Tables 2 and 3 and the confidence sets are displayed

graphically in Figures 1 - 6.

Consider first the results for the just identified models.  Figure 1 shows the confidence

sets for the good instrument case.  The OLS estimate of  is biased and has a very small

standard error.  The reduced form statistics indicate that Z is a good instrument.  Indeed, the

2SLS and LIML estimates of  (identical when k=1) are equal to 1.148 and the standard Wald

confidence region CWald(β;0.95), [0.989, 1.307], is fairly small and contains the true value

  =1.  The LR, LM and AR regions are all very similar to each other and to the Wald interval in

this case.

The situation is much different in the weak instrument case seen in Figure 2.  Here ˆ β OLS

= 1.975 which is very close to the theoretical point of concentration in an unidentified model

(Basmann, 1963 and Phillips, 1983).  The reduced form regression statistics indicate that Z  is a

questionable instrument, although the value of Fπ=0 is large enough to reject the hypothesis

                                                                        
5  Do not note the fact that reversing the use of the pre-test would have led to the correct size in the second

column. While amusing, it is only a coincidence.
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that π=0 at the 5% level.  However, the weak instrument Z induces a noticeable bias in     
ˆ 

2 SLS

and, counter to intuition, the Wald confidence interval is fairly short and does not cover the

true value   =1.  Since Fπ=0 is significant at the 5% level the LR, LM, and AR confidence sets

are all closed intervals but they are considerably larger than the Wald interval and contain the

true value.  The length of these intervals reflects much more uncertainty about the value of 

than does the length of the Wald interval.

Finally, in the unidentified case of Figure 3, the OLS and 2SLS estimates of  are

almost identical and the Wald confidence region indicates a very precise estimate even though

the goodness-of-fit statistics from the first stage regression suggest a poor instrument.  The LR,

LM and AR confidence sets in this case are equivalent and contain all possible values of .

This is what we should expect when is unidentified since the likelihood function is flat.  This

flatness of the likelihood function is seen very clearly in Figure 3.

Now consider a nominally overidentified , four instrument model.  We vary the quality

of the first instrument, while the other three are always irrelevant (that is, their reduced form

coefficients are zero). The statistical results are summarized in Table 3 and the test statistics,

as functions of   0 , are illustrated in Figures 4-6.  For the good instrument case,     
ˆ 

2 SLS  and     
ˆ 

LIML

are very close to the value   = 0  and 
    CWald , 0.95( )  is quite tight.  The reduced form goodness-of-

fit statistics,     F = 0
 and     T ⋅ RUC

2 , are large and indicate that the instruments are of good quality.

The LM and LR confidence sets based on   
2 1( ) critical values are closed intervals, are very

similar to CWald and have roughly the same length.  The AR confidence set, however, is

substantially larger that the other sets.  We note that CLR and CLM based on     
2 k( )  critical

values are very close to CAR.

Turning next to the case of one valid, but weak instrument, we see that 
    
ˆ 

OLS
 is quite

biased and that     
ˆ 

LIML
 is less biased than     

ˆ 
2 SLS .  CWald is fairly wide, but does not cover   =1.

Here the reduced form statistics F π= 0  and     T ⋅ RUC

2  are not significant at the 5% level, which

raises a red flag indicating that the instruments are poor and  is nearly unidentified.  From
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the previous section we know that CAR will be unbounded and indeed CAR is the disjoint region

  −∞,1.816[ ] 2.506, ∞[ ].  Notice that CLM and CLR based on     1−
2 k( )  are very close to CAR whereas

these sets based on   1−
2 1( ) have larger right endpoints and are thus “smaller” unbounded

regions.

Finally, in the nonidentified case     
ˆ 

2 SLS  and     
ˆ 

LIML
 are close to     

ˆ 
OLS

. CWald is short and

does not cover   =1.  The reduced form goodness-of-fit statistics are small and statistically

insignificant at any reasonable level and, consequently, the confidence sets CAR, CLM, and

CLR are unbounded, containing all possible values of .

