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Abstract 

The distribution of the value of travel time savings (VTTS) is investigated employing various non-

parametric techniques on a large, high quality data set. When background variables are not included 

in the model it is found that the right 13% tail of the distribution is not observed and hence the mean 

VTTS cannot be evaluated. This conclusion changes when background variables are introduced into 

a semiparametric model. A partially constrained Johnson SB distribution allowing evaluation of the 

mean VTTS is accepted against the nonparametric alternative and is preferred among 16 candidates 

for parametric VTTS distributions. The resulting mean VTTS is plausible but three times larger 

than the mean VTTS evaluated from a simple logit model and half as big as that arising from a 

model assuming a lognormal distribution for the VTTS. Such findings indicate the importance of 

properly accounting for the distribution when estimating the mean VTTS. The present findings may 

be used to guide the choice of mixing distribution in a mixed logit model. 

Keywords: value of travel time savings, VTTS, distribution, nonparametric, semiparametric, Klein-

Spady, Zheng, Johnson SB, lognormal 
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1 Introduction 

1.1 Motivation 

The value of travel time savings (VTTS) is arguably the single most important number in transport 

economics. Travel time savings usually constitute a very large share of total benefits in cost benefit 

analyses of infrastructure projects (Hensher, 2001a, Mackie et al., 2001) and cost benefit analyses 

are in turn a main part of the information provided to decision makers on new projects. It is not only 

the average VTTS that is important but also its distribution, e.g., when forecasting market share for 

a tolled road (Hensher & Goodwin, 2004). 

The VTTS is usually inferred from experimental data using the logit model (Gunn, 2000). Recently 

the mixed logit has become the model of choice, since it allows for considerable improvements over 

the logit model in both realism and ability to describe the data (Train, 2003). The mixed logit model 

works by allowing certain parameters in the logit model to vary randomly in the population accord-

ing to some parametric distribution. The (hyper)parameters for this mixing distribution can then be 

estimated.  

There remains, however, the problem of deciding which mixing distribution to specify; some com-

mon choices are normal, lognormal, beta, Johnson’s SB or triangular (Hess et al., 2004). The choice 

of mixing distribution can have considerable impact on results (Hensher, 2001b, also Heckman & 

Singer, 1984), but little evidence exists to guide this choice. This paper similarly finds that the 

choice of mixing distribution can have a very strong effect on the resulting estimate of the mean 

VTTS and further that this effect is mainly due to the behavior of the tails of the mixing distribu-

tions outside the range of data. Since the range of data is always bounded, the tail behavior of dis-

tributions may in many cases not be constrained by data.   
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Thus the aim of this paper is a comprehensive study of the distribution of the VTTS, applying non-

parametric and semiparametric methods to a large, high quality data set. These methods avoid 

strong prior distributional assumptions. 

There has been little application of nonparametric and semiparametric estimators in the transport 

literature. Hensher & Greene (2003) stress the importance of the issue of selecting parameter distri-

butions in mixed logit modeling and suggest applying a kernel density estimator to parameter esti-

mates after applying a jackknife procedure to a multinomial logit model. This method allows one to 

visually inspect the distribution of parameters, however, without confidence bands on the estimated 

densities. Their findings further suggest that a wide range for the variables in a stated choice design 

is preferable, something which the results here also indicate. 

 

1.2 Nonparametric and semiparametric regression 

Introductions to nonparametric and semiparametric econometrics are given, e.g., in Yatchew 

(2003), Pagan & Ullah (1999) and Härdle (1990). Consider the regression model y = f(x) + ε, where 

the point of interest is to determine the function f. The classical OLS regression assumes that the 

function f is linear in parameters and estimates these.  Nonparametric kernel smoothers avoid such 

parametric assumptions by instead averaging the y’s in the neighborhood of each x. The average of 

the y’s then converges to f(x) under weak assumptions. This is a data hungry procedure, especially 

as the number of dimensions in x grows. Therefore semiparametric methods have been developed 

as a hybrid between parametric and nonparametric regression where just some of the relationship is 

modeled nonparametrically. 
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The results presented here use a two-step estimation procedure suggested by Lewbel, Linton & 

McFadden (2002).1 In the first step the Klein & Spady (1993) estimator is used to estimate parame-

ters in a linear index binary choice model without assuming a distribution for the error terms. In the 

second step the distribution of the error term is estimated. Details are given in the section below on 

semiparametric methodology.  

 

1.3. Layout 

The paper is organized as follows. Section 2 sets out the methodology. Section 3 presents a recent 

large dataset collected in a Danish value of travel time study, which is used in section 4 to investi-

gate the stochastic distribution of the value of time without using covariates. Section 5 introduces 

background variables to explain the distribution and estimate the mean VTTS and section 6 con-

cludes. 

 

2 Methodology 

2.1 Transformation of the data to contingent valuation format 

Our data come from a stated preference exercise where respondents are presented with binary 

choice situations (Burge et al., 2004). The data are transformed into a format similar to contingent 

                                                 

1 Koning and Ridder (2003) employ a similar idea. 
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valuation data, where we observe y=1 if a random latent w is smaller than a bid v set by experimen-

tal design.  

Alternatives 1 and 2 are characterized by travel time ti and cost ci only; they are otherwise the same. 

