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 Abstract

In this paper I present an alternative derivation of the asymptotic distribution of Kremers,
Ericsson and Dolado’s (1992) conditional ECM based t-test for cointegration with a single
prespecified cointegrating vector.   This alternative distribution, which is identical to the distribution
of Hansen’s (1995) covariate augmented t-test for a unit root,  is valid for weakly exogenous
regressors and depends on a consistently estimable nuisance parameter that takes on values in the unit
interval.  I show analytically, using asymptotic power functions based on near-cointegrated
alternatives, that the ECM t-test with a prespecified cointegrating vector can have much higher power
than single equation tests for cointegration based on estimating the cointegrating vector.  I also
characterize situations in which the ECM t-test computed with a misspecified cointegrating vector
will have high power.
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1.  Introduction
The single equation conditional error correction model (ECM) based t-test for no-

cointegration imposing a prespecified cointegrating vector, proposed by Kremers, Ericsson and

Dolado (1992), hereafter KED, has not been used empirically because its asymptotic distribution

depends on a nuisance parameter that can take on any positive number and is valid only for strongly

exogenous regressors.   In this paper, I give an alternative representation of the asymptotic

distribution for the ECM t-test that is a mixture of a Dickey-Fuller unit root distribution and a

standard normal distribution.  This mixture distribution depends on a consistently estimable nuisance

parameter, , that takes on values in the unit interval and describes the long-run contribution of the2

short-run dynamics to the fit of the ECM regression. This result makes the test feasible for empirical

purposes and, additionally, is valid for non-strongly exogenous regressors.  It turns out that the

asymptotic distribution of the ECM t-test is identical to the asymptotic distribution of Hansen’s

(1995) covariate augmented t-test for a unit root.  In addition, the single equation tests presented

herein can be thought of as conditional versions of some of the system-based ECM tests for

cointegration described in Horvath and Watson (1995).

I derive analytic power functions for the ECM t-test based on near cointegrated alternatives

and show that if  is small: (1) The power of the ECM t-test can be arbitrarily larger than the power2

of the ADF t-test based on a prespecified cointegrating vector; (2) At 50% power, the difference

between the ECM t-test with a correctly specified cointegrating vector and an ECM t-test based on

estimating the cointegrating vector corresponds to a sample size increase of up to 220%; (3) At 50%

power, the implied sample size increase from using an ECM t-test based on estimating the

cointegrating vector versus the Engle-Granger residual ADF t-test is about 170%.  (4) The power

of the ECM t-test when the prespecified cointegrating vector is misspecified is still considerably larger

than the power of the ECM t-test using an estimated cointegrating vector for moderate degrees of

misspecification.  These results emphasize that imposing a prespecified cointegrating vector and

correctly modeling the short-run dynamics can have an enormous impact on the power of tests for

cointegration.

The plan of the paper is as follows.  Section 2 reviews the relationship between cointegration,

error correction models and single equation conditional error correction models.  In section 3, I
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discuss the test regressions used to compute the ECM t-test for no-cointegration with a prespecified

cointegrating vector and I derive the asymptotic distribution of the t-test under the null of no-

cointegration and under near cointegrated alternatives.  In section 4, I compare the local power of

the ECM t-test when the cointegrating vector is prespecified with the power of the ECM t-test when

the cointegrating vector is estimated from the data. Section 5 considers the effects on local power of

misspecifying the cointegrating vector.  Concluding remarks are given in section 6.  Proofs of

important results are relegated to the appendix.

I use the following notational conventions throughout the paper.  I use the symbol "  " to

signify weak convergence, the symbol "  " to signify equality in distribution and the inequality " >

0 " to signify positive definite when applied to matrices.  I(d) denotes integrated of order d.  BM( )

refers to a Brownian motion with covariance matrix .  Brownian motions B(r) on [0,1] are

frequently written as B to achieve notational economy and I often write integrals with respect to

Lebesgue measure such as  B(s)ds more simply as B.0     0
1     1

2.  Cointegration and Conditional Error Correction Models
In this paper, I consider the following single equation conditional ECM with a prespecified

cointegrating vector  = (1, - ) :

y  = µ  + t + y  + (y  - y ) + C (L) y  + C (L) y  + (1)1t  1·2  1·2   2t  1·2 1t-1  2t-1   11 1t-1  12 2t-1  t

where C (L) and C (L) are lag polynomials of orders l and p, y  is an (n-1)-dimensional I(1) vector11   12          2t

time series and  is an innovation process with respect to {y , y , y  j=1,2,...} with variance .t        2t  1t-j  2t-j,    
Equation (1) is a general specification of the type of single equation ECMs discussed at length in

Banerjee, Dolado, Galbraith and Hendry (1993), henceforth BDGH,  and employed in many empirical

studies using the “LSE” or “Hendry” methodology.  To interpret (1), think of the data in logs so that

the elements of  represent “long-run elasticities” of y  with respect to the elements of y  and the1       2

elements of  represent “short-run elasticities”. As discussed in Boswijk (1994), (1) is stable and yt

