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1. Introduction

The single equation conditional error correction model (ECM) based t-test for no-
cointegration imposing a prespecified cointegrating vector, proposed by Kremers, Ericsson and
Dolado (1992), hereafter KED, has not been used empirically because its asymptotic distribution
depends on a nuisance parameter that can take on any positive number and is valid only for strongly
exogenous regressors.  In this paper, | give an aternative representation of the asymptotic
distribution for the ECM t-test that is a mixture of a Dickey-Fuller unit root distribution and a
standard normal distribution. This mixture distribution depends on a consistently estimable nuisance
parameter, ¢4, that takes on values in the unit interval and describes the long-run contribution of the
short-run dynamicsto thefit of the ECM regression. This result makes the test feasible for empirical
purposes and, additionally, is valid for non-strongly exogenous regressors. It turns out that the
asymptotic distribution of the ECM t-test is identical to the asymptotic distribution of Hansen's
(1995) covariate augmented t-test for a unit root. In addition, the single equation tests presented
herein can be thought of as conditional versions of some of the system-based ECM tests for
cointegration described in Horvath and Watson (1995).

| derive anaytic power functions for the ECM t-test based on near cointegrated alternatives
and show that if o# issmall: (1) The power of the ECM t-test can be arbitrarily larger than the power
of the ADF t-test based on a prespecified cointegrating vector; (2) At 50% power, the difference
between the ECM t-test with a correctly specified cointegrating vector and an ECM t-test based on
estimating the cointegrating vector corresponds to a sample size increase of up to 220%; (3) At 50%
power, the implied sample size increase from using an ECM t-test based on estimating the
cointegrating vector versus the Engle-Granger residual ADF t-test is about 170%. (4) The power
of the ECM t-test when the prespecified cointegrating vector is misspecified is still considerably larger
than the power of the ECM t-test using an estimated cointegrating vector for moderate degrees of
misspecification. These results emphasize that imposing a prespecified cointegrating vector and
correctly modeling the short-run dynamics can have an enormous impact on the power of tests for
cointegration.

The plan of the paper isasfollows. Section 2 reviews the relationship between cointegration,

error correction models and single equation conditional error correction models. In section 3, |
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discuss the test regressions used to compute the ECM t-test for no-cointegration with a prespecified
cointegrating vector and | derive the asymptotic distribution of the t-test under the null of no-
cointegration and under near cointegrated alternatives. In section 4, | compare the local power of
the ECM t-test when the cointegrating vector is prespecified with the power of the ECM t-test when
the cointegrating vector is estimated from the data. Section 5 considers the effects on local power of
misspecifying the cointegrating vector. Concluding remarks are given in section 6. Proofs of
important results are relegated to the appendix.

| use the following notational conventions throughout the paper. | use the symbol " = " to
signify weak convergence, the symbol " = " to signify equality in distribution and the inequality " >
0" to sgnify positive definite when applied to matrices. 1(d) denotes integrated of order d. BM(£2)
refers to a Brownian motion with covariance matrix . Brownian motions B(r) on [0,1] are
frequently written as B to achieve notational economy and | often write integrals with respect to

L ebesgue measure such as /; B(s)dsmore simply as /3B.

2. Cointegration and Conditional Error Correction Models

In this paper, | consider the following single equation conditional ECM with a prespecified
cointegrating vector a = (1, -3 "

Ay = Ppo + Tt + @AY+ 615(Yies - BYad) + Cua(L) Yy + Cip(L) Aypa + 0 (D)
where C,(L) and C,(L) arelag polynomials of orders| and p, y,, isan (n-1)-dimensional 1(1) vector
time series and 7, isan innovation process with respect to {Yy, Yy, Yz, 1= 1,2,...} with variance w, .
Equation (1) is a genera specification of the type of single equation ECMs discussed at length in
Banerjee, Dolado, Galbraith and Hendry (1993), henceforth BDGH, and employed in many empirical
studiesusing the“LSE” or “Hendry” methodology. To interpret (1), think of the datain logs so that
the elements of [ represent “long-run elasticities’ of y, with respect to the elements of y, and the
elements of ¢ represent “short-run elasticities’. As discussed in Boswijk (1994), (1) is stable and y,
= (Y1 Yo ) “is cointegrated with cointegrating vector & = (1, -4) “if the roots of the characteristic
eguation

Y(2)=(1-2(1-Cy(2) - 6,,2=0

lie outside the unit circle. In this case the cointegrating relationship represents the long-run
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equilibrium relaionship. The modd isunstable and there is no long-run equilibrium if there is aroot
on the unit circle, in which case 6,, = 0.