The conventional model for this situation is the binary (mixed) logit model (Train, 2003). Here we 

merely specify conditional indirect utility functions αtt i + αcc i, where parameters αt, αc <0 are ran-

dom and independent across observations.2 It is not necessary to specify errors corresponding to the 

logit kernel for the present purpose (McFadden & Train, 2000), since alternatives are identical ex-

cept for time and cost, observations are independent and parameters are random.  

Alternative 1 is chosen if αtt 1 + αcc 1 > αtt 2 + αcc 2.  It is customary to estimate separate parameters 

for time and cost. Here we shall use a form that directly emphasizes our object of interest: the value 

of time. Rearrange alternatives such that t1 < t2. We observe  

y = 1{αtt 1 + αcc 1 < αtt 2 + αcc 2} = 1{αt/αc < -(c 1-c 2)/(t 1 – t2)}, 

where 1 is the indicator function. That is, we observe y=1 when the respondent is not willing to pay 

to have the faster alternative. Let w = αt/αc be the random, unobserved VTTS and let  

v = -(c1-c2)/(t1 – t2) be the bid VTTS presented in the choice experiment. We thus observe  

y = 1{w<v}, such that y is 1 if the value of time is smaller than the bid and the respondent is not 

willing to pay the stated difference to save the stated time difference.  

                                                 

2 The panel data nature of data where respondents make repeated choices is thus ignored. 
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We discard observations where there is a dominant alternative, since such observations do not pro-

vide any information about the value of travel time, which cannot be negative (Hess et al., 2004). 

Then v > 0 and y = 1{w<v} = 1{log(w) < log(v)}. 

2.2 Nonparametric estimation of the VTTS distribution 

Note that P(y = 1) = P(w < v) = Fw(v), where Fw is the c.d.f. of w. We can write y =  Fw(v) + η, 

where E(η)=0 and estimate Fw by a nonparametric regression of y on v given weak smoothness 

conditions on Fw.  

The mean of w can be estimated from the estimated Fw. Evidently, this requires that the range of v 

extends over the support of Fw. If not, then only a part of the distribution is observed. In this case 

the moments of Fw cannot be estimated without further assumptions.  

The nonparametric regressions in this paper are all performed using the Nadaraya-Watson estima-

tor, with a first-order normal density kernel and bandwidth selected by eyeballing (e.g. Pagan & Ul-

lah, 1999).  

Computation of confidence intervals is complicated slightly since η is heteroscedastic. The asymp-

totic 95% pointwise confidence interval at v is computed using 

( )( ) ( )
( )λnvp̂

vσ̂b1.96β̂vF̂
2

K
u ±  (1) 

where is the estimated regression function, buF̂ K = 
π2

1 ,  p is a nonparametric estimate of the den-

sity of v, λ is the bandwidth, and n is the number of observations. The variance of η is estimated at 

each point (Pagan & Ullah, 1999, p.104); we use 

ˆ

( ) ( ) ( )( )vF̂1vF̂vσ̂ uu
2 −=  since y can only take the 
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values 0 and 1. The pointwise confidence intervals will contain 95% of the true points of the 

distribution function in repeated samples as n tends to infinity.  

Uniform 95% confidence intervals are computed using the formula given in Yatchew (2003), where 

1.96 in formula (1) above is replaced by  

( )( )
( ) ( ) ( ) .

8π
1log

1/λ8log
11/λ2log

1/λ2log
/20.95loglog

2 ⎟
⎠
⎞

⎜
⎝
⎛++

−−   

The uniform confidence bands will contain the entire true distribution in 95% of repeated samples 

as n tends to infinity. Section 2.3 below illustrates the ability of this technique to recover various 

distributions. 

2.3 Examples: Recovery of various distributions 

This section illustrates the ability of nonparametric regression to identify cumulative distribution 

functions using only observations of binary choices. We have constructed 2000 observations where 

the value of time w follows some known distribution and bids v are taken from a normal distribu-

tion with mean ½ and standard deviation ¼. We observe v and y=1(w<v) and regress y on v using a 

normal density kernel with bandwidth 0.04, selected by eyeballing.  

Four test distributions for w are selected to represent a variety of shapes as shown in Figure 1. The 

distributions are lognormal, a “double sawtooth” distribution constructed from combining two tri-

angular densities, a normal distribution and a beta distribution. The parameters for the distributions 

are chosen such that almost all the mass lies within the unit interval, so that the requirements for the 

estimator in section 2.2 are satisfied fairly closely.  

<Figure 1 about here> 
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Figure 2 shows the true distribution functions together with 95% pointwise confidence bands and 

95% uniform confidence bands for each estimated distribution.  

<Figure 2 about here> 

The estimated uniform confidence bands are narrow and contain the true density in all cases, except 

for the lowest values in the lognormal distribution, and mostly the true distribution functions lie in-

side the estimated pointwise confidence intervals.  

2.4 Nonparametric estimation of the VTTS distribution using covariates 

Consider now the case when background variables are introduced as covariates. Assuming that 

log(w) depends on background variables x through a single linear index, we parameterize  

log(w) = βx + u, where x is a vector of observed variables and u is an error, independent of x and 

with unknown c.d.f. named Fu. Then  

P(y=1) = Fu(log(v)-βx) = Fu(v(β)), 

where v(β)=log(v)-βx.  