= (y , y )  is cointegrated with cointegrating vector  = (1, - )  if the roots of the characteristic1t  2t

equation 

(z) = (1 - z)(1 - C (z)) - z = 011   1·2

lie outside the unit circle.  In this case the cointegrating relationship represents the long-run
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(6)

equilibrium relationship.  The model is unstable and there is no long-run equilibrium if there is a root

on the unit circle, in which case  = 0. 1·2

The conditional ECM (1) can be thought of as having been derived from a VAR(p) model for

the (n × 1) vector y  by conditioning on y .  The VAR formulation is useful for illustrating severalt    2t

concepts that are important for testing the cointegration hypothesis so I will digress for a moment on

the relationship between the VAR and the conditional ECM.  Let y  follow the augmented VAR(p)t

process

y  = d + x (2a)t  t  t

(L)x = , (2b)t  t

where d  represents deterministic terms,  (L) = I  - L  and  ~ i.i.d. N(0, ). To isolate thet       n  1 i   t
p i

long-run components it is useful to decompose (2b) as

x  = x  + (L) x  + , (3)t  t-1  t-1  t

where  = - (1), (L) = L  and  = - .  Further, assume that x  ~ I(1) and   has rank1 i   i  i+1 j      t
p-1 i-1    p

1 so that x  is cointegrated with a single cointegrating vector which is assumed to be of  the form xt                  t

= x  - x  ~ I(0). Given that  has rank 1, it can be expressed as1t  2t

where  is (1 × 1) and  and  are ((n-1) × 1) vectors, respectively.  Then (3) may be rewritten as1      2

the vector error correction model (VECM)

x  = x  + (L) x  + . (4)t  t-1  t-1  t

 Let d =  + t, for example, and substitute (2a) into (2b) to give VECM representation fort

yt

y  = µ + t + y  + (L) y  + , (5)t      t-1  t-1  t

where µ = (I  - (1))  +  -   and  =  . Partitioning (4) with respect to y  and y  givesn                1t  2t

the system of equations

In the VECM (6),  y  ~ I(1) and is not cointegrated if  has rank zero which implies that  = 0.t
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Hence no-cointegration imposes n zero restrictions on . 

Let I  = ( y , y ,..., y , y , y ,..., y ,  w ).  Using the normalityt-1  1t-1  1t-2  1t-p+1  2t-1  2t-2  2t-p+1   t-1

assumption, conditional on y  and I , y  is normally distributed with conditional mean and2t  t-1  1t

variance given by

E[ y y , I ] = µ + t + (y  - y ) + y  + C (L) y  + C (L) y  ,1t 2t  t-1   1 2  1·2   1 2 1t-1  2t-1   2t  11 1t-1  12 2t-1

var( y y , I ) =  =  - ,1t 2t  t-1   11.2  11  21 22 21
-1

where   = ,  µ  = µ  - µ ,   =  = ,  =  - , C (L) = (L) - (L) and22 21   1 2  1  2   1·2  1  2  1 2  1  2  11   11   21
-1

C (L) = (L) - (L).  As an alternative to the unconditional system (6),  y  can be thought of12   12   22            t

as being generated by the conditional/marginal system

y  = µ  + t + (y  - y ) + y  + C (L) y  + C (L) y  + , (7)1t  1 2  1·2   1 2 1t-1  2t-1   2t  11 1t-1  12 2t-1  1.2t

y  = µ  + t + (y  - y ) + (L) y  + (L) y  + , (8)2t  2  2   2 1t-1  2t-1   21 1t-1  22 2t-1  2t

where  =  -  and 1.2t  1t  2t

Equation (7) is in the form of (1) with µ = µ  and  = ,.1 2  t  1.2t

The conditional ECM (7) is assumed to be the model of primary interest for testing the

presence of cointegration with a prespecified cointegrating vector. Accordingly, it is important to

discuss the conditions under which the marginal model (8) can be safely ignored when testing for

cointegration using (7).  The concept of weak exogeneity as defined by Engle, Hendry and Richard

(1983) plays a key role in determining the consistency and power of tests for cointegration using

conditional ECMs.  Johansen (1992) and Urbain (1993) discuss weak exogeneity in general error

correction models and the reader is referred to these articles for full details.  In the present context,

if y  is cointegrated with cointegrating vector  = (1, - )  and if y  is weakly exogenous for  = ( ,t            2t       1

) , then  and  can be efficiently estimated from the single equation conditional ECM (6).1

Johansen (1992) shows that y  is weakly exogenous for  if  = 0; i.e. if the marginal equation for2t       2

y  is not error correcting.  In this case,  =  and the conditional ECM for y  becomes2t         1 2  1      1t

y  = µ  + t + (y  - y ) + y  + C (L) y  + C (L) y  + .1t  1 2  1·2   1 1t-1  2t-1   2t  11 1t-1  12 2t-1  1.2t