5.  A Monte Carlo Investigation of Size and Power
In this section we analyze the finite sample properties of the 95% confidence regions for

β  formed by inverting the level 0.05 Wald, LM, LR and AR test statistics for     H 0 :  = 0 .  We

compare empirical coverage probabilities of the confidence sets under the null as well as

empirical powers of the test statistics under a range of alternatives     H a : = a .  Our Monte

Carlo design is the same as in section 5 except that we consider   = 0.99, 0.5,0{ } .  For the power

analysis we generate data under the alternatives     a = 0 + i   where   i  ranges from -2 to 2 in

increments of 0.25.  The empirical probabilities of the confidence sets under the null are

summarized in tables 4 - 9 and results on power are given in Tables 10-15.6

Consider first the size results for the just identified models.  Since, as shown in Section

3, the LM, LR, and AR statistics are approximately χ2 1( )  regardless of the values of ρ  and π ,

the 95% confidence sets formed by inverting these statistics have empirical coverage

frequencies very close to 95% in all cases.  However, the situation is different for     CWald  since the

distribution of the Wald statistic depends on ρ  and π  in the weak instrument case.  In the

unidentified case π = 0( ) ,     CWald  covers the true value   0 = 1 less than 37% of the time when

ρ = 0.99  and 100% of the time when ρ = 0 .  The sets     CLM ,     CLR  and     CAR  are unbounded with

                                                                        
6 Note that these tables give power, not size-adjusted power.
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frequency 0.95, as they should be in an unidentified model, and the set   −∞,∞[ ]  occurs roughly

85% of the time.  The results for the weak instrument case   = 0.1( )  are similar to the

unidentified case.  The size distortion of the Wald statistic is not as severe; the sets     CLM ,     CLR  and

    CAR  have correct coverage frequencies and are unbounded only 84% of the time.  In the good

instrument case π = 1( ) , all of the 95% confidence sets are bounded intervals with correct

coverage frequency.  The sets     CLM ,     CLR  and     CAR  are about  the same length and     CWald  is slightly

shorter.

Next consider the size results for the nominally over identified, k=4, model.  In the

unidentified and weak instrument cases,     CWald  has actual coverage frequencies much smaller

than .95 when ρ = 0.99 or 0.5.  For example, in the unidentified case with ρ = 0.99 the actual

frequency is only 1.3%.  By contrast,     CAR  has the correct coverage frequency in all cases and is

unbounded with frequencies .95 and .90 in the unidentified and weak instrument cases

respectively.  In the good instrument case,     CAR  is always bounded but is about 50% larger, on

average, than     CWald .  Interestingly,     CAR  is empty about 2% of the time in the good instrument

case and is empty slightly less frequently in the other cases.

In the unidentified and weak instrument cases, the sets     CLM  and     CLR  computed using

  .95

2 1( )  have actual coverage frequencies less than .95 for all values of ρ, although     CLM  has

nearly the correct frequency when ρ = 0.  The unbounded confidence sets occur less frequently

than 95% in the unidentified case.  The sets     CLM  and     CLR  based on   .95

2 4( ) have actual

frequencies of at least .95 in all cases and this supports the use of   
2 4( )  as a bounding

distribution for the LM and LR statistics.  These confidence sets are very close to     CAR  but appear

to be slightly larger than     CAR  in the good instrument case.

In the good instrument case, however, the actual coverage frequencies of     CLM  and     CLR

are very close to 1.  The sets     CLM  and     CLR  based on   .95

2 1( )  or   .95

2 4( ) (based on the significance of

F π= 0 ) perform much better than the sets based solely on   .95

2 4( ).  They have approximately
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coverage frequencies in all cases and in the good instrument case they are shorter, on average,

than     CAR  and are very close to the sets based on   .95

2 1( )  and     CWald .

To summarize our results on empirical size, the Wald confidence intervals are very

misleading when there is a poor instrument and strong endogeneity. In the just identified case,

LM, AR, and LR statistics all perform well. In the overidentified case, degrees of freedom-

switched versions LMsw and LRsw perform well. The AR confidence region always has the correct

size, but in the overidentified case is somewhat wider than LMsw and LRsw.

