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Abstract: This short paper demonstrates two important results related to 
the estimation of competing-risk models under the proportional-hazards 
assumption with grouped duration data. First I show that the model with 
non-parametric baseline hazards is unidentifiable with only grouped 
duration data. Therefore one has to make functional form assumption for 
any meaningful inference.  Secondly I demonstrate that under some 
parametric assumption such as piecewise constant baseline hazards, the 
sample likelihood function has explicit analytical form. Therefore there is 
no need for approximation. The approximation formula adopted by Deng 
et al (2000) and religiously followed by others is only a quasi likelihood 
function.  

1. Introduction 

Following the seminal work of Han and Hausman (1990), Sueyoshi (1992), and McCall 
(1996), competing-risk models have become very popular in economic analysis of 
duration data when the duration of economic event has multiple causes of termination. 
For example, an unemployment spell may end either when the unemployed accepts a job 
offer or when s/he drops out of labor force completely.  A mortgage loan contract can 
terminate either when the borrower defaults on the loan (surrendering the collateral and 
walks away) or when s/he prepays the loan completely. Each of these causes is labeled a 
risk. Typically, one thinks about the underlying durations associated with all the risks. It 
is called a competing-risk model, because the smallest realized risk-specific duration 
makes the durations for other risks right censored. In another word, the analyst only 
observes the minimal of the risk-specific durations.  

The latent risk-specific durations are often modeled as continuous time variables. In a 
competing-risk model, the effects of observed and unobserved factors are usually 
accommodated using a proportional-hazard specification. This model is fit with the 
duration data that are grouped into intervals between integers due to the particular nature 
of data. Grouping is very common in economic duration data. Unemployment spells are 
typically measured in weeks. Mortgage payments are typically observed in monthly 
intervals. Fitting competing risks model with grouped duration data is a natural extension 
of single-risk duration analysis with grouped duration data (Prentice and Gloakler, 1978, 
Kiefer, 1988, Ryu 1994, An 2000, 2002).   
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Recently the competing risks model under proportional hazards assumption has been 
applied to modeling loan performance where a mortgage can terminate by either 
prepayment or default (Deng et al., 2000, Ciochetti et al. 2001, Ambrose and LaCour-
Little 2001).  Borrower of a mortgage decides when to stop the monthly payment of 
principal and interest. Prepayment refers to total payoff of the outstanding loan. Default 
refers to stop of payment and surrender the collateral to the lender.  Prepayment is 
triggered either by a substantial decrease in market mortgage interest rate, by the need to 
take cash outs of the accumulated home equity, or by the need to move away from the 
current residence. Default is either triggered sudden family event (such as devoice) or 
made as ruthless financial decision due to negative equity in the house. In these analyses, 
the researcher observes monthly or quarterly loan payment histories.  

This short paper is concerned with some methodological issues related to likelihood-
based estimation of competing-risks models under proportional-hazards assumption with 
grouped duration data. I plan to clear up two common confusions.   

• First, I show that the models with non-parametric baseline hazards are 
unidentifiable with grouped duration data. This implies that any consistent 
estimation and meaningful inference have to hinge on and stem from assumption 
of the shape of the baseline hazards. This is quite contrary to the single-risk 
duration case, where consistent estimation model regression coefficients do not 
rely on parametric assumptions of the baseline hazard even with grouped duration 
data.   

• Second, I point out that under some parametric assumption, such as piecewise 
constant baseline hazards, the sample likelihood function has an explicit 
analytical form. An immediate implication is that there is no need for 
approximation once one makes the assumption that the baseline hazards are piece-
wise linear.  

Section 2 of the paper introduces the basic notation and describes the framework of 
statistical inference with grouped duration data. Section 3 discusses the main non-
identification result. In Section 4, I comment on the piece-wise constant case and derive 
the implied analytical likelihood function. Concluding remarks are made in Section 5 
with some extensions to the basic setting.   

2. Competing-Risks Model under Proportional Hazards Specification  

To focus on the presentation of the main ideas, I restrict my attentions to situations when 

• all explanatory variables are time-invariant,  

• there are only two competing risks,  
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• the duration variables are grouped into regular intervals quantified by positive 
integers,   

• the heterogeneity distribution is either degenerate (non-existent), or has a 
known bivariate parametric distribution.  