Under weak exogeneity, therefore, testing for no cointegration only involves testing a zero restriction

on the scalar parameter .1
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Under cointegration, if y  is not weakly exogenous for  then  =  -  and the2t        1 2  1  2

hypothesis of no-cointegration requires  =0 and  = 0 since  = 0 may occur if  y  and y  are1   2    1 2       1t  2t

cointegrated but  = .  In this latter case, the single equation conditional model does not contain1  2

all of the necessary information to test the no-cointegration hypothesis and a systems based approach,

as in Johansen (1988) or Horvath and Watson (1995),  is preferred.  As a result, for the single

equation tests analyzed in this paper it is necessary to make the additional assumption that under

cointegration y  is weakly exogenous for  = ( , ) .2t       1

3.  Testing for Cointegration in Conditional ECMs with a
Prespecified Cointegrating Vector

3.1 Test Statistics

The discussion in the previous section makes it clear that testing for cointegration in the single

equation conditional ECM (1), assuming weak exogeneity under cointegration, is based on testing

the hypotheses

H :  (no cointegration)   = 0  vs.  H :  (cointegration)   < 0.0      1      1     1

KED suggested using the standard t-ratio t ( ˆ ) = ˆ /SE(ˆ ), where ˆ  is the OLS estimate of  andK
1   1 1   1      1

SE(ˆ ) is its estimated standard error.  They derived the asymptotic distribution of t ( ˆ ) under the1              1
K

null of no cointegration and under local-to-zero near cointegrated alternatives for a simple bivariate

model with no deterministic terms or higher order dynamics.  Their functional representation of the

limiting distributions, however, depends on a nuisance parameter that can take on any positive  value

and so is difficult to use in practice.

With deterministic terms, d ,  in the representation for y , the specific regression equation usedt       t

to estimate  depends on the nature of these terms.  I consider the specification d  =  + t, where1             t

both  and  are n × 1 vectors.  The conditional/marginal representation, under the weak exogeneity

assumption, is then

y  = µ  + t + (y  - y ) + y  + C (L) y  + C (L) y  + ,1t  1 2  1   1 1t-1  2t-1   2t  11 1t-1  12 2t-1 t

y  = µ  + (L) y  + (L) y  + ,2t  2  21 1t-1  22 2t-1  2t

where  = .   Notice that the weak exogeneity assumption,  = 0, eliminates the time trend1  1          2
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from the marginal model for y .2t

There are four versions of the specification d =  + t that are used in empirical applications.t

These cases and the restrictions they imply on the trend parameters in the conditional and marginal

models are summarized in table 1.  In case I,  =  = 0 so that µ =  = 0.  The conditional ECM to

be estimated is then

y  = y  + z  + (9)1t  1 t-1  t  t

where z  = ( y , ..., y , y , y , ..., y  ) and  = (c , ..., c , , c , ..., c )t   1t-1   1t-l  2t  2t-1   2t-p      11,1   11,l-1   12,1   12,p-1

are (1 × k) vectors.  In case II,   0 and is unrestricted but  = 0.  This implies that µ  = 0 so that2

µ  = µ  = -   and  = 0.  The conditional ECM becomes1·2  1  1    1

y  = ( y   - µ ) + z  + (10)1t  1 t-1     t  t
+

where  µ  = .  Here, y  is not trending and there are no restrictions on the initial values of x  or+
t              t

on the mean of the error correction term y .  It is unlikely, however,  that  µ  is known a priori, e.g.t
+

specified by economic theory, so it is not possible to estimate (10) directly by OLS.  Moreover, under

the null of no-cointegration y  = x  + , which is I(1) with drift, so that a constant is requiredt  t

in the ECM regression to obtain a similar test statistic.  Therefore, the test regression is (9) with zt

augmented with a constant .  In case III,   0 and   0 but is restricted by the relation  = 0.1

This implies that µ  is unrestricted,  = 0 and so the conditional ECM becomes1·2   1

y  =  µ  + y  + z  + .1t   1·2  1 t-1  t  t

The test regression in this case is also (9) with z  augmented with a constant.  Case IV has   0 andt

  0 with no restrictions on either  or .  Here µ  is unrestricted but  =  so that the time1·2    1  1

trend is restricted to the error correction term.  The conditional ECM is

y  =  µ  + ( y   - (t-1)) + z  + (11)1t   1·2  1 t-1     t  t
+

where  = .  As in case II, it unlikely that  is prespecified by economic theory so that (11) is+           +

not directly estimable by OLS.  Also under the null of no-cointegration, y  = x  +  +  tt  t

and so a constant and a time trend must be included in the ECM regression to obtain a similar test.