We have now y = Fu(v(β)) + η. If observations of v(β) were available, we could just perform a non-

parametric regression of y on v(β) to estimate Fu. Lewbel et al. (2002) propose instead to regress y 

on estimated values v(β ), which yields a consistent estimate  of Fˆ
uF̂ u, since β  converges faster than 

(v(β)).  The necessary assumptions are that v(β) has compact support; the unknown distribution 

of w has a twice continuously differentiable, strictly monotonic, conditional c.d.f. and density with 

compact support; the test variable v has a continuous distribution with compact support extending 

over that of w; w and v are independent conditionally on v(β) so that u and v are independent; u has 

compact support that contains zero; and v(β) has support that extends over the support of u. 

ˆ

uF̂
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The nonparametric estimator described above is also applied for the case with covariates. The mean 

VTTS can be assessed since E(w) = E(exp( x + u)) = E(exp(βx))E(exp(u)) by independence of x 

and u. 

β̂ ˆ

2.5 The Klein & Spady estimator 

The index parameters β are estimated using the Klein & Spady (1993) estimator. The (not logged) 

likelihood of an observation is  

L* = yP(y=1) +(1-y)P(y=0) = y Fu(v(β)) + (1-y)(1- Fu(v(β))). 

Given Fu it would be possible to estimate β by maximum likelihood. For example, assuming a nor-

mal or a logistical distribution for u gives rise to a probit or logit model. We do, however, only want 

to impose minimal prior assumptions on Fu.  

Klein & Spady (1993) propose to replace Fu(v(β)) by a nonparametric estimate that depends on β. 

We have y = Fu(v(β)) + η, such that given β we can perform a nonparametric regression of y on the 

index v(β). We again use the Nadaraya-Watson estimator with a normal density kernel to find an 

estimate of Fu(v(β)) as ( )( )βvF~u . ( )( βvF )~
u  has a closed form expression as a weighted average of y 

around v(β). Then we can approximate the likelihood function for y by  

L* ≈ y ( )( )βvF~u  + (1-y) (1- ( )( )βvF~u )  

and maximize with respect to β in order to arrive at a semiparametric estimate β  of β. This 

estimator is consistent and asymptotically normal under weak conditions (see also Pagan & Ullah, 

1999). Standard errors are computed from the estimated Hessian (Klein & Spady, 1993). Finally, 

the v(β ) are computed. We shall refer to these as Klein-Spady residuals. 

ˆ

ˆ
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2.6 Testing parametric distributions 

Given some parametric distribution for the VTTS we would like to test this against the nonparamet-

ric alternative. The Zheng (1996) test statistic is available for this. Letting the parametric model be 

given by y = F(x;θ) + η, then the null hypothesis to be tested is that P(E(y|x) = F(x;θ0)) = 1 for 

some θ0, while the alternative hypothesis is that P(E(y|x) = F(x;θ)) < 1 for all θ. The alternative en-

compasses all possible departures from the null. Define residuals e = y - F(x;θ ), where θ  is an es-

timate of θ and let K be the normal density kernel and again λ be the bandwidth. Then the Zheng 

test statistic is computed as 

ˆ ˆ

2
j
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i

i ij
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i ij
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This is distributed as N(0,1) under the null hypothesis. Under the alternative hypothesis 
λn

T  

converges in probability to a constant, and thus T converges to infinity when n grows faster than  

λ-1/2 . 

Eight different distributions are tested, specified as indicated in Table 1, where F denotes cumula-

tive distribution functions and f denotes densities. Logged versions of the distributions are obtained 

by applying them to log(x) instead of x, which yields a total of sixteen parametric distributions to be 

tested. The Beta and the Johnson SB distribution occur in two versions, according as the upper 

bound is constrained to be the maximum of the independent variable. 
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3 Data 

The data origin from a recent Danish value of time study undertaken by the Danish consultancy 

TetraPlan in joint venture with Rand Europe and Gallup for the Danish Ministry of Transport. 

Stated preference interviews have been conducted both via the Internet and computer aided personal 

interviews. Business travel is excluded. The stated preference design is discussed in Burge et al. 

(2004). Here only data from one experiment are used.  From the data, a sample of 2197 interviews 

is selected of car drivers choosing between car trips distinguished by cost and time only. Each re-

spondent has made 9 consecutive choices. One of these is always a dominated choice, which is ex-

cluded from the analysis. Respondents that do not choose the dominant alternative are discarded. 

Observations with errors such as unrealistic speeds, very long journey times etc. are rejected such 

that 17020 observations are available for estimation.  

Time is described in the experiment as free flow travel time and additional time due to congestion 

in order to make the resulting VTTS estimates applicable to the output from an assignment model. 

The two time components vary proportionally such that the relative share of time under free flow 

conditions stays the same for each respondent through the choices made by each.  

Table 2 presents some summary statistics for the data.3 The bids in v are of particular interest. They 

are chosen in the design to cover the expected range for the mean value of time, not the range of in-

dividual values of time. Eight v’s are chosen randomly from a number of specified ranges, in order 

to incorporate a range of low and high values, with most values in the region of the range of the ex 

ante expectation of mean VTTS. The range of VTTS bids in v is fairly large, from 3 to 201 

                                                 

3 The currency is Danish Kroner: 7.5 DKK=1 EUR. 
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DKK/hour, restricting our ability to infer anything about the distribution of the VTTS above this in-

terval. The maximum is imposed by the design (Burge & Rohr, 2004). 