The conditional ECM (1) can be thought of as having been derived from a VAR(p) model for
the (n x 1) vector y, by conditioning on 4y,,. The VAR formulation is useful for illustrating severa
concepts that are important for testing the cointegration hypothesis so | will digress for amoment on
the relationship between the VAR and the conditional ECM. Let y, follow the augmented VAR(p)
process

Y= di+ % (22)
L)X = &, (2b)
where d, represents deterministic terms, ZZ(L) = I, - JPIIL' and €, ~ i.i.d. N(0, 2). To isolate the
long-run componentsiit is useful to decompose (2b) as
Ax = IIx , + [TL)AX%, + €, (©))
where 7= -II(1), ITL) = J}*IL" and I7 = - JP,.II. Further, assume that x, ~ 1(1) and /7 has rank
1 so that X, is cointegrated with a sSingle cointegrating vector which is assumed to be of the form «
= Xy - %y ~ 1(0). Given that /7 hasrank 1, it can be expressed as

0
I = éa = [51] (1, - ),
2
where J, is (1 x 1)and 6, and § are ((n-1) x 1) vectors, respectively. Then (3) may be rewritten as
the vector error correction model (VECM)
Ax = da%, + I(L)Ax%, + €. (4)
Letd = y + &, for example, and substitute (2a) into (2b) to give VECM representation for
Yi
Ay, = p+ t+ day, + ITL)Ay,, + €, )
wherep = (1, -1{1))0+ da’0-6a’y and T= Ja’0 . Partitioning (4) with respect to y,, and y,, gives
the system of equations

l,ll ‘El 61 / Fll(l—) F;.Z(L) Aylt,l
+ T+ 5 (Yn—l - By2t71> * A *
H, T2 2 T, (L) TL)| >y

Ay, €

AYy

€

] 6

2t

In the VECM (6), v, ~ (1) and is not cointegrated if /7 has rank zero which implies that 6 = 0.



Hence no-cointegration imposes n zero restrictions on 6.

Let Iy = oAy, AYieoneenr AYiepers AYor1r AYoorees AYoper, Wey). Using the normality
assumption, conditional on 4y, and |, 4y, is normally distributed with conditional mean and
variance given by

E[AYy /A lial = Pyot Tugt + O1o(Yaes - BYan) + @Ayn+ Cu(L)Ayy + Cpp (L)AYay

var(4yy, /Ao, 11) = 0112 = 0y - Oy 25051,
where ¢= 250, ho = U - P, 1, =1=¢3,.d, =4 -¢3, G L) =L (L)- 9L (L)and
Cp(L)=11,1L) - ¢ T,(L). Asan dternative to the unconditional system (6), y; can be thought of
as being generated by the conditional/marginal system

Ay = Mg+ Tiot + O1p(Yaes - BYoa) + @AY+ Cu(L)AYyy + Co (DAY + €120 (7)

Ay = Wy + Tt + OYag - BYad) + Lon(L)AYsy + (L) AV s + & )

€.

where €, , = €, - ¢ €, and
( 0) [ 0, O
2t 0"l 0o Z,

Equation (7) isin the form of (1) withp = p,, and 7, = € .
The conditiona ECM (7) is assumed to be the model of primary interest for testing the

€
12t
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presence of cointegration with a prespecified cointegrating vector. Accordingly, it is important to
discuss the conditions under which the marginal model (8) can be safely ignored when testing for
cointegration using (7). The concept of weak exogeneity as defined by Engle, Hendry and Richard
(1983) plays a key role in determining the consistency and power of tests for cointegration using
conditional ECMs. Johansen (1992) and Urbain (1993) discuss weak exogeneity in general error
correction models and the reader is referred to these articles for full details. In the present context,
if y, is cointegrated with cointegrating vector & = (1, -4 “and if y,, is weakly exogenous for ¢ = (6,
£, then g and &, can be efficiently estimated from the single equation conditional ECM (6).
Johansen (1992) showsthat v, is weakly exogenous for ¢ if 6, = 0; i.e. if the margina equation for
Ay, isnot error correcting. In this case, J,, = ¢, and the conditional ECM for 4y,, becomes
Ay = P+ Tt + 6.(Yaer - BYad) + @AYy + Cry(L)Ayyy + Cp (LAY + €1
Under weak exogeneity, therefore, testing for no cointegration only involves testing a zero restriction

on the scalar parameter J,.



Under cointegration, if y,, is not weakly exogenous for ¢ then 6,, = 6, - ¢ 6, and the
hypothesis of no-cointegration requires 6, =0 and J, = 0 since J,, = 0 may occur if y,, andy,, are
cointegrated but 6, = ¢6,. Inthislatter case, the single equation conditional model does not contain
all of the necessary information to test the no-cointegration hypothesis and a systems based approach,
as in Johansen (1988) or Horvath and Watson (1995), is preferred. As a result, for the single
equation tests analyzed in this paper it is necessary to make the additional assumption that under
cointegration y,, is weakly exogenous for ¢ = (d,, )"

3. Testing for Cointegration in Conditional ECMs with a
Prespecified Cointegrating Vector

3.1 Test Statistics
The discussion in the previous section makes it clear that testing for cointegration in the single
equation conditional ECM (1), assuming weak exogeneity under cointegration, is based on testing
the hypotheses

Ho: (no cointegration) 6, = 0 vs. H,: (cointegration) J, < O.
KED suggested using the standard t-ratio t*(3,) = 3,/SE(8,), where &, isthe OLS estimate of 6, and
SE(8,) isits estimated standard error. They derived the asymptotic distribution of t“(&,) under the
null of no cointegration and under local-to-zero near cointegrated alternatives for a smple bivariate
mode with no deterministic terms or higher order dynamics. Their functional representation of the
limiting distributions, however, depends on a nuisance parameter that can take on any positive value
and so is difficult to use in practice.