Therefore the test regression in this case is (9) where z  is augmented with a constant and a timet

trend.
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3.2  Asymptotic Theory Under the Null of No Cointegration

It will be useful to rewrite the conditional model for x  as1t

a(L) x  = x  + b(L) x  +  = x  + e (12)t  1 t-1  2t t  t-1  t

where a(L) = 1 - C (L)L, b(L) = (  - ) + [C (L) + C (L) ]L and e = b(L) x  + .  Define 11        12   11   t  2t  t    t

= ( , x )  and  v  = ( , e ) . It is assumed thatt  2t    t  t  t

where B (r) = (B (r), B (r) )  is an n-dimensional Brownian motion, B (r) = (B (r), B (r))  is a   2       v    e

bivariate Brownian motion, 

with  = b(1) b(1) +  + 2b(1)  and  = b(1)  + . In addition, define the long-runee  22     2   e  2   
correlation parameters

In the above expressions, r² is the squared long-run multiple correlation coefficient between

 and x , ² is the squared long-run correlation between e  and , R  is the proportion of the long-t  2t         t  t
2

run variance of e  explained by  and q² measures the percentage by which the long-run variance oft   t

e  is larger than the long-run variance of .  Notice that R² = 1/(1 + q²) and if x  is stronglyt        t            2t

exogenous, i.e. if x  does not Granger cause x  in the marginal model for x ,  then r² = 0 and1t     2t      2t

² = R .2

At one extreme, ² = 1 which implies that the error terms e  and  are perfectly correlatedt  t

in the long-run and have the same long-run variance. In this case, b(L) x  explains none of the long-2t

run variability of e .  This occurs in the conditional ECM if b(1) = 0.  KED emphasize that b(1) = 0t
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if, for example, x  satisfies the generalized common factor restriction  =  and C (1) = C (1) ,1t           12   11

in which case the conditional ECM for x  takes the form of an ADF regression.  At the other1t

extreme, ² = 0 so that the long-run variance of e  is infinitely larger than the long-run variance of .t         t

This case occurs when b(L) x  explains all of the long-run movement of e .  2t        t

The condition R² = ² occurs when x  is long-run uncorrelated with , which, Hansen2t     t

(1995) (hereafter referred to as Hansen) states, should hold in a well specified dynamic regression.

In the VECM set-up, however, this occurs when x  is weakly and strongly exogenous and a well2t

specified conditional ECM only requires current and lagged values of x  as well as lagged values2t

of x .   If, however, x  is not strongly exogenous then the long-run correlation between  x  and1t      2t           2t

 can be eliminated by adding leads of x  to the conditional ECM .  In this case, we define b(L)t        2t
2

= (  - ) + [C (L) + C (L) ]L + C (L ) where  C (L ) is a polynomial in the forward shift12   11
12 -1    12 -1

operator L .   Alternatively, the long-run correlation may also be eliminated using a Phillips-Hansen-1

type nonparametric correction to the ECM as in Inder (1993).

To succinctly express the limiting distributions of the ECM-based test statistics when

deterministic terms are added to the test regressions, it is useful to employ the following notation.

Let X(r) and Z(r) denote two vector processes defined on [0,1].  Consider the continuous time

regression of X(r) on Z(r),  X(r) = ˆ Z(r) + Q X(r) where ˆ solvesZ(r)

The continuous time regression residual, Q X(r), is defined asZ(r)

 For example, if Z(r) = 1 then Q X(r) =  which is a demeaned version of X(r).1

The following theorem gives the asymptotic distributions for the ECM based t-test under the

null hypothesis of no-cointegration when a fixed cointegrating vector  is imposed.
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Theorem 1   In case I, if  is estimated from (9) then as T  1

where W (r) is a standard Brownian motion independent of the N(0,1) random variable.  In casese

II and III, if a constant is added to the ECM regression (9) then W(r) is replaced by Q W (r); Ine     1 e

case IV, if a constant and trend are added to the ECM regression (9) then W(r) is replaced bye

Q W (r).(1,r) e

Corollary  If y  is strongly exogenous then2t

where W (r) and W (r) are independent standard Brownian motions.  e

  

Theorem 1 shows that if a fixed cointegrating vector is imposed then the asymptotic

distribution of  t ( ˆ ) depends on the nuisance parameter ² measuring the long-run contribution ofK
1

y  to the conditional model.  The asymptotic distribution  is a linear combination of a Dickey-Fuller2t

unit root distribution and a standard normal random variable.  Notice that when ² = 1 the

distribution collapses to the Dickey-Fuller unit root distribution and when ² = 0 the distribution

reduces to a standard normal. In fact, the distribution of t ( ˆ ) is identical to the asymptoticK
1

distribution of Hansen’s covariate augmented t-test for a unit root. Simulated critical values for

selected values of ²  (0,1) are given in Hansen.
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If y  is strongly exogenous then ² = 1/(1+q²) and the Corollary shows that the asymptotic2t

distribution of the t-test can be alternatively expressed in terms of q².  This is the result first obtained

by KED for the simple case with no deterministic terms, n = 2 and p = 0.  Hence KED’s result is only

valid for strongly exogenous conditioning variables whereas the result presented here holds more

generally.

Even though the asymptotic distribution of t ( ˆ ) depends on the nuisance parameter ²,K
1

Hansen shows it can still be used for inference since it is possible to consistently estimate ² using

nonparametric techniques. For example, an estimate of  can be constructed from the nonparametric

estimate of :v

where w( ) is a kernel weight function, M is a bandwidth parameter and v̂  = (^ , ê )  is constructedt  t  t

from the parameters of the estimated ECM.  Hansen suggests using the Bartlett or Parzen kernel with

M determined by Andrews’ (1991) automatic bandwidth selection procedure.