Now consider the issue of power. We present only results for the k=1 model since those

for the k=4 case are similar. Regardless of instrument quality, the powers of the LM, LR, and AR

statistics are very similar.  In the good instrument case, they are also nearly identical to the

power of the Wald test, and all four converge to unity at δ = 0.5.  For the weak instrument case,

the power curves vary considerably depending on the value of ρ.  For ρ = 0 and ρ = 0.5, the power

of LM, LR, and AR is roughly symmetric about ß=1 and are fairly flat over the range of .  When

ρ = 0.99, their power is relatively flat at about 5% except for a spike at     a = 0  due to the fact that

there is a local minimum in the likelihood function near   =1 (see Figure 6) and a global

maximum near   = 0 , making the LR statistic for testing the null hypothesis   =1 very large.

We note that Maddala (1974) has previously studied the power of the AR test and shown it to be

comparable to the power of the Wald test in the presence of good instruments.

The power of the Wald statistic is roughly U shaped in the weak instrument case, and

the location of minimum power is influenced by the value of ρ, reflecting the concentration

phenomenon.  In the unidentified case, the power of LM, LR, and AR is flat at 5% for all 

whereas the power of the Wald is rather sharply U-shaped and strongly influenced by the value

of ρ. In particular, the one case in which the Wald confidence region is notably better than the

others is when   = 0 , that is when there is no endogeneity.7

                                                                        
7 Of course, in this case one can do even better by doing least squares instead.
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6. Why Do Traditional Wald Confidence Intervals Perform So Poorly?
With a large enough sample, asymptotic distribution theory approximates actual

sampling distributions and should provide a good guide to inference. Having observed the

failure of Wald based inference, it is natural to conclude the problem is that the distribution

    
N ˆ 

2 SLS , ˆ 2 ′ x PZ x( )− 1( ) does a poor job approximating the true sampling distribution. Curiously,

it’s just the other way around. The reported distribution fairly accurate represents the

sampling distribution, but with weak instruments and significant endogeneity the sampling

distribution isn’t located particularly near the true parameter. (See Phillips (1989).) We

illustrate the problem in two ways, first by looking more closely at the likelihood function and

then by comparing the actual and reported sampling distributions.

Return to Figure 2, which shows the Wald statistic and the LR statistic, the latter being

the log-likelihood function less a constant.8  The difference is apparent, but only partially real.

Figure 7 shows the same plot magnified by truncating the horizontal scale. The apparently flat

likelihood function actually has a very sharp peak around     
ˆ 

2 SLS . The Wald statistic does a good

job of approximating this peak. Inference doesn’t work very well because while the peak in the

likelihood function is very sharp, there is very little mass under it.

Turn now to the question of how well sampling distribution is approximated by

    
N ˆ 

2 SLS , ˆ 2 ′ x PZ x( )− 1( ). There are both series and closed form expressions for the density of   
ˆ  in

quite general situations. (See Sawa (1969) and Phillips (1983).) These expressions do not lend

themselves to easy interpretation. However, Phillips (1989) and Staiger and Stock give the

following expression for the exact distribution     
ˆ 

2 SLS in the completely unidentified case of (1)-

(3).9

    

ˆ 
2 SLS ≡ + +

k
⋅t k (15)

                                                                        
8 If the LR is a little hard to see, look underneath the LM line.

9 The general expression for the just identified case is given in the appendix.
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where ≡  denotes equivalence in distribution,   = u v , 
    

= 1 − 2( )0. 5

u v , and   t k  denotes a

Student-t random variable with k  degrees of freedom.

Figure  8 shows the both the exact distribution and the normal approximation

evaluated at the median values of     
ˆ 

2 SLS  and its associated asymptotic standard error from two

unidentified models from the Monte Carlo experiments shown in Table 3.

In both cases the reported distribution is quite close to the true distribution, differing

mostly in that the true distribution (which is somewhat Cauchy-like) has fatter tales. The

problem with inference arises in the case of strong endogeneity because the distribution is

centered near the point of concentration. When ρ=0 there is no endogeneity and the distribution

is approximately median unbiased, which is consistent with the result reported in Nelson and

Startz (1990a).

Consider the density in (15) as   → 1, the worst possible case. Here   → u v  and   → 0

so that the density is zero except for a spike at     
ˆ 

2 SLS = + u
v .10 Given that the estimator

collapses to the point of concentration, one can write the instrumental variable residuals as

    y − ˆ 
2 SLS x = y − + u

v( )x = u − u
v x . But in this case   x = v  and   u = u

v v , so the residuals

collapse to zero. Since   ̂ 
2  is just the mean sum squared residuals, it too collapses to zero. Thus

the Wald confidence intervals, based on   ̂ 
2 , are far too small. In contrast, the LM, based on   ̂ 0

2 ,

is immune to this problem.