Let (T , T ) be the two risk-specific (and latent) durations. Let Y=min{T , T } be the 
observable duration. Let R=1 if it is known that Y=T , R=2 if it is known that Y=T , and 
R=0 if both T  and T  are right-hand censored, in this case we observe some value c with 
the knowledge that T >c and T >c. Let X be a vector of weakly exogenous covariates. 
Let V=(V , V ) be two unobserved heterogeneity factors. The leading example in this 
paper is mortgage loan termination. Specifically for this example, T  would be the 
duration until prepayment; T  would be the duration until default; Y would be the 
observed duration until the loan is terminated. If it is known that the loan is terminated 
due to prepayment, then R=1. If it is known that the loan is terminated due to default, 
then R=2. However, if by the time the survey ends, the loan of age c is still actively 
performing, then R=0 we say the both latent durations are right-hand censored at c.  

1 2 1 2

1 2

1 2

1 2

1 2

1

2

A continuous-time competing-risks model under proportional hazard specification has the 
following three components: 

Assumption 1 (Conditional Independence) Conditional on the observed and 
unobserved heterogeneity, (X, V), the two risk-specific durations T  and T  are 
independent. 

1 2

Assumption 2 (Proportional Hazards) Conditional on (X, V)=(x, v), the hazard rates 
for T  and T  are, respectively, 1 2

(1)  h (t|x, v)= λ (t) exp{x β +v },   j=1,2. j j j j

 Assumption 3 (Heterogeneity Distribution) The heterogeneity vector (V , V ) is 
independent from X, and is distributed with a bivariate distribution function G(v , v ) 
which is either  

1 2

1 2

(a) G(v , v ) is degenerate, i.e., P(V  =0, V  =0) =1, or  1 2 1 2

(b) G(v , v ; γ) has a parametric form with parameter γ.   1 2

The parameters of primary interest are the regression coeffiecients β and β  together with 
possibly γ in the heterogeneity distribution. Following the tradition in single-risk setting 
due to the seminal work of Cox (1972), it is now customary to leave the two baseline 
hazard functions λ (t) and λ (t) in (1) unspecified to enhance the robustness of estimating 
β and β .  

1 2

1 2

1 2

In the next section I will show why this effort is not fruitful when the model is to be fit 
with grouped duration data. Data grouping arises when the duration variable Y is not 
observed in continuous time. In clinical trial studies, subject’s blood sample is only tested 
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on scheduled time intervals. In economic analysis, the unemployment duration is only 
registered in weeks.  In the context of competing risks model, I will first assume, with out 
of generality, that the duration variable is grouped in two time intervals bounded by 
integers. Specifically, 

Assumption 4 (Data Grouping) Every observation in the entire sample can be classified 
in the one of the following three types of grouping:

  Explanation of the 
Situation 

Y Value R Value Knowledge of  T1 
and T2

Type P A loan is prepaid in Period Kn
2 ∈ (Kn -1, Kn] = 1 T1∈ (Kn -1, Kn]  

& T2 >T1

Type D A loan defaults in Period Kn ∈ (Kn -1, Kn] = 2 T2∈ (Kn -1, Kn]  

& T1 >T2

Type C A loan is still performing at 
the time of observation in 
period Kn

∈ (Kn -1, ∞) = 0 T1 > Kn -1 

& T2 > Kn -1 

 

These three types of data grouping are illustrated in Figure 1. 

 (INSERT FIGURE 1 HERE)  

 

Using the above notation, for each individual n in the sample we have the following 
information (Xn, Kn, Rn), whereby the value of Rn corresponds to the whether n belongs 
to Type P, Type D, or Type C. Notice that the heterogeneity vector (V1, V2) is 
unobserved. 

3. Non-identification    

Under Assumptions 1 and 2, conditional on (Xn, Vn1, Vn2), the joint density function of 
(T1, T2) is  

(2)  f(s,t|Xn, Vn1,Vn2)=h1(s|Xn, Vn1) h2(t|Xn, Vn2)exp{ - Λ1(s)φ1n - Λ2(t)φ2n}, 

and the joint survivor function is  

2  Our convention is to name the interval (0, 1] the first period,  the interval (1, 2] the second period, and so 
on.  
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(3)                        S(s, t|Xn, Vn1,Vn2) ≡ P(T1 >s, T2 >t| Xn, , Vn1,Vn2)  

= exp{ -Λ1(s)φ1n-Λ2(t)φ2n}, 

where we use Λj(s)=   to denote the risk specific integrated baseline hazard, and 

use φ

dtt
s

j )(
0∫ λ

jn =exp{Xnβj+Vnj} to denote the covariates effect.  

To derive the likelihood function based on the model and the data set up in the previous 
section, it is helpful to start with a Type C observation. Such an observation contributes 
to the sample likelihood function in the following form, 

(4) 
 [ ] [ ]),|1,1(),|1()|1( VXKKSEVXKYPEXKYP nnnGnnnGnnn −−=−≥=−≥ . 