3.3  Asymptotic theory Under Near Cointegrated Alternatives

The asymptotic power analysis is for near cointegrated alternatives of the form

H :  = -ca(1)/T (13)a  1

where c is a constant and T is the sample size.  The no-cointegration null holds when c = 0 and holds

locally as T   for c > 0. 

The asymptotic power functions for the near-cointegrated alternatives are derived using the

local-to-unity asymptotics of Phillips (1987) and Chan and Wei (1987) as applied by Hansen.  This

theory is based on diffusion representations of continuous stochastic processes.  Let Z(r) be any

stochastic process and let c be any constant.  Then Z (r) is defined as the solution to the stochasticc

differential equation  dZ (r) = -cZ (r) + dZ(r).c   c

The following theorem gives the asymptotic distribution of t ( ˆ ) under the near cointegratedK
1

alternative (13).
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Theorem 2 In case I, if y  is generated from (1), y  is weakly exogenous for  = ( , )  and (13)1t     2t        1

holds then as T  

where W (r) is a standard Brownian motion independent of the N(0,1) random variable.  In casese

II and III, if a constant is added to the ECM regression then W(r) is replaced by QW (r); In casee     1 e
c     c

IV, if a constant and trend are added to the ECM regression then W(r) is replaced by Q W (r).e     (1,r) e
c     c

The local asymptotic distribution of t ( ˆ ) is identical to the local distribution of Hansen’sK
1

covariate augmented t-test.  The local power of t ( ˆ ) depends on c, ² and R².  Two cases are ofK
1

interest.  In the first case, y  is strongly exogenous so that  r² = 0 and ² = R².  In the second case,2t

y  is not strongly exogenous,  r²  0 and ²  R².  Hansen  shows that local power increases with2t

decreases in ² and decreases with increases in the number of deterministic terms in the regression.

He also shows that, for a given value of ², power is larger for smaller values of R² and vice-versa.

When ² = 1, t (ˆ ) behaves very much like the ADF t-test for a unit root in the cointegratingK
1

residuals y.  A comparison of the local power of t ( ˆ ) for ² = 1 and ² = 0.1 for a given value oft          1
K

c gives an indication of the potential power gains from using t ( ˆ ).  Alternatively, as in Horvath andK
1

Watson (1995), one may fix the power at a given percent and compare the sample size differentials

implied by the different values of c for the two test statistics.  For example, figure 1 illustrates the

asymptotic local power of  t (ˆ ) for the case in which ² = R² and a constant is included in the ECMK
1

test regression.  From figure 1, it can be deduced that at 50% power the potential power gain from

using t (ˆ ) instead of the ADF t-test, for a model estimated with a constant, corresponds to a sampleK
1

size increase of roughly 667%.
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4. Comparison of Local Powers of ECM  t-tests with  Prespecified and 
Estimated.

It is of interest to compare the asymptotic local power of the conditional ECM t-test with 

prespecified to a conditional ECM t-test with  estimated.  This comparison will highlight the local

power gains from using a test that imposes the true cointegrating vector versus a test that does not.

BDGH, building on earlier work of Banerjee, Hendry and Smith (1986) and KED, propose

a simple t-test for no-cointegration in a conditional ECM with unknown .  Their approach is based

on rewriting (9) as

y  = y  + y  + z  + (14)1t  1 A t-1  2t-1  t  t

where  = (1, - ) ,   is an arbitrary (n-1) × 1 vector and  = (  - ) .  Notice that  is notA   A   A           1 A      1
3

affected by imposing the arbitrary error correction term so that a test for no-cointegration based on

the significance of  is still, in principle, valid.  Hence the t-ratio for from this regression can be1           1 

used as a test for cointegration with  unknown provided its asymptotic distribution can be

determined.  We denote this statistic t ( ˆ ) .  Using similar arguments as in KED, BDGH claim thatU 4
1

t ( ˆ ) will have higher power than the residual-based two-step Engle-Granger ADF t-statistic.U
1

Boswijk (1994) derives the asymptotic null distribution of t ( ˆ ) and shows that it isU
1

asymptotically similar only if y  is strongly exogenous .  In this case, the asymptotic null distribution2t
5

is independent of ² but depends on the dimension, n-1, of y .  Banerjee, Dolado and Mestre (1994)2t

tabulate critical values for t (ˆ ) for n-1 = 1, ..., 5 for the no-constant, constant only and constant andU
1

trend cases and show that these critical values are very similar to the critical values tabulated by

Phillips-Ouliaris (1990) for residual-based tests for cointegration.