If we were not willing to parameterize the location of log(w) as βx, then v would have to be drawn 

from a continuous distribution in order to identify Fu (Lewbel et al., 2002, Appendix 1). Parametris-

ing with β as we do means that only v(β) must be continuous, which is easier to achieve, at least 

approximately. It is, however, still relevant to know the distribution of the v’s. The cumulative dis-

tribution of v in Figure 3 shows a nice dispersion of the values of v with most bids below 100 

DKK/hour but also a significant number above. 

<Figure 3 about here > 

 

4 The VTTS distribution without covariates 

First consider nonparametric regression of y on v. Before the regression v is transformed to logs; 

this affects the regression through the bandwidth such that in effect the bandwidth is larger for large 

v where data are sparser.4 In the estimation, data have been rescaled to lie within the unit interval 

and a bandwidth of 0.03 is employed, selected by eyeballing. Afterwards, results are transformed 

back to the original range. The regression provides an estimate of the distribution of the VTTS in w, 

shown in  Figure 4.5  

                                                 

4 Using a design adaptive estimator is an alternative. 

5 Results are generated using Ox 3.30, (see Doornik, 2002). The code is available from the author 

on request. 
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A number of observations can be made from this regression. First, there is definitely a positive 

slope, which means that as the bid increases, more respondents decline to save time. Second, confi-

dence bands are fairly tight, which means that choice probabilities can be assessed with a reason-

able degree of accuracy and also the corresponding quantiles of the VTTS distribution. Third, there 

exists a monotone function within the confidence bands, which is consistent with the estimated 

function being a distribution function. Fourth, the distribution can be assumed to tend to zero at zero 

VTTS. We shall adopt this assumption henceforth. Fifth, the distribution does, however, not tend to 

one within the observed range. At the largest bid presented, there is a significant proportion of re-

spondents who are willing to pay more in order to save time. The point estimate of Fw(201) is 0.867 

[0.834;0.899]. This in turn means that the mean VTTS cannot be assessed from this distribution.6

< Figure 4> 

It is of interest to test various parametric distributions against the nonparametric distribution. Six-

teen different distributions are estimated by maximum likelihood. Parameter estimates and loglike-

lihoods are shown in Table 3. The distributions are shown in Figure 5 and Figure 6 with the non-

parametric pointwise confidence bands indicated for comparison. The best fitting distributions 

achieve loglikelihoods above –10750. Of these, the parameter estimates of the Beta, SB and the 

logSB distributions are extreme and standard errors could not be computed for the Beta and the 

logSB; otherwise parameter estimates are very significant. The Gamma distribution, having only 

two parameters, is preferred over the other distributions on a likelihood ratio test. 

                                                 

6 Discarding observations of respondents who choose always the cheapest or the fastest alternative 

does not change this conclusion. 
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Each of the sixteen distributions is compared to the nonparametric alternative using the Zheng 

(1996) test; the test statistics shown in Table 4 converge in probability to the standard normal under 

the null hypothesis indicating a clear rejection of all sixteen parametric distributions. Presumably, 

this is due to the wriggles evident on the nonparametric estimate of the distribution. 

The mean VTTS has been computed for each of the 16 parametric distributions. Values below zero 

have been truncated, with the interpretation that the distributions concerned have a point mass at 

zero. The results are shown in Table 5. An extremely large degree of variation is found when using 

different distributions. At the low end the normal distribution has a mean VTTS of 51.4 DKK/hour. 

The typical mean VTTS arising from these distributions is about 60 DKK/hour. However, the log-

normal and in particular the loggamma have very long right tails as can be seen from Figure 6, lead-

ing to very high mean VTTS’s, outside the range of data. The distributions with loglikelihoods bet-

ter than –10750 lead to estimated mean VTTS ranging from 59 to 96 DKK/hour, a fairly wide 

range. 

In summary, the nonparametric regression shows that the right 13% of the VTTS distribution is not 

observed. Thus the mean VTTS cannot be evaluated without some additional assumption about the 

right tail outside the range for which data exist. Founding such an assumption seems to be hard. 

Sixteen common parametric models have all been rejected. Choosing anyway those with the best 

loglikelihood lead to a wide range of estimated mean VTTS’s.  
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5 The VTTS distribution including covariates 

5.1 A semiparametric model 

 In this section the model is expanded by the inclusion of various covariates in a semiparametric 

model combining some parameterization with an additive nonparametric error. As indicated in sec-

tion 2 this is achieved by specifying a model where log(w) is split into a parametric linear index 

plus an independent error. Descriptive statistics for the covariates in the index are provided in Table 

6. The variables are mostly self-explanatory. The personal income is given in bands with 1 repre-

senting the interval from 0 to 100,000 DKK per year up to 11 representing the interval above 

1000,000 DKK per year. Trip duration is defined as the average of the travel time in minutes in the 

two alternatives presented to the respondent, the log of the travel time difference between the two 

alternatives and the share of congestion time, denoted by s, which is the ratio of additional conges-

tion time over free flow time to total time. Since the log function is nonlinear, a first order Taylor 

expansion can be used to arrive at the interpretation of the coefficient of s as a markup for con-

gested time over the value of free flow time. 