Where the expectation is, whenever necessary if with respect to the heterogeneity 
distribution G(.), because V is by construction not observed.3  

The contribution to the sample likelihood of a Type P observation is more can be derived 
with a little algebra.  

(5)  Pr(Kn –1 < Yn  ≤ Kn, Rn=1|Xn) 

    =  EG [Pr(Kn –1 < Yn  ≤ Kn, Rn=1|Xn,V]  

      ,  { } ⎥⎦
⎤

⎢⎣
⎡ Λ−Λ−= ∫ −

dttttE nnn

k

kG 2211111
)()(exp)( φφφλ

Similarly for a Type D observation, its contribution to the sample likelihood is  

(6)  Pr(Kn –1 < Yn  ≤ Kn, Rn=2|Xn)  

      . { } ⎥⎦
⎤

⎢⎣
⎡ Λ−Λ−= ∫ −

dttttE nnn

k

kG 2211221
)()(exp)( φφφλ

To illustrate the fundamental non-identification, let us take the simplest case when the 
unobserved heterogeneity is absent. Assume Assumption 3(a). The equation (5) 
simplifies to  

(7)  Pr(Kn –1 < Yn  ≤ Kn, Rn=1|Xn) 

{ }dtttt nnn

k

k 2211111
)()(exp)( φφφλ Λ−Λ−= ∫ −

. 

3 When the heterogeneity distribution is degenerate, the expectation is trivialized. 
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The above integral depends on the values of λ1(t) and λ2(t) for all t between the interval 
(k-1, k]. With that, we have arrived at the following result. 

Proposition 1. Without the parameterization of λ1(t) and λ2(t) the competing-risks model 
under proportional hazard specification is unidentified by grouped duration data. 

This is quite a different picture from the single-risk setting.  In the latter, it is well known 
that with grouped duration data, the likelihood function depends on the baseline hazard 
only through the discrete values of integrated hazard function, that is, 

Pr(Kn –1 < Yn  ≤ Kn, Rn=1|Xn)  { }dttt nn

k

k 11111
)(exp)( φφλ Λ−= ∫ −

                                        = { }nk 11 )1(exp φ−Λ− - { }nk 11 )(exp φΛ−  

Therefore provided the number of cut-off points is either fixed or grows slower to infinity 
than the sample size n, consistent estimation of the regression coefficients β is 
achievable, even without the specification of the baseline hazard function.4  

Notice that the non-identification for the competing-risk world is purely due to data 
grouping. It has nothing to do with whether or not the unobserved heterogeneity is 
present. This identification is also qualitatively different from the non-identification 
concept of Tsiatis (1975), as here the un-identification arises even under conditional 
independence between the two risks and enough variation of the X vector.  

4. Exact Solution under Piece-wise Constant Baseline Hazards 

The direct implication of Proposition 1 is that it is necessary to make functional form 
assumption about the baseline hazards λ1(t) and λ2(t). Any meaningful inference comes 
from that assumption, and also hinges on that assumption.  

One of the commonly used assumption is the piece-wise constant assumption, 
popularized after Han and Hausman (1990). In this section I comment on the piece-wise 
constant baseline hazard and derive the exact likelihood function associated with this 
assumption.  

Assumption 5 (Piece-wise Constant Baseline Hazards) For j=1,2, the baseline hazard 
function λj(t) is piece-wise constant, that is, there exit constants  such that 

(8)   ,2,1,1)( ),1[1
== −∈=∑ jt kktjk

M

kj αλ

where M is the total number of the distinct integers in the set {Kn}. 

4  For an intuition about the non-parametric identification in the single risk setting and how to fully exploit 
that feature for statistical inference purpose, see An (2000). 
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Under Assumption 5, the two integrated baseline hazard functions are piece-wise linear 
with interval-specific slopes αjk.  

Proposition 2.  Under Assumptions 1-5, the integral appearing in equation (5) has an 
analytical expression, that is,  

(9)   { }dtttt nnn

k

k 2211111
)()(exp)( φφφλ Λ−Λ−∫ −

{ }[ ].}exp{1)1()1(exp 22112211
2211

11
nknknnnn

nknk

nk KK φαφαφφ
φαφα

φα
−−−−Λ−−Λ−

+
=

 

 The result is proved by simple algebra. Because under Assumption 5,  

 

  

{ }dtttt nnn

k

k 2211111
)()(exp)( φφφλ Λ−Λ−∫ −

{ }dtKtKKtK nnknnnknnk

k

k 222111111
)]}1([)1({)]}1([)1({exp φαφαφα −−+−Λ−−−+−Λ−= ∫ −

To gain intuition of the above expression, denote  

(10) 
nknk

nk
n

2211

11

φαφα
φα

θ
+

= . 