Using the results of the previous section it is straightforward to derive the asymptotic

distribution of t ( ˆ ) under the local alternative (13).U
1

Theorem 3 If y  is generated from (1), y  is strongly exogenous and (13) holds then as T  1t     2t
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1
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1

0
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1

0
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1

0
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0
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where  a  is any (n-1) × 1 vector of unit length, q² = (1 - ²)/ ²  and Z(r) is a stochastic process on

[0,1] such that: (case I)  Z(r) = W(r); (cases II and III)  Z(r) = ( W(r) , 1)   if a constant is2          2

included in (14);  and (case IV)  Z(r) = ( W (r) , 1, r)    if a constant and trend are included in(14).2

The asymptotic distribution of  t ( ˆ ) under the local alternative depends on c, ², n and theU
1

nature of the deterministic terms in the ECM regression.  When c = 0, the distribution collapses to

which is independent of ², but dependent on the dimension of W , and is equivalent to the expression2

given in theorem 2 of Boswijk (1994).

Figures 2-4 compare the local powers of  t ( ˆ ) and  t ( ˆ ) for ² = 0.1, 0.5 and 0.9 with nU    K
1    1

= 2.  For each value of ² the power of  t ( ˆ ) is well above the power of  t ( ˆ ) and the power gainsK         U
1         1

are larger at smaller values of ².  For example, at 50% power the power difference when no

deterministic terms are included in the regression corresponds to sample size increases of roughly

220%, 75% and 56% for ² = 0.1, 0.5 and 0.9.  When a constant is included the sample increases are

175%, 85% and 35% and when a constant and trend is included the sample size increases are 220%,

81% and 20%, respectively.

Figures 5-7 show the difference in local power between  t ( ˆ ) and  t ( ˆ ) as the dimensionU    K
1    1

of y  increases for ² = 0.9, 0.5 and 0.1.  For a given value of ², the power of  t ( ˆ ) is the same2t                    1
K

for all n whereas the power of  t ( ˆ ) declines as n increases.  Interestingly, the power loss of  t ( ˆ )U             U
1             1

as n increases is substantially reduced for small values of ².  Comparing the power of t ( ˆ ) at ²U
1
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=0.1 and 0.9 gives an indication of the potential power increase from using t ( ˆ ) versus the Engle-U
1

Granger residual-based ADF t-statistic.  At 50% power and n=2, the potential power gain for a model

estimated with a constant corresponds to a sample size increase of roughly 172%.

5.  Effects on Local Power of Misspecifying the Cointegrating Vector

It is clear from the previous sections that there are potentially very large power gains

associated with imposing the true value of the cointegrating vector in single equation tests for no-

cointegration.  However, it is not so clear what happens to the performance of t ( ˆ ) if the wrongK
1

cointegrating vector is imposed in the estimated ECM regression.  Following Horvath and Watson,

I consider the behavior of t ( ˆ ) under the local alternative (13) since under fixed cointegratedK
1

alternatives t ( ˆ ) is an inconsistent test if the lagged error correction term is misspecified.K
1

To simplify the analysis, let (1) represent the true model with y  strongly exogenous.2t

Suppose an investigator imposes the misspecified cointegrating vector  = (1, - )  whereM   M

 =  + a(1) d (16)M
-1

and d is any (n-1)× 1 vector.  The misspecified error correction term is then y  = y   - a(1) d y .M t  t   2t
-1

The true model may therefore be reexpressed as (14) with  given by (16). Notice that theA

misspecification of the error correction term creates  additional I(1) regressors in the true model (14).

Under the local alternative (13),  = -cd/T so that the coefficients on the additional I(1) regressors

are local-to-zero.   The estimated model, however, is the misspecified model which excludes the

lagged value of y :2t

y  = y  + z  + u (17)1t  1 M t-1  t  t

where u  =  y  + .  The asymptotic distribution of t ( ˆ ) computed from (17) under the localt   2t-1  t       1
K

alternative (13) is given in the next theorem.

Theorem 4 In case I, if y  is generated from (1), y  is strongly exogenous and (13) and (16) hold1t     2t

then as T  
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where Z (q,s;r) = q(a W (r))- s(a W (r)) + W (r) , q² = b(1) b(1)/  = (1 - ²)/ ², s² =c   c    c
2  2       22

d d/  and a  is any (n-1) × 1 vector of unit length.  In case II, if a constant is included in the22

regression then  Z (q,s;r) is replaced by QZ (q,s;r).  In cases III and IV, if a constant and trend arec     c
1

included then  Z(q,s;r) is replaced by Q  Z (q,s;r) .c      c
(1,r)

The asymptotic distribution of t ( ˆ ) computed from the misspecified model under the localK
1

alternative depends on the parameters c, q² (and hence ²), s² and n.  The parameter s is the length

of d scaled by the relative variability of the long-run variances of y  and .  When s is large (large2t  t

misspecification) the second term in the limiting expression for t ( ˆ ), arising from the local-to-zeroK
1

I(1) regressors that are created by misspecifying the error correction term, becomes a large positive

number and reduces power relative to the correctly specified model.  When d = 0, the estimated

model is correctly specified and the distribution of t ( ˆ ) reduces to the expression given in theoremK
1

2. Under the null of no-cointegration, c = 0, the distribution collapses to the expression given in the

corollary to theorem 1 with q² replaced by (q - s)².  Notice that in case III it is necessary to include

both a constant and trend in the test regression since the misspecification of the error correction term

induces a deterministic trend in the model.