7. Example:  Campbell and Mankiw’s Estimate of the Fraction of Current
Income Consumers

In a classic paper, Campbell and Mankiw (1989) suggested that the slope in the

regression of the change in the log of consumption on the change in the log of current income

may be interpreted as the fraction of consumers that are current income consumers rather

than being permanent income consumers.  To deal with the endogeneity of current income,

they employ IV, using as instruments various combinations of lags of the change in income,

                                                                        
10 In contrast, when there is no endogeneity,   = 0 ,   = 0 . The exact density is   t k , which other than

having fat tails is not too badly represented by a normal.
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consumption, T bill yield, and also the lagged error correction term.  They find that the

asymptotic IV standard errors imply a striking rejection of the permanent income hypothesis,

while at the same time rejecting the hypothesis that the fraction of permanent income

consumers is zero.

In Table 16 we have estimated the same 9 models presented by Campbell and Mankiw in

their Table 1, but for a later time period having the same number of observation for which we

could obtain data from the DRI/ McGraw-Hill database.  The OLS slope in model is .278, not

dissimilar to the .316 reported by CM.  We find that all of the 95% Wald IV intervals except one

exclude zero, and all except two exclude unity.  The tightest intervals are provided by the

models with the greatest number of instruments.  The impression is that the fraction of current

income consumers is not less than about .25, but also is not more than about .90, the remaining

being permanent income consumers.

The LM and LR confidence regions presented in Table 16 give a qualitatively different

message.  Three of the LM confidence regions cover the whole real line.  The five closed LM

confidence regions are wider than the Wald intervals, but are not symmetric around the IV

point estimate.  All are shifted and skewed in the positive direction relative to the Wald so that

the upper bound increases more than the lower.  The upper bound is above unity in one case.

The LR results include one external confidence region that has a “hole” of rejection that is

narrow and not in the (0, 1) interval.  Two more LR confidence regions cover the whole real line.

The five closed intervals are again shifted and skewed in the positive direction, away from the

permanent income hypothesis, and in only two cases exclude unity.  Again, the tightest

intervals are provided with the models with the most instruments, and those exclude unity, but

the overall impression now is that unity cannot be ruled out, while fractions as low as the OLS

estimate are strongly rejected.  The effect of considering the non-Wald intervals is to shift the

evidence markedly away from the permanent income hypothesis.

8.  Conclusions
This paper is motivated by the poor performance of confidence intervals based on Wald

test statistics in the context of the estimation of a structural equation using weak instruments.
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Traditional Wald confidence regions are much too narrow and actually cover the true

parameter value with far lower probability than the nominal level.  Here we have investigated

alternatives to Wald confidence intervals, in particular those based on inversion of the test

statistic of Anderson and Rubin (1949), the likelihood ratio statistic, and the Lagrange

multiplier statistic.  Counterparts of the AR, LR, and LM confidence regions in the GMM

framework are also discussed.

Rather little attention has been paid to construction of confidence regions by inversion

of LR and LM test statistics in econometrics.  We find that the LR, LM, and AR confidence

regions have a similar quadratic structure, implying that they may be closed, unbounded,

disjoint.  While Wald confidence regions are always bounded, LR, LM, and AR confidence

regions are often unbounded when the instrumental variable is of poor quality.  When the F in

the first stage regression is not significant then unbounded confidence regions are likely to

occur, reflecting appropriately the lack of information in the data.  Further, the first stage F

turns out to serve as a convenient indicator of how to choose appropriate degrees of freedom for

constructing the confidence regions.  These phenomena are observed in a Monte Carlo

experiment that compares the unidentified (irrelevant instrument), weak instrument, and

good instrument cases.  While the AR confidence region always has correct coverage

probability because it is based on an exact distribution, the empirical coverage frequencies for

the LR and LM confidence regions are closest to the nominal level if the degrees of freedom is

adjusted according to whether the first stage F statistic is significant or not.