Panel (a) of Table 7 shows the parameter estimates and summary statistics for the Klein-Spady es-

timator. All parameters, except the first order term for age, are significant at 5% and most highly so. 

The model is extremely significant in a chi-square test against a model with zero parameters.  

The VTTS of females is on average 25% (4%)7 lower than males. The coefficient of personal in-

come can be directly interpreted as an income elasticity of 0.68 (0.05). This is in line with, e.g., a 

review by Wardman (2001) who finds a typical household income elasticity of 0.6 on cross-

                                                 

7 Standard deviations in parentheses. 
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sectional data and indication that higher values are found when individual incomes are used. Note 

that the data involve pretax income. The Danish tax system is quite progressive: a back-of-an-

envelope calculation indicates that the elasticity with respect to after tax income would be higher 

and close to 1. 

The VTTS increases with the duration of the trip, here represented as the log of the average travel 

time in the two alternatives presented, such that the parameter becomes a VTTS elasticity of trip du-

ration of 0.17 (0.03). The VTTS increases also with the size of the time saving with an implied elas-

ticity of 0.36 (0.04). This is consistent with the finding of Hultkrantz & Mortazavi (2001), who dis-

cuss this effect as a result of a perceptual threshold, which may reflect either a real social cost or a 

decision rule employed in the course of completing a questionnaire. The congestion share is signifi-

cant with a parameter that indicates that congested time is valued 52% (14%) above free flow time. 

The VTTS decreases with age. The dummy for commuting is positive while the dummy for travel 

to/from education may be either zero or equal to the commuting dummy.  

5.2 Analysis of the Klein-Spady residuals 

The nonparametric regression of y on the Klein-Spady residuals v(β ) is shown in Figure 7. This is 

an estimate of the distribution of the error u. A number of observations are possible. First, the wrig-

gles have disappeared and the distribution seems much smoother than before. Second, the confi-

dence bands are tight over a long range. Third, the distribution can be assumed to be bounded 

within the support of v(β ), since 0 and 1 are within the confidence bands at the ends of the distribu-

tion. Making this assumption makes it possible to compute the mean VTTS. 

ˆ

ˆ

We again test a range of parametric distributions against the nonparametric alternative. Parameter 

estimates and loglikelihoods can be found in Table 8. Table 9 shows the Zheng test values for the 
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sixteen distributions and Table 10 shows the corresponding mean VTTS’s. The latter are computed 

by E(exp(u+βx)) = E(exp(u))E(exp(βx)), where E(exp(βx)) is replaced by its sample mean of   

6.1907. The mean of exp(u) is calculated analytically where possible and simulated otherwise with 

truncation at zero where necessary. Graphs of the estimated distributions are shown in  Figure 8 and 

Figure 9 with nonparametric confidence intervals indicated for comparison. 

There are now a number of distributions that can be accepted against the nonparametric alternative 

for the distribution of the error term. These distributions also achieve the best loglikelihoods all bet-

ter than –10143. We shall discuss each in turn.  

The Lognormal is simple and is commonly used, parameter estimates are of reasonable size, al-

though the estimated standard deviation of 2.0 seems fairly high and leads to a long tail. It is not 

bounded within the data and the estimated mean VTTS is the highest among the accepted distribu-

tions with a value of 183.6 DKK/hour. The SB, logSB and logBeta distributions are not bounded 

within the data, they lead to extreme parameter estimates and standard deviations are very high or 

sometimes not possible to calculate. Finally, the SB1 distribution is specified such that its upper 

bound coincides with the upper bound of the Klein-Spady residuals. This leads to a lower mean 

VTTS of 105.1 DKK/hour. Except for the parameter for the lower bound, the standard deviations 

are small. It is accepted against the nonparametric alternative but rejected against the SB distribu-

tion.  

Requiring that of a distribution that it should be accepted against the nonparametric alternative, not 

have a long tail outside the range of data, and not have unreasonable parameters leads to the choice 

of the SB1 distribution as the preferred parametric distribution. In applications focusing on predic-

tion rather than on evaluating the mean VTTS, the lognormal might be preferred instead since it 

achieves a better fit. 
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5.3 Two parametric models 

The index used to calculate the Klein-Spady residuals in the above analysis was based on the semi-

parametric regression making no assumption on the distribution of u. Having now identified two 

candidates for the distribution of u, the lognormal and the Johnson SB, we now estimate parametric 

models using these distributions. The results are shown in Table 7, panels (b) and (c) along with the 

semiparametric estimates. The parameter estimates change very little, reinforcing our conclusion 

that the two parametric distributions provide good approximations to the nonparametric distribution. 