 Figures 8-25 give the local power functions of t ( ˆ ) and t ( ˆ )  for a bivariate model withK   U
1   1

d = 0, 0.1, 0.3, 0.5; ² = 0.9, 0.1,  = /  = 1, 5, and 10 .  Power curves are given for models22

fitted with no constant or trend, constant only and constant and trend.  The qualitative results for

these three cases are similar.   To interpret the degree of misspecification in  think of the data in logs

with  = 1 so that the true model imposes long-run homogeneity between y  and y . Then, for1t  2t

example,  d = 0.1 corresponds to misspecifying the long-run elasticity by 10%. .

To interpret the relationship between d, s,  and ² consider the case where  = 1 so that s
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= d.  Since   is held fixed, changes in ² are due solely to changes in b(1)².  Recall, when b(1) = 0

there is a common factor in the dynamics of the ECM so that large values of b(1) correspond to large

violations in the common factor restriction.  Next consider the case where  = 5.  Here the long-run

variance of y  is five times larger than the long-run variance of . The increase in   scales up the2t          t

degree of misspecification captured by d and so one may think of  s  as the scaled deviation from the

true cointegrating vector.  In this regard, the case with  = 5 and s = 0.22, 0.67 and 1.11 corresponds

to the case with  = 1 and d = 0.22, 0.67 and 1.11.

 Figures 8, 9, 14, 15, 20 and 21 give the local power results for  = 1.   For ² = 0.9, the local

power of  t ( ˆ ) falls as d rises.  For d = 0.1, power is very close to the power for d = 0 and isK
1

uniformly above the power of  t ( ˆ ) except in the constant and trend case for c > 12.  For d > 0.1U
1

the power of  t (ˆ ) drops precipitately and lies below the power of  t ( ˆ ) for moderate values of c.K           U
1           1

The situation for ² = 0.1 is much different.  For d < 0.5, the power of t ( ˆ ) is almost identical to theK
1

power at d = 0.  When d = 0.5, however, the power starts to fall for large values of c.  This makes

sense since in these cases the model specification approaches one with  fixed and t ( ˆ ) is an1   1
K

inconsistent test.  In sum,  with a strong violation of the common factor restriction and  = 1, even

relatively large  misspecifications of the cointegrating vector do not seriously affect the local power

of t ( ˆ ).K
1

Next, consider the power results for   = 5  presented in figures 10, 11, 16, 17, 22 and 23.

The increase in the long-run variability of y  scales up any misspecification in  and, consequently,2t

the power of  t (ˆ ) is uniformly lower relative to the case where  = 1.   When ² = 0.9 and d = 0.1K
1

(s = 0.22), the power of  t ( ˆ ) is now substantially lower than the power at d=0 and lies below theK
1

power of   t (ˆ ) for moderate values of c.  For d > 0.1, the power of  t ( ˆ ) never gets above 15%.U                K
1                1

The results are better, however,  for ² = 0.1.   Here,  the power of t ( ˆ ) for d = 0.1 is almostK
1

identical to the power at d = 0. For d > 0.1, power starts to fall for larger values of c but still remains

greater than 50%, for all trend cases, at c = 16.

Last, figures 12, 13, 18, 19, 24 and 25 illustrate the results for  = 10.  For ² = 0.9 only the

d = 0.1 case with no constant or trend exhibits non-negligible power but t ( ˆ ) dominates t ( ˆ ) forU   K
1   1

values of c greater than seven.  For ² = 0.1, the power of  t ( ˆ ) for d = 0.1 is still indistinguishableK
1

from the power for d = 0.  The power results for d > 0.1 are similar to the  = 5 case.  Thus, even for
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1.Horvath and Watson (1995) found that their ECM-based tests for no-cointegration that did not
impose the restriction that the constant enter into the cointegrating vector had higher power than
tests that imposed the restriction.

2.This technique is  used by Phillips and Loretan (1991), Saikkonnen (1991) and Stock and
Watson (1994) to get efficient estimates of a cointegrating vector in the presence of long-run
correlation.

large values of   the misspecified model retains high power for moderate values of d provided there

is a large violation in the common factor restriction.

The preceding power analysis for a misspecified model is similar to the analysis presented in

Horvath and Watson.  However, they use a simple bivariate model without short-run dynamics,

impose weak exogeneity and set the covariance of the errors equal to the identity matrix.  In this set-

up, ² = 1 and Horvath and Watson’s ECM Wald test behaves very similarly to the ADF t-test.

6.  Conclusions
In this paper I provided an alternative representation of the asymptotic distribution of KED’s

t-test for no-cointegration with a prespecified cointegrating vector that allows for  an empirically

feasible test.    The test is shown to be closely related to Hansen’s covariate augmented t-test for a

unit root.  The ECM t-test with a prespecified cointegrating vector is shown to have higher power

than the ADF test as well as single equation tests that implicitly estimate the cointegrating vector.