Comparisons of power suggest that the LM and LR offer some advantage over AR, but the

results are sensitive to adjustment of degrees of freedom base on the first stage F statistic. In

comparison to the modified statistics proposed by Staiger and Stock, all three statistics have

the considerable advantage of being free of nuisance parameters

In summary, in the instrumental variable framework inference and confidence regions

should be based on the LM or LR or on our degrees of freedom adjusted   LM SW  or   LR SW  statistics.

The AR statistic is also appropriate, having slightly better size and slightly worse power

properties.
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Appendix

     Proof of proposition 1:

It suffices to show that the numerators of the WaldGMM, LMGMM, and LRGMM are

numerically equivalent.  Write 
    
y − xˆ = y − x 0 − x ˆ − 0( )  .  Then

    
y − x ˆ ( ) ′

PZ y − x ˆ ( ) = y − x 0( )′ PZ y − x 0( ) − 2 ˆ − 0( )′ ′ x PZ y − x 0( ) + ˆ − 0( )′ ′ x PZx
ˆ − 0( )  and the

numerator of LRGMM becomes 
    
2 PZ x ˆ − 0( )[ ]′ y − x 0( ) − PZ x ˆ − 0( )[ ]′PZ

ˆ − 0( ) .  Next, observe

that 
    
PZ x ˆ − 0( ) = P ˆ x y − ˆ x 0 = Pˆ x − P ˆ x 

ˆ x 0 = P ˆ x y − x 0( ) since     P ˆ x x = P ˆ x 
ˆ x = ˆ x   Therefore, the

numerator of LRGMM simplifies to

    2 y − x 0( )′P ˆ x y − x 0( ) − y − x 0( ) ′
P ˆ x y − x 0( ) = y − x 0( )′ P ˆ x y − x 0( )  which is the numerator for

LMGMM.

Next, Consider the numerator for WaldGMM.  Simple manipulations yield

    
y − x 0( ) ′

′ x PZ x ˆ − 0( ) = Pˆ x y − x 0( )[ ]′ P ˆ x y − x 0( ) = y − x 0( )′ Pˆ x y − x 0( )  which is the numerator

for LMGMM.

     Proof of Proposition 2:

The AR, LR and LM confidence sets are determined by finding all values of ßo that

satisfy (16), and the set will be unbounded if the coefficient a in (16) is less than zero.

Part (a):  Here     a = x ' [I − AR • ZM ]x  where     AR =1 + F(k, T − k ;1− )• k T − k( ) .  Now a<0 if

    
(x 'x ) (x ' ZM x ) <

AR
 which can be rearranged to give the condition

    
= 0F =

(x' x − x ' ZM x )/k

x' ZM x /T − k
< F(k, T − k ;1 − ) .
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Part (b):  Here     a = x ' [I − LR • ZM ]x  where 
    

LR = exp
2 1;1 −( )

T

 
 
 

 
 
 

• ˆ .  Now a<0 if

    (x 'x ) (x ' ZM x ) < LR .  After some simple manipulations, we obtain the equivalent condition

    
= 0F =

(x' x − x ' ZM x )/k

x' ZM x /T − k
<

T − k

k
 
 
  

 
 • exp

2 1;1 −( )
T

 
 
 

 
 
 

• ˆ − 1
 

 
 

 

 
 .

Part (c):  Here     a = x ' [ ˆ x P − LM • I ]x  where ˆ x = ZP x  and     LM = 2 1;1 −( ) T .  Then a<0 if

    x ' ˆ x P x x ' x < LM , which is equivalent to the condition 
    
T • UC

2R = T •
x ' ZP x

x ' x
< 2 1;1−( )

     Proposition 3

The general statement of the density of the instrumental variable estimator for model

(1)-(3) in the just identified case follows directly from Hinkley (1969) who cites Fieller (1932).