The loglikelihoods improve relative to the parametric models on the Klein-Spady index, when the 

parameters in the index are estimated simultaneously with the parameters of the distributions. With 

the index from the SB1 model we finally compute the mean VTTS as above, which yields a value of 

89.2 DKK/hour. This would be our estimate of the mean VTTS.8  

For completeness we finish by also estimating a logit model with specification chosen to include the 

index used above. We specify the indirect utility difference as ∆t exp(βx) + ∆c multiplied by a scale 

parameter, where x now includes a constant. The resulting estimated mean VTTS turns out to be 

28.3 DKK/hour, less than a third of the value obtained with the SB1 model.  

 

                                                 

8 The value applies to the sample and is not directly suitable for use in economic evaluation. The of-

ficial Danish VTTS figures for use in economic evaluation of transport projects are based on an av-

erage after tax hourly wage. For commuting by car the official value is about 60 DKK/hour for free 

flow time and a markup of 50% is applied for time under congested conditions (Trafikministeriet, 

2003). 
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6 Conclusions 

This paper has demonstrated the application of various nonparametric and semiparametric methods 

to the estimation of the distribution of the value of travel time savings and further to estimate the 

mean of the distribution. It is shown possible to estimate the VTTS distribution quite precisely with 

narrow confidence bands. However, when using no covariates except for the trade-off between time 

and cost, results indicate that the right tail of the VTTS distribution is not observed and hence the 

mean cannot be calculated without further assumptions. This observation may have implications for 

attempts to identify similar means from, e.g., the mixed logit model where applications have not 

verified that the mixing distribution is adequate and that the data allow observation of its tails. The 

observation further emphasizes the importance of the recommendation by Hensher & Greene (2003) 

to include a wide range for the variables in a stated choice design. It is possible to speculate that the 

missing tail is the reason behind the wide variability in the mean value of travel time found using 

different model specifications (e.g., Hensher, 2001b). The solution may then not be found through 

elaboration of the model specification but is rather to be found in the possibilities allowed for by the 

data.  

Including a range of covariates in a semiparametric model resulted in plausible parameter estimates 

for a VTTS index allowing ready interpretation. Furthermore, it proved possible to accept that the 

distribution of the unknown error is bounded within the range provided by the estimated index. This 

in turn enabled estimation of the mean VTTS. The main candidate for a parametric distribution 

among sixteen distributions tested turned out to be the Johnson SB with a fixed upper bound corre-

sponding to the supremum of the index. In applications where prediction, e.g. of patronage of a 

tolled road, and not estimation of the mean is the issue, also the lognormal turned out to be a suit-

able choice. The estimated mean VTTS from the partially constrained Johnson SB model turned out 
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as 89.2 DKK/hour. In contrast the estimated mean VTTS from a logit specification was only 28.3 

DKK/hour. The consequences of improving the econometric methodology as suggested here are 

thus dramatic. 

The work presented here could be extended in several directions. First, it seems worthwhile to test 

the findings on other datasets. Perhaps the most pressing methodological issue is to deal with serial 

correlation, which does not seem possible with the present methodology. We have treated choices 

made by the same respondent as independent, which ignores both serial correlation and the fact that 

respondents may make mistakes when making choices. Accounting for mistakes may conceivably 

change the conclusions arrived at in the present paper and should be a subject for further research. 

Another line of research that seems worth pursuing is to extend the methodology to tackle several 

time components in a more direct way than how additional congestion time was included into the 

model presented here. 

  

 20 



7 References 

• Burge,P., Rohr, C. Vuk, G., Bates, J. (2004) “Review of international experience in VOT 

study design”, Proceedings of the European Transport Conference.  

• Burge, P., Rohr, C. (2004) “DATIV: SP Design: Proposed approach for pilot survey”, Tetra-

Plan in cooperation with RAND Europe and Gallup A/S. 

• Doornik, J.A. (2002), “Object-Oriented Matrix Programming Using Ox”, 3rd ed. London: 

Timberlake Consultants Press and Oxford: www.nuff.ox.ac.uk/Users/Doornik.  

• Gunn, H. F. (2000) “An Introduction to the Valuation of Travel-Time Savings and Losses”, 

Handbook of Transport Modelling, Chapter 26, Eds. D.A. Hensher & K. J. Button, Elsevier 

Science Ltd. 

• Heckman, J. and Singer, B. (1984) “A method for minimizing the impact of distributional 

assumptions in econometric models for duration data”, Econometrica, Vol. 52 No. 2, 271-

320. 

• Hensher, D.A. (2001a) “Measurement of the Valuation of Travel Time Savings”, Journal of 

Transport Economics and Policy, Volume 35, Part 1, January 2001, 71-98. 

• Hensher, D.A. (2001b) “The sensitivity of the valuation of travel time savings to the specifi-

cation of unobserved effects”, Transportation Research Part E 37, 129-142.  

• Hensher, D.A. and Goodwin, P. (2004) “Using values of travel time savings for toll roads: 

avoiding some common errors”, Transport Policy 11, 171-181. 

 21 



• Hensher, D. and Greene, W. H. (2003) “The Mixed Logit Model: The State of Practice”, 

Transportation 30(2), 133-176. 

• Hess, S., Bierlaire, M. and Polak, J.W. (2004) “Estimation of value of travel-time savings 

using Mixed Logit models”, Forthcoming Transportation Research Part A. 

• Hultkrantz, L. and Mortazavi, R. (2001) “Anomalies in the Value of Travel-Time Changes”, 

Journal of Transport Economics and Policy, Volume 35, Part 2, May 2001, 285-300. 

• Härdle, W. (1990), “Applied Nonparametric Regression”, Econometric Society Monograph 

Series, 19, Cambridge University Press. 

• Klein, R. and R. Spady (1993), “An Efficient Semiparametric Estimator for Binary Re-

sponse Models”, Econometrica, 61, 387-422. 