With deterministic terms, d,, in the representation for y,, the specific regression equation used
to estimate J, depends on the nature of these terms. | consider the specificationd, = y + &, where
both y and Garen x 1 vectors. The conditional/marginal representation, under the weak exogeneity
assumption, is then

Ay, = Mo+ Tt + 6(Yies - FYo0) + @AYx + Cu(L)Ayyy + Cpp (L)AYay + 17,

Ay = Yo + 1n(L)AYeg + (L) AYos + €

where 7, = 6,’0. Notice that the weak exogeneity assumption, &, = 0, eliminates the time trend



from the marginal model for A4y,,.
There are four versions of the specification d, = y + € that are used in empirical applications.
These cases and the restrictions they imply on the trend parameters in the conditional and marginal
modds are summarized intable1. Incasel, y= €= 0sothat p = £= 0. The conditional ECM to
be estimated is then
Ay = 6@+ {Z+ 1 (9)
wherez,'= (AYyq, -oor AYsepy AYor s Aoy s ooy AYo ") @A 7= (Ciy gy ovy Ciapgy @5 Cron s os Ciopn )
are (1 x K)vectors. Incasell, y # 0 and isunrestricted but 6= 0. Thisimpliesthat 1, = 0 so that
M, = Wy = -0,a¢’y and 7, = 0. The conditional ECM becomes
Ay, = o(aV, - W)+ {2+ 7, (10)
where U* = «’y. Here, y, isnot trending and there are no restrictions on the initial values of x, or
on the mean of the error correction term 'Yy, It isunlikely, however, that u* isknown a priori, e.g.
specified by economic theory, so it is not possible to estimate (10) directly by OLS. Moreover, under
the null of no-cointegration ay, = e’ + a’y, which is1(1) with drift, so that a constant is required
in the ECM regression to obtain a similar test statistic. Therefore, the test regression is (9) with z
augmented with a constant’. Incaselll, y = 0and 8 = 0 but is restricted by the relation '8 = 0.
Thisimpliesthat |, , isunrestricted, z; = 0 and so the conditional ECM becomes
Ay = Mot 0@yt (3t 1
Thetest regresson in this caseisadso (9) with z augmented with a constant. Case 1V has ¥ = 0 and
6 = 0 with no regtrictions on either y or 6. Here |, , isunrestricted but 7, = J,« 0 so that the time
trend is restricted to the error correction term. The conditional ECM is
Ay = Mot 0@y, - T(F1) + {7+ 7, (11)
where 7 = a’6. Asincasell, it unlikely that 7" is prespecified by economic theory so that (11) is
not directly estimable by OLS. Also under the null of no-cointegration, e¥, = a% + a’y + a’0t
and so a constant and a time trend must be included in the ECM regression to obtain a similar test.
Therefore the test regression in this case is (9) where z, is augmented with a constant and atime
trend.



3.2 Asymptotic Theory Under the Null of No Cointegration
It will be useful to rewrite the conditional model for Ax,, as
alL)da’, = %, + b(L) Axy + 1, = Sar% , + € (12)
wherea(L) = 1- C,(L)L, b(L) = (@- p) + [C(L) + C (L)AL and g = b(L) ‘Ax, + 7, Define &
= (n, Axy) "and v, = (7, €) " It is assumed that

[Tr] [Tr]
T3 & = B() = BM@), T} v, = B/n) = BM(@Q),
t=1 t=1

where B{r) = (B,(r), B,(r))’is an n-dimensiona Brownian motion, B(r) = (B,(r), B(r))’ isa

bivariate Brownian motion,

/
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2 nn “ne
Qf — nn , QV - ] ,
3
Wy, 2, en Yee

with w, = b(1) ©,b(1) + w,, + 2b(1) ‘@, and @, = b(1) @, + «),. In addition, define the long-run

m

correlation parameters

W 2w o 7 ©
25522 2 ne ee
r2 :¥’ pz = ,Rz :#’ q2 = —1_
@ @ Wee Wee @pp

In the above expressions, r2 is the squared long-run multiple correlation coefficient between
n, and Ax,, ? isthe squared long-run correlation between g and 7, R? is the proportion of the long-
run variance of e explained by 7, and ¢ measures the percentage by which the long-run variance of
e Is larger than the long-run variance of 7,. Notice that Rz = 1/(1 + g?) and if Ax,, is strongly
exogenous, i.e. if Ax,, does not Granger cause Ax,, in the marginal model for Ax,, thenr2= 0and
=R

At one extreme, p? = 1 which implies that the error terms g, and 7, are perfectly correlated
in the long-run and have the same long-run variance. In this case, b(L) “Ax,, explains none of the long-
run variability of . This occursin the conditional ECM if b(1) = 0. KED emphasizethat b(1) = 0



if, for example, Ax,, satisfies the generalized common factor restriction ¢ = fand C,,(1) = C,(1)4,
in which case the conditional ECM for Ax,, takes the form of an ADF regression. At the other
extreme, p? = 00 that the long-run variance of g, isinfinitely larger than the long-run variance of 7,.
This case occurs when b(L)A4x,, explains al of the long-run movement of e,

The condition R? = p? occurs when A4x,, is long-run uncorrelated with 7,, which, Hansen
(1995) (hereafter referred to as Hansen) states, should hold in a well specified dynamic regression.
Inthe VECM set-up, however, this occurs when Ax,, is weakly and strongly exogenous and a well
specified conditional ECM only requires current and lagged values of Ax,, as well as lagged values
of Ax,. If, however, Ax, isnot strongly exogenous then the long-run correlation between Ax, and
n, can be diminated by adding leads of Ax,, to the conditional ECM 2. In this case, we define b(L)
= (¢- P + [CuL) + Cy(L)AIL + CHL™ where C¥(L™) is a polynomia in the forward shift
operator L. Alternatively, the long-run correlation may also be eliminated using a Phillips-Hansen
type nonparametric correction to the ECM asin Inder (1993).