Notice that under the Assumption 5, probability that the duration ends in interval [Kn-1, 
Kn) conditional on (Xn, V) is 

(11)    Pr(Kn –1 < Yn  ≤ Kn|Xn,V)  

= Pr(Kn –1 < Yn |Xn,V) - Pr(Kn < Yn |Xn,V) 

{ }[ ]}exp{1)1()1(exp 22112211 nknknnnn KK φαφαφφ −−−−Λ−−Λ−= . 

Equation (9) and equation (11) make clear that Assumption 5 calls for a division of this 
probability mass according to the weights θn and 1 - θ n respectively. 

McCall (1996) proposes an ad hoc approximation of the likelihood contribution of a Type 
P or Type D observation by essentially fixing θn = ½ for all n. The corresponding formula 
under McCall (1996) is   

    Pr(Kn –1 < Yn  ≤ Kn|Xn,V)  

{ }[ ].}exp{1)1()1(exp5.0 22112211 nknknnnn KK φαφαφφ −−−−Λ−−Λ−= . 
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In recent papers on loan performance models, Deng et al (2000), Ciochetti et al. 2001 and 
Ambrose and LaCour-Little 2001 for example, all adopt McCall’s formula explicitly with 
their piece-wise constant assumption of the baseline hazards.  

(1) In mortgage termination models, compared with prepayments, loan default is 
an extremely rare event. It is well known that default hazard rate is only a tiny 
fraction (1/50, say) of the prepayment hazard rate. In this case, 50-50 split of 
the probability is way is quite inaccurate. 

(2) According to Proposition 2, the split ratio θn is individual specific, therefore 
cannot be fixed once for all for all observations. 

Notice also that under Assumption 5, the joint survivor function, S(Kn,Kn|X, V), depends 
on the baseline hazards only through the 2M discrete values of the integrated baseline 
hazards.  Define  

ρjk =log[Λj(Kn) -(Λj(Kn-1)],  

as the logarithm consecutive increments of Λj from k-1 to k. With this parameterization, 
the full parameter vector is  

 δ = (β1, β2, ρ11, ρ12,… ρ1M, ρ21, ρ22,…, ρ2M, γ). 

Estimation of δ can be carried out by maximizing the sample log likelihood function. The 
optimization routine depends on how the heterogeneity distribution is specified. The most 
convenient case is when the heterogeneity distribution. 

The most convenient way to specify the heterogeneity distribution is the two-dimensional 
discrete distribution. For example, on a 3x3 grids, there are 15 parameters, 

 V1 V2 P 

 a1 b1 p11 

 a1 b2 p12 

 a1 b3 p13 

 a2 b1 p21 

 …… 

 a3 b3 p33 

satisfying three constraints: (1) the probabilities sum to 1; (2) the mean of V1 is zero; and 
(3) the mean of V2 is zero. With these restrictions, there would only be 12 free parameters 
in the γ vector. If past experience is our guide, then there is unlikely a need to increase 
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the grid points. Typically a 2x2 grid with 8-3 =5 free parameters should be enough (An 
2002). 

5. Conclusions  

The previous two sections delivered two main messages. First, the models with 
nonparametric baseline hazards are fundamentally unidentifiable with grouped duration 
data. When a competing-risks model is fit with grouped duration data, any meaningful 
inference has to stem from and hinge on parametric assumption of the baseline hazard. 
Second, under parametric assumption such as the piece-wise linear baseline hazards, the 
sample likelihood function has explicit analytical functional form. Direct estimation 
using the full likelihood function is feasible and easy. Under this assumption, 
approximation of the likelihood function is no longer necessary. Specifically, when the 
two risks are very different in hazard rate, the folk approximation using a 50-50 split can 
be very damaging.  

Throughout this short paper I have limited to the case where there are two competing 
risks, where all the observed covariates are time-invariant, where the data grouping is 
regular in the sense that the continuous duration variable falls into intervals bounded by 
whole integers.  Generalization to more than two competing risks only involves 
notational complication. Treatment of time-varying covariates can be typically 
accommodated by making assumptions that the time trajectories of the X’s are also piece-
wise constant whose value changes are conforming to the interval of the duration 
variable. Non-regular data grouping can also be easily handled without much of 
difficulty, just as in the case of single-risk models (An, 2002). 
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Figure 1 Three Types of Grouped Duration Data  
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