• Koning, R.H. and G. Ridder (2003) “Discrete choice and stochastic utility maximization”, 

Econometrics Journal, volume 6, pp. 1–27. 

• Lewbel, A., O. Linton and D. McFadden (2002), “Estimating Features of a Distribution 

from Binomial Data”, mimeo. 

• Mackie, P.J., Jara-Diáz, S. and Fowkes, A.S. (2001) “The value of travel time savings in 

evaluation”, Transportation Research Part E 37: 91-106. 

• McFadden, D. and Train, K. (2000) “Mixed MNL models of discrete response”, Journal of 

Applied Econometrics 15, 447-470. 

• Pagan, A. and A. Ullah (1999), “Nonparametric Econometrics”, Cambridge: Cambridge 

University Press. 

 22 



• Train, K. (2003), “Discrete Choice Methods with Simulation”, Cambridge University Press.  

• Trafikministeriet (2003), ”Nøgletal”, www.trafikministeriet.dk. 

• Wardman, M. (2001) ”Inter-temporal variations in the value of time”, ITS Working Paper 

566, ITS Leeds, UK. 

• Yatchew, A. (2003) “Semiparametric Regression for the Applied Econometrician”, Themes 

in Modern Econometrics, Cambridge University Press. 

• Zheng, J.X. (1996) “A consistent test of functional form via nonparametric estimation tech-

niques”, Journal of Econometrics 75, 263-289.  

 

 23 

http://www.trafikministeriet.dk/


Figure 1 Four test distributions 
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Figure 2 Estimated confidence bands around true distributions 
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Figure 3 Cumulative distribution of bids v 
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igure 4 Nonparametric regression of choices y against bids v 
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Figure 5 Eight parametric distributions estimated on bids v 
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Lognormal
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igure 7 Nonparametric regression of choices y on Klein-Spady residuals 
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 Figure 8 Eight parametric distributions estimated on Klein-Spady residuals. Index = 

exp(v(β )) ˆ
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Lognormal
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Figure 9 Eight logged parametric distributions estimated on Klein-Spady residuals. Index = 
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Table 1 Specification of parametric distributions 
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Table 2. Summary statistics 
 Unit Mean Std.dev. Min Max 

y  0.4009 0.4901 0 1

v DKK/hour 47.98 39.45 3 201

 

Table 3. Parameter estimates, 16 parametric models estimated on v 
 p0 p1 p2 p3  
Distribution Estimate Std.err. Estimate Std.err. Estimate Std.err. Estimate Std.err. Loglikelihood 
Normal 19.61 1.237 102.3 3.037     -10821.7
Lognormal 2.926 0.02733 2.280 0.06230     -10760.6
Beta 0.3237 . 309.0 . 0.1948 . 67634 . -10748.7
Logbeta 1.999 1.259 1.144 0.2976 -3.054 3.030 8.995 3.212 -10750.4
Gamma 0.3264 0.01165 0.004605 3.180E-4     -10748.7
Loggamma 2.053 0.1063 0.6060 0.03379     -10784.4
Uniform -190.1 4.992 211.0 2.401     -10907.6
Loguniform -0.1570 0.09401 5.998 0.06056     -10753.5
Triangular -56.30 4.134 58.55 2.678 279.3 19.17 0.006291 3.045E-4 -10753.5
Logtriangular -0.9969 0.4041 3.181 0.2453 5.817 0.07092 0.1250 0.01404 -10746.7
SB -14.00 4.564 103980 1460.6 5.288 0.4318 0.6602 0.0652 -10748.6
LogSB -1236 . 7.501 0.7162 -9.735 1.560 1.735 0.3324 -10748.8
SB1 2.635 0.3445   0.7175 0.01718 0.2866 0.009756 -10873.8
LogSB1 1.010 0.05873   0.1083 0.01623 0.3570 0.01176 -10888
Beta1 0.2090 7.402E-3   0.6119 0.03072 2.978 0.04173 -10876.3
Logbeta1 0.4550 0.04060   0.5160 0.02567 0.9563 0.1543 -10869.9
 

 

Table 4. Zheng (1996) test of parametric distributions against nonparametric alternative -  
regression of y against v 
 Not log Log 
Normal 23.75 12.69
Gamma 5.71 21.20
Uniform 62.42 9.30
Triangular 4.57 4.20
SB 5.13 5.93
SB1 9.94 11.41
Beta 5.81 6.97
Beta1 8.91 9.49
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Table 5. Mean VTTS from parametric distributions estimated on bids v, truncated below at 
zero 
  Not log Log 
Normal 19.6 250.8
Gamma 70.9 3.4E+08
Uniform 55.5 65.2
Triangular 57.7 59.4
SB 95.9 69.5
SB1 54.5 54.2
Beta 71.0 61.6
Beta1 53.4 54.1

 

Table 6. Descriptive statistics for covariates 
 Min Max Mean

Female dummy 0 1 0.42139

Log of personal income 0 2.3979 1.0362

Income NA dummy 0 1 0.096298

Log of trip duration 1.5041 6.2344 3.4308

Log of time difference  1.0986 4.0943 1.8528

Congestion share 0 0.68 0.090671

Age 16 89 49.791

Age sq./1000 0.256 7.921 2.7023

Commuting dummy 0 1 0.21345

Education dummy 0 1 0.079671
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Table 7. Parameter estimates: semiparametric regression (a), lognormal model (b), and John-
son SB (c) 
  (a)   (b)   (c)  