To succinctly express the limiting distributions of the ECM-based test statistics when
deterministic terms are added to the test regressions, it is useful to employ the following notation.
Let X(r) and Z(r) denote two vector processes defined on [0,1]. Consider the continuous time
regression of X(r) on Z(r), Xr) = a2Zr) + QuX(r) where & solves

1
min //X(r) - &/Z(r) Pdr . The continuous time regression residual, QzyX(r), is defined as
“ 0

/ -1

1 1
QuX(r) = X(r) - f Z(r)X(r)dr f Z(nNZ(ndr| Z(r) .
0 0

1
For example, if Z(r) = 1then QX(r) =X(r) - fX(r)dr which is a demeaned version of X(r).
0

The following theorem gives the asymptotic distributions for the ECM based t-test under the

null hypothesis of no-cointegration when afixed cointegrating vector §isimposed.



Theorem 1 Incasel, if d, is estimated from (9) thenas T- «

1
pr [WMaW,(r)
t"®,) = — — + (1 - p)"*NOD) .

1
f W,(r)dr
0

where W/(r) is a standard Brownian motion independent of the N(0,1) random variable. In cases
Il and 11, if a constant is added to the ECM regression (9) then \fr) is replaced by Q,W/(r); In
case |V, if a constant and trend are added to the ECM regression (9) then \{f) is replaced by

QuunyWir).

Corollary If Ay, is strongly exogenous then

1 1

p: f W,(r)dW(r) f (W,(r) + aW,, (r)dw,(r)
f 7z 1 - p)**N(0,1) = Ol 12
fWe(r)Zdr f (W (r) + q-Wen(r))zdr
0 0

where W, (r) and W, (r) are independent standard Brownian motions.

7

Theorem 1 shows that if a fixed cointegrating vector is imposed then the asymptotic
distribution of t(3,) depends on the nuisance parameter p? measuring the long-run contribution of
Ay, to the conditiona model. The asymptotic distribution is alinear combination of a Dickey-Fuller
unit root distribution and a standard norma random variable. Notice that when p? = 1 the
distribution collapses to the Dickey-Fuller unit root distribution and when p? = 0 the distribution
reduces to a standard normal. In fact, the distribution of t(8,) is identica to the asymptotic
distribution of Hansen’s covariate augmented t-test for a unit root. Simulated critical values for

selected values of p? £ (0,1) are given in Hansen.
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If Ay, isstrongly exogenousthen p? = 1/(1+ g?) and the Corollary shows that the asymptotic
distribution of the t-test can be dternatively expressed in terms of g2 Thisis the result first obtained
by KED for the smple case with no deterministic terms, n = 2and p = 0. Hence KED’sresult is only
valid for strongly exogenous conditioning variables whereas the result presented here holds more
generdly.

Even though the asymptotic distribution of t(8,) depends on the nuisance parameter 2,
Hansen shows it can till be used for inference since it is possible to consistently estimate p? using
nonparametric techniques. For example, an estimate of p can be constructed from the nonparametric
estimate of €

A7) M T 2

nn e k1 ~n/  aD ne

A = ZV\{ ]_ thvtfk’ P = ——=
k=m \ M) Tiia

(L)e,7 W a)fm ee

A

where w(+) is akernel weight function, M is a bandwidth parameter and ¢, = (%,, &) “is constructed
from the parameters of the estimated ECM. Hansen suggests using the Bartlett or Parzen kernel with
M determined by Andrews (1991) automatic bandwidth selection procedure.

3.3 Asymptotic theory Under Near Cointegrated Alternatives
The asymptotic power analysisis for near cointegrated alternatives of the form
H.: 6, = -ca(1)/T (13)
where cisacongant and T isthe sample Sze. The no-cointegration null holds when ¢ = 0 and holds
localy asT - «forc> 0.

The asymptotic power functions for the near-cointegrated alternatives are derived using the
local-to-unity asymptotics of Phillips (1987) and Chan and Wel (1987) as applied by Hansen. This
theory is based on diffusion representations of continuous stochastic processes. Let Z(r) be any
stochastic process and let ¢ be any constant. Then Z%(r) is defined as the solution to the stochastic
differential equation dZ°(r) = -cZ(r) + dZ(r).

The following theorem gives the asymptotic distribution of t%(3,) under the near cointegrated
aternative (13).
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Theorem 2 In case |, if y, is generated from (1),4y,, is weakly exogenous for ¢ = (£, 6,) “and (13)

holdsthenasT - »

1
. o [WEAW,(r)
th@) ~ = [Weryar| - 2 — (1 - p)UENOD)
0

1
f W, (r)2dr
0

where W/(r) is a standard Brownian motion independent of the N(0,1) random variable. In cases
Il and I11, ifa constant is added to the ECM regression then V{(r) is replaced by QW(r); In case
IV, if a constant and trend are added to the ECM regression then i) is replaced by Q, ,,W(r).