The numerator and denominator of the IV estimator for (1)-(3) are distributed bivariate normal

with means     1 = M zz  and     2 = M ZZ , variances 
    1

2 = 2

v

2 + u

2 + 2 uv( )M ZZ  and     2

2 = v

2M ZZ ,

covariance 
    12 = v

2 + uv( )M ZZ , and correlation 
  

= 12

1 2

, where we have used  rather than 

for the coefficient in (2) to avoid confusion in the pdf with   ≈ 3.1415 . Letting Φ( ) represent

the standard normal cdf, the pdf for the instrumental variable estimator is

f(βIV) = 
b(βIV)d(βIV)

2π σ1σ2a
3(βIV)

Φ(j(βIV))-Φ(-j(βIV))  + 1-ρ2

πσ1σ2a
2(βIV)

 exp - c

2(1-ρ2)

where

    
a IV( ) = IV

2

1

2
−

2
IV

1 2

+
1

2

2

 

 
 

 

 
 

0.5

    
b IV( ) = 1 IV

1

2
− 1

+
2 IV( )

1 2

+ 2

2

2

    
c = 1

2

1

2
−

2
1 2

1 2

+ 2

2

2

2
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d IV( ) = exp
b 2

IV( ) − ca 2

IV( )
2 1 − 2( )a 2

IV( )
 
 
 

  

 
 
 

  

    

j IV( ) =
b

IV( )
1− 2 a

IV( )
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Table 1

Empirical Rejection Frequencies with and Without First-Stage Pre-test

  = 0   = 0.1

all 62.92%

(6292/10000)

18.72%

(1872/10000)

first-stage significant 100%

(518/518)

86.88%

(1470/1692)

first-stage not significant 60.89%

(5774/9482)

4.84%

(402/8308)
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     Table 2: The Just Identified Model; k=1     
π = 1 π = 0.1 π = 0.0

OLS
ˆ β 0.550  (0.044) 0.975  (0.015) 0.995  (0.013)

2SLS
ˆ β 0.148  (0.081) 0.657  (0.152) 1.064  (0.101)

ˆ π 1.161  (0.010) 0.262  (0.010) 0.162  (0.009)

π= 0F 108.1  (0.000) 5.48  (0.019) 2.092  (0.148)

T • UC
2R 52.45  (0.000) 5.297  (0.021) 2.090  (0.148)

CWald(ß,.95) [-0.01, 0.31] [0.38,  0.95] [0.90,  1.30]

CLM(ß,.95) [-0.053, 0.285] [-1.196, 0.832] [-•, •]

CLR(ß,.95) [-0.050, 0.284] [-1.085, 0.831] [-•, •]

CAR(ß,.95) [-0.050, 0.284] [-1.090, 0.831] [-•, •]

     Table 3: The Overidentified Model: k=4     
π = 1 π = 0.1 π = 0.0

OLS
ˆ β 0.538  (0.050) 0.985  (0.016) 0.995  (0.013)

2SLS
ˆ β 0.040  (0.101) 0.586  (0.256) 0.898  (0.128)

LIML
ˆ β 0.027  (0.103) 0.316  (0.530) 0.852  (0.185)

ˆ κ 1.012 1.011 1.005

ˆ π : 1 1.018  (0.000) 0.118  (0.000) 0.018  (0.010)

2 -0.030  (0.011) -0.030  (0.011) -0.030  (0.011)

3 -0.060  (0.010) -0.060  (0.010) -0.060  (0.010)

4 0.139  (0.012) 0.139  (0.012) 0.139  (0.012)

π= 0F 21.859  (0.000) 0.681  (0.606) 0.384  (0.820)

T • UC
2R 47.927  (0.000) 2.784  (0.595) 1.592  (0.810)

CWald(ß; .95) [-0.15,  0.25] [0.10,  110] [0.70,  110]

CLM
1 β; .95( ) [-0.214,  0.208] [-•, 0.837]»[3.232, •] [-•,  •]

CLM
4 β; .95( ) [-0.452,  0.287] [-•, 0.906]»[1.394, •] [-•,  •]

CLR
1 β; .95( ) [-0.231,  0.197] [-•, 0.744]»[2.300, •] [-•,  •]

CLR
4 β; .95( ) [-0.460,  0.272] [-•, 0.828]»[1.446, •] [-•,  •]

CAR(ß; .95) [-0.412,  0.259] [-•, 0.816]»[1.506, •] [-•,  •]

Notes: numbers in parentheses are standard errors for coefficient estimates and are p-values
for test statistics.
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Table 12:
Empirical Power of Various Statistics: k = 1, ρ = 0