 Variable Std.err. t-value Variable Std.err. t-value Variable Std.err. t-value
Female -0.25157 0.043629 -5.8 -0.2636 0.04343 6.1 -0.25250 0.042871 -5.9
Log of income 0.6845 0.053891 12.7 0.65959 0.05039 13.1 0.64217 0.050112 12.8
Income NA  0.83342 0.086837 9.6 0.7642 0.08835 8.6 0.74895 0.086407 8.7
Log of trip duration 0.16551 0.033092 5.0 0.16378 0.03337 4.9 0.17663 0.033473 5.3
Log of time difference 0.36419 0.035263 10.3 0.35919 0.03552 10.1 0.34754 0.035640 9.8
Congestion share 0.51776 0.13998 3.7 0.49784 0.15147 3.3 0.49907 0.15093 3.3
Age 0.010192 0.0096087 1.1 0.00509 0.00982 0.5 0.004529 0.009592 0.5
Age sq./1000 -0.35745 0.097048 -3.7 -0.3164 0.09938 -3.2 -0.30153 0.096789 -3.1
Commuting 0.18432 0.050364 3.7 0.21296 0.05289 4.0 0.20431 0.052441 3.9
Education 0.144 0.083903 1.7 0.12153 0.08294 1.5 0.11861 0.081552 1.5
τ1 1.4031 0.022547 62.2 1.5964 0.23971 6.7   -0.40209 0.21379 -1.9
τ2 1.9934 0.040991 48.6 1.993 0.0518 38.5 2.2169 0.068523 32.4
τ3  0.54627 0.024033 22.7
Loglikelihood  -10117.0 -10136.4  -10132.7  
Loglikelihood at zero 
parameters 

 -10723.3 -10760.6  -10873.0  

Number of parameters  10 10+2  10+3  
Number of observa-
tions 

 17020 17020  17020  

Note: In panel (a) and (b), τ1 and τ2 are mean and standard deviation in the normal distribution. In 

panel (a) these parameters are estimated from the Klein-Spady residuals and can be compared to the 

corresponding parameters from the lognormal model.  In the Johnson SB model in panel (c) the pa-

rameters correspond to p0, p2 and p3 in Table 1. 

Table 8. Parameter estimates, 16 parametric models estimated on Klein-Spady residuals 
 p0 p1 p2 p3  
Distribution Estimate Std.err. Estimate Std.err. Estimate Std.err. Estimate Std.err. Loglikelihood 
Normal 3.571 0.3392 29.06 0.8048     -10628.8
Lognormal 1.403 0.02256 1.994 0.04100     -10137.4
Beta 0.3292 . 1148 . 0.1957 . 50330 . -10186.3
Logbeta 604.6 . 614.3 . -67.65 . 139.2 . -10137.4
Gamma 0.3530 0.01026 0.02507 0.001341     -10192.6
Loggamma 0.7174 0.02701 0.3490 0.01719     -12830.2
Uniform -178.4 3.070 144.0 0.4484     -11091.5
Loguniform -2.319 0.06315 4.975 0.008561     -10263.2
Triangular -5.873 0.3629 11.49 0.2572 263.8 10.22 0.04528 0.001419 -10217.6
Logtriangular -1.612 0.01836 3.706 0.02955 29280 . 0.1698 . -10148.9
SB -0.3000 0.1415 1261300 . 6.746 0.2166 0.5378 0.01898 -10133.8
LogSB -87.98 128.3 52.93 229.3 -8.999 40.02 16.34 51.76 -10137.3
SB1 -0.1591 0.1135   2.095 0.05120 0.4994 0.01593 -10143
LogSB1 -2.932 0.3876   -0.00930 0.09360 0.9834 0.04387 -10164.8
Beta1 874190 .   215.7 . -1158800 . -10867.6
Logbeta1 2.536 0.4844   2.331 0.1524 3.304 0.6858 -10155.3
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Table 9. Zheng test statistics 
 Not log Log 
Normal 156.52 1.39
Gamma 16.12 34.60
Uniform 382.07 51.95
Triangular 34.19 9.69
SB 0.89 1.35
SB1 1.89 5.39
Beta 15.58 1.40
Beta1 107.98 3.94
 

Table 10. Mean VTTS from parametric distributions estimated on Klein-Spady residuals, 
truncated below at zero 
  Not log Log 
Normal 83.3 183.6
Gamma 87.2 2.9E+09
Uniform 198.7 122.8
Triangular 200.8 +inf
SB 155.4 170.4
SB1 105.1 97.8
Beta 82.9 181.4
Beta1 65.7 100.5
 

 

 

 

 37 


	Introduction
	Motivation
	Nonparametric and semiparametric regression

	Methodology
	Transformation of the data to contingent valuation format
	Nonparametric estimation of the VTTS distribution
	Examples: Recovery of various distributions
	Nonparametric estimation of the VTTS distribution using cova
	The Klein & Spady estimator
	Testing parametric distributions

	Data
	The VTTS distribution without covariates
	The VTTS distribution including covariates
	A semiparametric model
	Analysis of the Klein-Spady residuals
	Two parametric models

	Conclusions
	References