The local asymptotic distribution of t(8,) is identical to the local distribution of Hansen's
covariate augmented t-test. The local power of t“(3,) depends on ¢, p? and R2. Two cases are of
interest. Inthefirst case, Ay, isstrongly exogenous so that r2 = 0and p? = R2 In the second case,
Ay, isnot strongly exogenous, r?2 = 0 and p? # R2. Hansen showsthat local power increases with
decreases in p? and decreases with increases in the number of deterministic termsin the regression.
He aso shows that, for a given value of p?, power islarger for smaller values of R? and vice-versa.

When 2 = 1, t*(3,) behaves very much like the ADF t-test for a unit root in the cointegrating
resduas a'y,.. A comparison of thelocal power of t(8,) for p2 =1 and p? = 0.1 for a given value of
c gives an indication of the potential power gains from using t“(8,). Alternatively, asin Horvath and
Watson (1995), one may fix the power at a given percent and compare the sample size differentials
implied by the different values of c for the two test statistics. For example, figure 1 illustrates the
asymptotic loca power of t(8,) for the case in which p2 = R2 and a constant is included in the ECM
test regression. From figure 1, it can be deduced that at 50% power the potential power gain from
using t“(8,) instead of the ADF t-test, for amode! estimated with a constant, corresponds to a sample

Size increase of roughly 667%.

12



4. Comparison of Local Powers of ECM t-tests with S Prespecified and S
Estimated.

It isof interest to compare the asymptotic local power of the conditional ECM t-test with g
prespecified to a conditional ECM t-test with § estimated. This comparison will highlight the local
power gainsfrom using atest that imposes the true cointegrating vector versus a test that does not.

BDGH, building on earlier work of Banerjee, Hendry and Smith (1986) and KED, propose
asmple t-test for no-cointegration in a conditional ECM with unknown £. Their approach is based
on rewriting (9) as

Ay = 0,0, Y+ YYar + (2t 7 (14)
where e, = (1,-6,) , Baisan arbitrary (n-1) x 1vector and ¢ = 6,(5, - §)°. Noticethat 6, isnot
affected by imposing the arbitrary error correction term so that a test for no-cointegration based on
the significance of d, is till, in principle, valid. Hence the t-ratio for ¢, from this regression can be
used as a test for cointegration with £ unknown provided its asymptotic distribution can be
determined. We denote this statistic t“(8,)*. Using similar arguments asin KED, BDGH claim that
t(3,) will have higher power than the residual-based two-step Engle-Granger ADF t-statistic.

Boswijk (1994) derives the asymptotic null distribution of t“(8,) and shows that it is
asymptoticaly similar only if Ay, is strongly exogenous®. In this case, the asymptotic null distribution
isindependent of ©? but depends on the dimension, n-1, of 4y, Banerjee, Dolado and Mestre (1994)
tabulate critica vauesfor tY(3,) for n-1=1, ..., 5 for the no-constant, constant only and constant and
trend cases and show that these critical values are very similar to the critical values tabulated by
Phillips-Ouliaris (1990) for residual-based tests for cointegration.

Using the results of the previous section it is straightforward to derive the asymptotic
distribution of t“(8,) under the local aternative (13).

Theorem 3 If y,, is generated from (1),4y,, is strongly exogenous and (13) holds then as T- «
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1

. e [Qu[Wir) + craMG(n]dw, (1)
tU(Sl) - C f (Qz(r)[Wnc(r) " q'a/ch(r)]> 2] T |
0

1/2

1
[ + aaWsIf

0

where a isany (n-1) x 1 vector of unit length, g2 = (1 -p?)/p? and Z(r) is a stochastic process on
[0,1] such that: (casel) Z(r) = W(r); (cases Il and I11) Z(r) = (W(r)’ 1)’ if a constant is
included in (14); and (caselV) Z(r)= (W,(r) 4 1, r)” if a constant and trend are included in(14).

The asymptotic distribution of t“(8,) under the local alternative depends on ¢, 2, n and the
nature of the deterministic termsin the ECM regression. When ¢ = 0, the distribution collapses to

-1/2 1

[AGEEG
0

1
[@QW, )2
0

which isindependent of ©?, but dependent on the dimension of W, and is equivalent to the expression
given in theorem 2 of Boswijk (1994).

Figures 2-4 compare the local powers of tY(3,) and t%(3,) for p2 = 0.1, 0.5 and 0.9 with n
= 2. For each vaue of p? the power of t(8,) is well above the power of tY(3,) and the power gains
are larger at smaller values of p?. For example, at 50% power the power difference when no
deterministic terms are included in the regression corresponds to sample size increases of roughly
220%, 75% and 56% for p? = 0.1, 0.5 and 0.9. When a constant is included the sample increases are
175%, 85% and 35% and when a constant and trend is included the sample size increases are 220%,
81% and 20%, respectively.

Figures 5-7 show the difference in local power between tY(3,) and t(8,) as the dimension
of Ay, increases for p2 = 0.9, 0.5 and 0.1. For agiven value of 02, the power of t(3,) isthe same
for al n whereas the power of tY(8,) declines as nincreases. Interestingly, the power loss of tY(8,)

as n increases is substantially reduced for small values of g2 Comparing the power of tV(3,) at p2
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=0.1 and 0.9 gives an indication of the potential power increase from using t(3,) versus the Engle-
Granger residual-based ADF t-gtatistic. At 50% power and n=2, the potential power gain for a model

estimated with a constant corresponds to a sample size increase of roughly 172%.