The ECM t-test is also shown to have good power even when the cointegrating vector is moderately

misspecified.

The single-equation conditional ECM-based tests considered in this paper require that the

cointegrating rank be one and that the integrated regressors be weakly exogenous for the long-run

parameters under the alternative of cointegration. If the number of cointegrating vectors is greater

than one or if weak exogeneity fails then a systems-based ECM approach as in Horvath and Watson

(1995) is recommended.

7.  Notes
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3.BDGH suggest using  =  where  is an (n-1) × 1 vector of ones.   If the data are in logs, thenA

the error correction term y  - y  imposes long-run homogeneity and the term 1t-1  2t-1

y  allows for any departure in long-run homogeneity.  2t-1

4.This test is called the PC-GIVE unit root test in Hendry and Doornik’s (1993) program PC-
GIVE.

5.If y  is not strongly exogenous then the ECM regression may be modified with leads of y  or2t               2t

with a Phillips-Hansen type nonparametric correction to eliminate the long-run correlation
between y  and .2t  t
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9.  Appendix
For the proofs I require the following Lemma taken from Hansen (1995).

Lemma A1  Let w = x  be generated by (12) and assume (13) holds.  Thent  t

1. ,

2. ,

3. ,

where W (r) is a standard Brownian motion independent of W(r). e         e

Proof of Theorems 1 and 2  The proofs use arguments similar to those used in the proof of theorem

2 from Hansen (1995) and are therefore omitted.  

Proof of Corollary If  r² = 0 then ² = 1/(1 + q²) and the bivariate Brownian motion B (r) =v

(B (r), B (r))  may be decomposed as e

where W (r) and W (r) are independent standard Brownian motions and W (r) and W (r) aree   e          e

independent standard Brownian motions.    The result follows by substituting the latter result into the

expression given in Theorem 1.

Proof of Theorem 3  The proof is given for case I.  The extension to the other cases is

straightforward and is therefore omitted.  The model (14) may be rewritten as
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y  = w  + z  + (A1)1t  1 A,t-1  t  t
*

where z  = (x , z ),  = ( , ) and w  = w  + (  - ) x .   Let Q  = I - Z(Z Z) Z  for anyt   2t-1  t       A,t-1  t-1    A 2t-1     Z
*                        -1

matrix Z of full rank, and let W ,  Z* and  denote the T × 1,  T × (k+n-1) and T × 1 matrices ofA,-1

observations on w ,  z  and , respectively.  Since Q  W  = Q  W  , partitioned regression onA,t-1   t  t     Z* A,-1  Z* -1
*

(A1) gives

where  .   Define D  = diag(T I , T I ).  Note that underT  n-1  k
-1  -1/2

strong exogeneity  

 where q² = b(1) b(1)/ , and a is any (n-1) × 1 vector of unit length.22

Then using Lemma A1 and the assumption that x  is strongly exogenous the following convergence2t

results can be established:

  ,  

,  .

where  > 0.

Using the above results and Lemma A1 it follows that

,

,

and so by the continuous mapping theorem (CMT)
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,

.

The desired result follows from the definition of the t-statistic and the CMT.

Proof of Theorem 4   The proof is given for case I where d  = 0 and y  = x.  The extensions to thet    t  t

other cases are straightforward and are thus omitted.  The misspecified error correction term may be

rewritten as w  = x = x  + (  - ) x  = w + a(1) d  and under the local alternative (13) theM,t  M t  t    M 2t  t
-1

true model may be expressed as

x  = w  + x  + z  + ,1t  1 M,t-1  2,t-1  t  t

where  = -a(1)c/T and  = -cd/T are local to zero.  The estimated model is (17) and partitioned1

regression gives

,

.

Define the stochastic process Z (q,s;r) = q(a W (r)) - s(a W (r)) + W (r) where q² =c   c     c
2   2   

b(1) b(1)/ , s² = d d/  and a  is any (n-1) × 1 vector of unit length.  Then using Lemma22    22

A1 and the assumption of strong exogeneity the following convergence results can be established:

,  

, .

Using the above results it follows that

,
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,

.

and so by the CMT

The desired result follows from the definition of the t-statistic and the CMT.
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Table 1 

Trend Parameters under Cointegration and Weak Exogeneity

y  = d + x, d  =  + t,  = 0 (weak exogeneity)t  t  t  t     2

Case I Case II Case III Case IV

Trend = =0   0,  = 0   0,   0,  = 0   0,   0

Parameter  unrestricted ,  unrestricted

µ 0 (I- (1))  - (I- (1))  +  - 

µ 0 (1- (1))  - (1- (1))  -  +1 1 11 1  12 2

-  - 1

11 1  12 2

1   1

µ 0 0 (I- (1))  - (1) (I- (1))  - (1)2 22 2   21 1 22 2   21 1

µ 0 µ µ  - µ µ  - µ1·2 1 1  2 1  2

0 0 0 -

0 0 0 -1 1

0 0 0 02

0 0 01·2 1