π = 0
Wald AR LM LR

β = −1.00 0.26 0.06 0.06 0.06
β = −0.75 0.21 0.05 0.05 0.06
β = −0.50 0.16 0.05 0.05 0.05
β = −0.25 0.13 0.04 0.04 0.04
β = 0.00 0.08 0.06 0.06 0.07

β = +0.25 0.03 0.05 0.05 0.05
β = +0.50 0.01 0.05 0.05 0.05
β = +0.75 0.00 0.04 0.04 0.05
β = +1.00 0.00 0.06 0.05 0.06
β = +1.25 0.00 0.04 0.04 0.04
β = +1.50 0.01 0.06 0.06 0.07
β = +1.75 0.03 0.05 0.05 0.05
β = +2.00 0.07 0.05 0.05 0.06
β = +2.25 0.12 0.07 0.07 0.07
β = +2.50 0.16 0.05 0.05 0.05
β = +2.75 0.22 0.04 0.04 0.04
β = +3.00 0.24 0.06 0.06 0.06

π = 0.1
Wald AR LM LR

β = −1.00 0.47 0.14 0.14 0.14
β = −0.75 0.40 0.13 0.13 0.13
β = −0.50 0.34 0.12 0.12 0.12
β = −0.25 0.23 0.11 0.11 0.11
β = 0.00 0.17 0.11 0.11 0.11

β = +0.25 0.09 0.09 0.09 0.09
β = +0.50 0.03 0.07 0.07 0.08
β = +0.75 0.00 0.06 0.05 0.06
β = +1.00 0.00 0.04 0.04 0.04
β = +1.25 0.01 0.04 0.04 0.04
β = +1.50 0.05 0.09 0.09 0.09
β = +1.75 0.08 0.09 0.09 0.09
β = +2.00 0.17 0.11 0.11 0.11
β = +2.25 0.26 0.11 0.11 0.12
β = +2.50 0.31 0.15 0.14 0.15
β = +2.75 0.38 0.12 0.11 0.12
β = +3.00 0.44 0.14 0.13 0.14

π = 1
Wald AR LM LR

β = −1.00 1.00 1.00 1.00 1.00
β = −0.75 1.00 1.00 1.00 1.00
β = −0.50 1.00 1.00 1.00 1.00
β = −0.25 1.00 1.00 1.00 1.00
β = 0.00 1.00 1.00 1.00 1.00

β = +0.25 1.00 1.00 1.00 1.00
β = +0.50 1.00 1.00 1.00 1.00
β = +0.75 0.68 0.66 0.66 0.66
β = +1.00 0.05 0.05 0.05 0.05
β = +1.25 0.71 0.68 0.68 0.68
β = +1.50 1.00 0.99 0.99 0.99
β = +1.75 1.00 1.00 1.00 1.00
β = +2.00 1.00 1.00 1.00 1.00
β = +2.25 1.00 1.00 1.00 1.00
β = +2.50 1.00 1.00 1.00 1.00
β = +2.75 1.00 1.00 1.00 1.00
β = +3.00 1.00 1.00 1.00 1.00
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     Table 16:  95% Confidence Intervals for Campbell and Mankiw’s Estimate of the Fraction of
     Current Income Consumers; quarterly data 1961.1:1994.4.

Model: instr. First stage R-sq Wald IV LM switching LR switching
1: OLS (.20, .35)
2: 3 lags ∆y .024 (.04, 1.51) (-∞, +∞) (-∞, -.14)∪(-.01, +∞)
3: 5 lags ∆y .060 (.19, .90) (-∞, +∞) (-∞, +∞)
4: 3 lags ∆c .076* (.24, .89) (.30, 1.20) (.38, 2.15)
5: 5 lags ∆c .115* (.28, .78) (.31, .92) (.42, 1.56)
6: 3 lags ∆i .026 (-.00, 1.06) (-∞, +∞) (-∞, +∞)
7: 5 lags ∆i .070* (.28, .78) (.31, .93) (.42, 1.56)
8: 7 in total .170* (.25, .63) (.26, .69) (.30, .84)
9: 10 in total .210* (.29, .65) (.31, .69) (.40, .92)

* First stage regression significant at .05 level.