5. Effectson Local Power of Misspecifying the Cointegrating Vector
It is clear from the previous sections that there are potentialy very large power gains
associated with imposing the true value of the cointegrating vector in single equation tests for no-
cointegration. However, it is not so clear what happens to the performance of t“(3,) if the wrong
cointegrating vector isimposed in the estimated ECM regression. Following Horvath and Watson,
| consider the behavior of t“(8,) under the local aternative (13) since under fixed cointegrated
alternatives t“(3,) is an inconsistent test if the lagged error correction term is misspecified.
To smplify the analysis, let (1) represent the true model with Ay, strongly exogenous.
Suppose an investigator imposes the misspecified cointegrating vector ¢, = (1, -4, ) “Where
Bu= B+ a(l)d (16)
anddisany (n-1)x 1vector. The misspecified error correction termisthen a,, 4, = a'y, - a(1)'d ¥,
The true model may therefore be reexpressed as (14) with S, given by (16). Notice that the
misspecification of the error correction term creates additiona [(1) regressors in the true model (14).
Under the local alternative (13), ¢ = -cd/T so that the coefficients on the additional (1) regressors
are local-to-zero. The estimated model, however, is the misspecified model which excludes the
lagged value of v,
Ayy = 0ty Yt CZ+ 4, (17)
whereu, = ¢¥y,, + 1. Theasymptotic distribution of t“(8,) computed from (17) under the local

alternative (13) is given in the next theorem.

Theorem 4 In casel, if y, isgenerated from (1), 4y, is strongly exogenous and (13) and (16) hold

thenasT - »

15



1 1
A . o [Z@sn@W,(r)  [Z4asndW,(r)
t“®) = -c fZ “gsr)?| - cs2 0
0

1/2

1 1/2 1
[ [ z °(q,s;r)2] [ [ z °(q,s;r)2)
0 0

where Z%(q,s;r) = q(aWy(r))- s(aWy(r)) + Wi(r) , o = b(1)2:b()/w,, = (1 - p?)Ip? & =
d@Q,dw,, anda isany (n-1) x 1 vector of unit length In case I, if a constant is included in the

regressonthen Z4q,s;r) isreplaced by QZ*(q,s;r). Incaseslll and 1V, if a constant and trend are
included then Z(q,s;r) isreplaced by Q,,, Z(q,s;r) .

The asymptotic distribution of t(3,) computed from the misspecified model under the local
alternative depends on the parameters ¢, g2 (and hence p?), & and n. The parameter sisthe length
of d scaed by the relative variability of the long-run variances of Ady,, and . When sislarge (large
misspecification) the second term in the limiting expression for t“(3,), arising from the local-to-zero
[ (1) regressorsthat are created by misspecifying the error correction term, becomes a large positive
number and reduces power relative to the correctly specified model. When d = 0, the estimated
model is correctly specified and the distribution of t“(3,) reduces to the expression given in theorem
2. Under the null of no-cointegration, ¢ = 0, the distribution collapses to the expression given in the
corollary to theorem 1 with g2 replaced by (q - s)2 Notice that in case Il it is necessary to include
both a constant and trend in the test regression since the misspecification of the error correction term
induces a deterministic trend in the model.

Figures 8-25 give the local power functions of t(8,) and t(3,) for a bivariate model with
d=0,0.1,03,05; p2=0.9, 0.1, v=w,/w

fitted with no constant or trend, constant only and constant and trend. The qualitative results for

. = L 5, and 10 . Power curves are given for models
these three casesare smilar.  To interpret the degree of misspecification in 5 think of the datain logs
with = 1 so that the true model imposes long-run homogeneity between y,, and y,,. Then, for
example, d = 0.1 corresponds to misspecifying the long-run elasticity by 10%. .

To interpret the relationship between d, s, v and p? consider the case where v=1so that s
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= d. Since v isheld fixed, changesin p? are due solely to changesin b(1)2 Recall, when b(1) =0
there isacommon factor in the dynamics of the ECM so that large values of b(1) correspond to large
violationsin the common factor restriction. Next consider the case where v=5. Here the long-run
variance of Ay, isfive times larger than the long-run variance of 7,. Theincreaseinv scales up the
degree of misspecification captured by d and so one may think of s asthe scaled deviation from the
true cointegrating vector. In thisregard, the casewith v=5and s=0.22, 0.67 and 1.11 corresponds
to the case with v=1and d = 0.22, 0.67 and 1.11.

Figures 8, 9, 14, 15, 20 and 21 give the loca power resultsfor v=1. For 2= 0.9, theloca
power of t(8,) fallsasd rises. For d = 0.1, power is very close to the power for d = 0 and is
uniformly above the power of tY(3,) except in the constant and trend case for ¢ > 12. For d > 0.1
the power of t(3,) drops precipitately and lies below the power of t(3,) for moderate values of c.
The situation for 02 = 0.1 is much different. For d < 0.5, the power of t“(3,) is amost identical to the
power at d = 0. When d = 0.5, however, the power startsto fall for large values of ¢. This makes
sense since in these cases the model specification approaches one with 6, fixed and t“(3,) is an
inconsistent test. In sum, with a strong violation of the common factor restriction and v =1, even
reatively large misspecifications of the cointegrating vector do not seriously affect the local power
of t(3,).

Next, consider the power resultsfor v =5 presented in figures 10, 11, 16, 17, 22 and 23.
The increase in the long-run variahility of Ay,, scales up any misspecification in £ and, consequently,
the power of t(3,) is uniformly lower relative to the case where v=1. When 0©2=0.9andd=0.1
(s=0.22), the power of t“(3,) is now substantially lower than the power at d=0 and lies below the
power of t“(3,) for moderate values of c. For d > 0.1, the power of t(8,) never gets above 15%.
The results are better, however, for 0?2 =0.1. Here, the power of t“(8,) for d = 0.1 is amost
identical to the power at d = 0. For d > 0.1, power startsto fall for larger values of ¢ but still remains
greater than 50%, for al trend cases, at ¢ = 16.

Ladt, figures 12, 13, 18, 19, 24 and 25 illustrate the results for v = 10. For p? = 0.9 only the
d = 0.1 case with no constant or trend exhibits non-negligible power but t“(3,) dominates t“(3,) for
values of ¢ greater than seven. For p2 = 0.1, the power of t%(3,) for d = 0.1 is ill indistinguishable

from the power for d = 0. The power resultsfor d > 0.1 are similar to the v = 5 case. Thus, even for
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large vdues of v the misspecified model retains high power for moderate values of d provided there
isalarge violation in the common factor restriction.

The preceding power analysis for a misspecified modd is smilar to the analysis presented in
Horvath and Watson. However, they use a ssimple bivariate model without short-run dynamics,
impose weak exogeneity and set the covariance of the errors equal to the identity matrix. Inthis set-
up, p? = 1 and Horvath and Watson's ECM Wald test behaves very similarly to the ADF t-test.

6. Conclusions

In this paper | provided an aternative representation of the asymptotic distribution of KED’s
t-test for no-cointegration with a prespecified cointegrating vector that allows for an empirically
feasibletest. Thetest is shown to be closely related to Hansen' s covariate augmented t-test for a
unit root. The ECM t-test with a prespecified cointegrating vector is shown to have higher power
than the ADF test as well as single equation tests that implicitly estimate the cointegrating vector.
The ECM t-test is also shown to have good power even when the cointegrating vector is moderately
misspecified.

The single-equation conditional ECM-based tests considered in this paper require that the
cointegrating rank be one and that the integrated regressors be weakly exogenous for the long-run
parameters under the alternative of cointegration. If the number of cointegrating vectorsis greater
than one or if weak exogendity fails then a systems-based ECM approach as in Horvath and Watson
(1995) is recommended.

7. Notes

1.Horvath and Watson (1995) found that their ECM-based tests for no-cointegration that did not
impose the restriction that the constant enter into the cointegrating vector had higher power than
tests that imposed the restriction.

2. Thistechniqueis used by Phillips and Loretan (1991), Saikkonnen (1991) and Stock and
Watson (1994) to get efficient estimates of a cointegrating vector in the presence of long-run
correlation.
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3.BDGH suggest using £, = 1 where risan (n-1) x 1vector of ones. If the dataarein logs, then
the error correction termy,, , - Y, imposes long-run homogeneity and the term
¢ Y., dlowsfor any departure in long-run homogeneity.

4. Thistest is called the PC-GIVE unit root test in Hendry and Doornik’s (1993) program PC-
GIVE.

5.1f Ay, isnot strongly exogenous then the ECM regression may be modified with leads of Ay,, or
with a Phillips-Hansen type nonparametric correction to eliminate the long-run correlation
between Ay,, and 7,
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9. Appendix

For the proofs | require the following Lemma taken from Hansen (1995).

LemmaAl Letw, = e’ be generated by (12) and assume (13) holds. Then

LT Y = al)BI(r) = a(l) lorWI(r),

(]

T 1 1
2. T2 w?, = a(1)? f (BY)? = a(l)’zweef (W2,
1 0 0

1 1

T 1
3. T*lglj w,_m, = al)™ f B.dB, = a(1) Y(ww, )" P fWeche + (1 - pA)Y2 fWeCdee ,
0 0 0

where W, (r) is a standard Brownian motion independent of VY(r).

Proof of Theorems1 and 2 The proofs use arguments smilar to those used in the proof of theorem
2 from Hansen (1995) and are therefore omitted.

Proof of Corollary If r2= 0then p? = 1/(1 + ¢P?) and the bivariate Brownian motion B,(r) =

(B,(r), B(r)) “may be decomposed as

B.(r) WLAN(r)
oW (1)
W (W, (1) + qW,, (1))

(Bn(r)] WZ(PW,(r) + (L - p2)ﬂ2wn,e(r))]

where W(r) and W, (r) are independent standard Brownian motions and W,(r) and W, (r) are

independent standard Brownian motions.  The result follows by substituting the latter result into the

expression given in Theorem 1. [ |

Proof of Theorem 3 The proof is given for case I. The extension to the other cases is

straightforward and is therefore omitted. The model (14) may be rewritten as
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Ay = OWuy + 07 + 1 (A1)
whereZ ’= (%.152), 6'= (¢, () and oy = W, + (B- ) % LetQ =1 - Z(ZZ)'Z " for any
matrix Z of full rank, and let W, ;,, Z* andn denotethe T x 1, T x (k+n-1)and T x 1 matrices of
observationson w,;, z and n,, respectively. Since Q, W,_, = Q.. W, , partitioned regression on
(A1) gives

81 =0 (W—/le*W—lylW—/le*n’ SE(Sl) - (ann(wf/lQZ*W*lyl)ﬂz’

where &, = Tlgzj (Ay, - d,w,,, - 622 DefineD, = diag(T4,,, T¥2I,). Note that under
strong  exogeneity  Bg(r) = b(1)'BS(r) + B(N=  wp(w. bL)QpWs(r) + Wr)
zwf]f(q-a’wzc(r) + W(r)) where o? = b(1) ©2,b(1)/w,,, and aisany (n-1) x 1vector of unit length.
Then using Lemma A1 and the assumption that Ax,, is strongly exogenous the following convergence

results can be established:

1
1/2[Tr] 1o C 12 aasC c 1o, 4/ -1 IBZBZ/ 0
T2y e = a(l) 'BI(r) = a(l) wfgaWs(r) + W), D;'2°Z'D;" = |
1
0V,
1 1
a(1) (BB’ B,dB
R 2 e Aoy n
TD;'2°W,, - { . Dyz'W, - {
0 N, o, V7)

.
whereV, = plim T 1} zz' > 0.
1
Using the above results and Lemma A1l it follows that
L 2
_ / _
TAW,Q W, = &) o, f (sz(r)[wn" + qa’W2°]> ,

0
1

TW,Q,m - al) T f QW + ga' W, 1dW,,
0
and so by the continuous mapping theorem (CMT)
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1
a(1) f sz(r)[wnc + ga’W,] dw,
TS, = —ca(l) + 0 :
(sz(r)[Wnc + qa,ch])z

1/2

O\I—‘

1
TSEG,) = | &) 2[[QuglWy + qa'wy)
0

The desired result follows from the definition of the t-statistic and the CMT. [ |

Proof of Theorem 4 The proof isgiven for case | whered, = Oand y, = x. The extensionsto the
other cases are straightforward and are thus omitted. The misspecified error correction term may be
rewritten aswy,, = oy % = @% + (8- ) % = W + a(1)'d and under the local aternative (13) the
true model may be expressed as
AXy = oWy t Y %ou + {4+ 1,

where 6, = -a(1)c/Tand ¢ = -cd/T are local to zero. The estimated model is (17) and partitioned
regression gives

o1 = 0, + (Wl\//l,—lQZWM,—l)71Wl\//l,—lQZx2,—1¢ * .(I.Wl\il,—lQZWM,—l)ilWl\//l,—lQZn’

SE,) = (00, (W 1MW) By = TN (A - By - £
Define the stochastic process Z%(q,s;r) = q@WL(r)) - s(@Wy(r)) + W) where g2 =
b(1) 2b(Vw,, , = d2,d/w

- and a isany (n-1) x 1vector of unit length. Then using Lemma

m

A1 and the assumption of strong exogeneity the following convergence results can be established:

1

.
T Y20, 00 = &) Yo 2Zasn), T 22wy, = a(l) 2o, f Z %(q,9)>
1
0

T 1 T 1
- _ _ _ /
Ty, = D) Yo, [Z@IMW,, T 2wy, g, = a(l) o) Q¥W,Z5(,9) -
1 0 1 0

Using the above results it follows that

T 1
Tile\//I,leZWM,—l =T Wl\i,t—l +0,(1) = a(1)*2wnnfz ‘@97,
1
0
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T 1
T Wy, QX ¥ = —cT’ZXl: Wy 10 + 0,(1) = —ca(l) e ZdQy7 [Z@IW,.
0

T 1

T "Wy ,Qn = T wy, m, + 0y(D) = al) o, f Z(q,9dW, .
1

and o by the CMT 0

1 1
f Z %(q,s)(a'W,) f Z%q,9dW,
TS, = —ca(l) - ca(l)s® - + a(1)2 -
[ Z (0,9 [ Z %09
0 0

1 -1/2
TSE(S,) = a(l)( f Z °(q,s)2) .
0

The desired result follows from the definition of the t-statistic and the CMT.
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Tablel

Trend Parametersunder Cointegration and Weak Exogeneity

Yo=d+ % d=y+ &, 6,= 0(weak exogeneity)

Casel Casell Case 1 Case IV
Trend y=0=0| y=#0,0=0 y#0,0#0 a¢60=0 y #0,0 =0
Parameter y unrestricted ¥, @ unrestricted
M 0 oa’y (I-1T0)0 - 6’y (I-ITD))06 + 6a’0- oa’y
Hy 0 S’y (1-11,(1)6, - 11,6, (1-11,(1)6, - 11,6, +
-0’y 0,a’0-0,a’y
Ho 0 0 (I-15(1))6, - 171(1)6; (I-15(1))0, - I'(1)8,
Hio 0 s Hi- A1, Hi- A1,
T 0 0 0 -0a’0
T 0 0 0 -6,a’0
() 0 0 0 0
Tio 0 0 0 T
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